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With the rapid advancement in science and technology, the enhancement in heat 
transfer is also making its way forward towards modern nanotechnology. It was noted 
that heat transfer efficacy of heat exchangers depends on the working fluid and 
nanofluid were discovered to enhance the heat transfer, making nanofluid our focus 
in this review. While shell and tube heat exchanger type were given attention since 
past decades, there are scarce on nanofluid application in plate heat exchanger. To 
add, thermophysical properties of nanofluids such as specific heat, viscosity, thermal 
conductivity and its heat transfer coefficient are very important for heat transfer 
application in heat exchangers. Therefore, this review article will cover the compilation 
of information and data collected from numerous previous researchers. 
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1. Introduction 
 

Heat exchanger is an equipment that allows thermal energy transfer between two fluids or more. 
The two fluids having different temperature will be separated in either cold side or hot side through 
a separating medium to achieve an ideal thermal equilibrium in the process of heat transfer. There 
are many types of heat exchanger available in the market such as shell and tube, plate fin and also 
plate heat exchanger [1]. Currently, PHE are gaining more attention due to its advantages. First 
application of plate heat exchanger (PHE) in 1921 employed in dairy production has since been 
developed to other areas and are widely used in current era. Having advantages of high thermal 
efficiency, low cost and the compactness itself makes PHE to be the preferences in many engineering 
applications [2]. PHE is made up of several thin plates arranged in parallel form with a frame to hold 
the plates. There are other plates pattern of PHE such as zig zag and chevron. However, chevron plate 
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structure with corrugated design is the most commonly used surface in this type of heat exchanger 
[3]. 

Heat exchangers need a working fluid to transfer heat from or to the applied fluids. Importantly, 
for an ideal working fluid, it should have high thermal capacity, low viscosity and low cost. Most 
common working fluid in heat exchangers application is water. Having properties of high specific heat 
with low viscosity at a very low cost brings advantages to the heat transfer application industry. 
However, the drawback of using water as a base fluid is that high heat transfer rate requires larger 
size of heat exchangers. Therefore, through scientific study, numerous researchers tried to modify 
the heat transfer fluid to produce higher efficiency of working fluid. This was when nanofluids came 
into the light. A group of researchers had joint forces and discover a new material called nanofluids 
[3–5]. Nanofluids term is referring to small nano-sized particles having average size from 1 to 100nm 
that have been diffused in a working base fluid. Metal was known to have higher thermal conductivity 
than water and thus, became a potential candidate for nanofluids preparation [6]. This concept of 
suspending the nano particles into base fluid was a revised attempt from previous research of 
diffusing micron size particles into fluids [7]. This attempt had significantly improved the thermos-
physical properties of fluids. As for preparation of nanofluids, it can be synthesised by one-step 
method or two-step method elaborated elsewhere [6,8]. 

Available studies on nanofluid application in heat exchanger are mostly using shell and tube heat 
exchanger. For plate heat exchanger, existing literatures focuses on using water as the process fluids. 
Thus, this paper aims to outline several factors that can contribute to the augmentation of heat 
transfer efficiency by summarizing works from previous researchers. Some of the existing research 
works showed contradictory findings, in which it produced a decreasing or an unchanged heat 
transfer performance. Due to the complex nature of nanofluid, it is very important to understand its 
properties and thermal behavior. Other than that, enhancement technique suggested in recent 
literature could be applied to increase the heat transfer efficiency [9,10]. 

 
2. Studies on hybrid nanofluids 
 

In past years, new class of working fluids for heat transfer enhancement known as hybrid 
nanofluids were widely utilized in lab scale studies [11]. Hybrid nanofluids are mixture of two or more 
nanoparticles incorporated in base fluid [12]. This combination of nanoparticles is able to overcome 
the drawback of single nanofluid usage due to positive features carried by each particle and is used 
to augment the overall heat transfer of fluid in heat exchanger. Ny and co-workers numerically 
investigated heat transfer using silver-graphene (Ag-Heg) nanofluids via CFD software. Similarly, 
Zainal et al., conducted simulation analysis in order to evaluate the thermal performance of hybrid 
Ag-Heg/water nanofluids [12]. Their study discovered that heat transfer coefficient and Nusselt 
number decreased when they increase volume fraction if nanofluids from 0.1% to 0.9%. However, 
the performance comparison between pure water and hybrid nanofluids were not reported in their 
work. Not long ago, Yıldız studied the properties of Al2O3-SiO2/water by employing established 
correlations and compared with its mono nanofluid properties [13]. They concluded that hybrid 
nanofluids can enhance the heat transfer performance at lower volume fraction compared to 
Al2O3/water nanofluid and SiO2/water nanofluid. Consequently, lower volume fraction requires lower 
operating cost and is simple to operate. More literatures on recent hybrid nanofluids experiment can 
be found elsewhere [11].   
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3. Factors affecting heat transfer efficiency  
3.1 Specific heat of nanofluids 
 

According to Gupta et al., specific heat is the amount of heat needed to increase temperature of 
a gram nanofluids by one degree centigrade [14]. It is used to study the performance of nanofluid in 
terms of its exergy and energy. Various researchers had conducted studies which shows that volume 
concentration of nanofluids affect its specific heat capacity [8,15,16]. Studies done by Pak and Cho 
on γ-Al2O3/water nanofluid shows a decrease in nanofluid specific heat to 2.27% from 1.1% when 
change in volume percentage from 1.34 to 2.78% [17]. Another research by Zhou and Ni on 
aluminium oxide/water nanofluids also concludes that 46% of heat capacity decrease when volume 
concentration is 21.7vol% [18]. Vajjha and Das carried out a research using various type of 
nanoparticles in ethylene glycol-water mixture have the same conclusion as the previous researchers 
[19]. They pointed that increase in volume concentration of nanofluid will decrease the specific heat 
capacity despite of using different type of base fluid.  

Table 1 outlined the summary of past literatures discussing the relationship between volume 
concentration and specific heat capacity. Based on definition of specific heat capacity itself, it is 
known that low amount of heat capacity is desired so that the system will be more energy efficient. 
If base fluid used is not purely water such as hybrid base fluid, ethylene glycol or oil, the 
corresponding heat capacity can be affected by the concentration of base fluid. Referring to the table, 
aluminium oxide with various particle size shows a comparatively high heat capacity decrement in 
both water and ethylene glycol base fluid. Thus, it can be proven that aluminium oxide suspended in 
either water or ethylene glycol will possess a positive outcome in terms of specific heat.  

 
Table 1  
Summary of past literatures on specific heat of nanofluids 

Nanoparticle Working fluid 
Particle size 

(nm) 
Volume fraction 

(%Vol) 
Specific heat 

Decrement (%) 
References 

Al2O3 

Water 

13 1.34-2.78 1.10-2.27 [17] 

45 21.7 46 [18] 

- 0-25 21-45 [20] 

40-50 0-4 3-18 [21] 

Radiator Coolant 13 1 14 [22] 

Ethylene Glycol/Water 
(60:40) 

53 1-10 13 [19] 

Ethylene Glycol/Water 
(50:50) 

45 2-6 5-16 [23] 

Lithium 
bromide/Water 

35 0-0.1 17 [24] 

CuO 

Water 30 2-8 20 [25] 

Ethylene glycol 25-50 0.1-0.6 1.16-5.04 [26] 

Ethylene Glycol/Water 
(60:40) 

29 1-6 24 
[19] 

SiO2 

Water 20 2-10 4-14.67 

Ethylene Glycol 50 0.003-0.3 15 [27] 

Ethylene Glycol/Water 
(60:40) 

30 1-10 10 [28] 

Ethylene Glycol/Water 
(60:40) 

20 10 12 [29] 

ZnO 
Ethylene Glycol/Water 
(60:40) 

77 1-7 4.23-18.08 [19] 

MWCNT Heat transfer oil 5-20 0.1-0.4 21.2-42.0 [30] 
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3.2 Viscosity of nanofluids 
 

Another important factor in heat transfer application is viscosity of nanofluids. The pumping 
power of heat exchanger and value of pressure drop depends on the viscosity as it offers the 
resistance to shear stress. Along the years, researchers had proven that addition of nanoparticles in 
base fluid and the viscosity of base fluid are some of parameters that affects the viscosity of 
nanofluid. Al2O3 nanoparticle is the most common solid particle that is used to study the viscosity, 
varying its particle size and volume concentration, suspended in different type of base fluids. Lee et 
al. conducted a research on Al2O3/water nanofluids and obtain a 2.9% of viscosity enhancement at 
0.01-0.3% volume concentrations [31]. Several other researchers perform the same type of study 
using different base fluid and noted a positive enhancement in viscosity. Sonawane et al. diffuses the 
alumina oxide nanoparticles in aviation turbine fuel and discover 38% of enhancement in viscosity 
[32]. Majority of studies reported that the viscosity will also increase with the increase in particle 
size. Based on the findings, it strengthens the statement that nanofluid viscosity is dependent on size 
of particles, type of base fluids and the volume concentration of nanofluid. The summary for previous 
researches is compiled in Table 2. 

 
Table 2  
Summary of past literatures on viscosity of nanofluids 

Nanoparticle Working fluid Particle size (nm) 
Volume fraction 

(%Vol) 
Viscosity 

Increment (%) 
References 

Al2O3 

Water 30 ± 5 0.01-0.3 2.9 [31] 

43 0.33-5.0 14-136 [20] 

36 2.1-12.2 10-210 
[33] 

47 1-12 12-430 

28 1-6 9-86 [34] 

ATF 30 ± 10 1 38 [32] 

Ethylene glycol 36 1.5 158 [35] 

Lithium 
bromide/Water 

35 0-0.1 91.2 
[24] 

CuO 

Water 29 4 92 [33] 

Ethylene glycol 10 0.18 15-23 [36] 

Ethylene 
glycol/Water 

29 1 22 

[29] 
SiO2 

Ethylene 
glycol/Water 

50 10 96 

ZnO 
Water 90-210 

(Rectangular) 
0.5-5.0 5.3-68.6 

[37] 

Ethylene glycol 10-20 0.2-5.0 15 [38] 

 
Aluminium oxide nanoparticles show an excellent performance in heat transfer and from Table 

3 below, it can be seen that various researchers derived correlations for Al2O3/water. Most of the 
correlations originate from Einstein’s model in 1906. In 1952, Brinkman introduced a new correlation 
that can be used by wider volume concentration range that below 4%. Both theoretical and 
experimental correlations derived for viscosity determination only take base fluid viscosity and 
volume concentration into account. Thus, it can be proven that volume concentration of nanofluids 
and base fluid viscosity are dominating factors for this thermophysical properties. 
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Table 3  
Empirical correlations for Viscosity calculation 

Model  Information Correlation Reference 

Theoretical 

 Low particle volume 
fraction 

μnf=μbf(1+2.5∅) [39] 

 Moderate particle 
concentration 

 Extended from Einstein 
formula 

 Spherical particles 

μnf=μbf

1

(1-∅)2.5 [40] 

 Rigid spherical particle 

 Brownian motion 

 Isotropic structure 

μnf=μbf(1+2.5∅+6.2∅2) [41] 

Experimental 

 Al2O3/water μnf=μbf(1+7.3∅+123∅2) [34] 

 Al2O3/water μnf=μbf(1+7.3∅+123∅2) [42] 

 Al2O3/water 
μnf=μbf+

ρnpumd2

72Cδ
 

δ=√
π

6∅
d

3
 

[43] 

 Only valid for 
Al2O3/water nanofluid 

 Includes nanoparticle 
size, concentration, 
temperature and 
capping layer effect  

μnf

μbf

=exp [m+α (
T

T0
) +β(∅h)+γ (

d

1-r
)] [44] 

 
3.3 Thermal conductivity of nanofluids 
 

Thermal conductivity is used to find out nanofluid potential. Many experimental and theoretical 
researches had been performed to study the deviation in thermal conductivity of nanofluids. 
Parameters involved in thermal conductivity determination includes degree of dispersion of 
nanofluids in working fluid, volume concentration and nanoparticles size and shape. Das et al. stated 
that when temperature increase, thermal conductivity will increase [45]. The study was conducted 
experimentally using Al2O3/water nanofluid with 4vol% and 38.4nm nanoparticle size. Few other 
researchers also proved the statement using the same type of nanofluid but varying the vol%, particle 
size and temperature. 

In addition, studies also shows that thermal conductivity of nanofluids is higher than the base 
fluid [14]. The addition of solid nanoparticles in base fluid alters the Brownian motion mechanism 
that control the thermal behaviour of nanofluids. Therefore, thermal conductivity increases when 
nanoparticles is suspended into the base fluid. Yu et al. conduct a research using various type of base 
fluids but kept the other parameters constant to determine whether base fluid types will affect the 
thermal conductivity output [38]. They concluded that ethylene glycol shows an enhancement of 39% 
while propylene glycol as base fluid shows a 40% enhancement. Summary of past researches from 
various investigator regarding the thermal conductivity is as in Table 4 below. 

Empirical correlations available for determination of thermal conductivity is summarised in Table 
5. It is divided into two; theoretical and experimental correlations. Some of the correlations are based 
on theoretical findings. Commonly, the type of nanofluids used for this research is metal oxide 
suspended in conventional base fluids [46]. 
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Table 4  
Summary of past literatures on thermal conductivity of nanofluids 

Nanoparticle Working fluid Particle size (nm) 
Volume 
fraction 
(%Vol) 

Thermal 
conductivity 
Increment (%) 

References 

Al2O3 

Water 

38.4 4 44 (21°C) [45] 

43 0.33-3 9.7 [20] 

36 3.1-9 15 (20°C-40°C) [46] 

13 1.3-43 
33 (31.85°C-

86.85°C) 
[46] 

28 5.5 16 
[34] 

Ethylene glycol 28 5 24.5 

Ethylene 
glycol/Water 

36 1.5 32.36 (60°C) [35] 

Lithium 
bromide/Water 

35 1 78.0 [24] 

CuO Water 29 3.3-9.3 15 (20°C-40°C) [46] 

Ethylene 
glycol/Water 

29 6 60 (90°C) [19] 

SiO2 Ethylene 
glycol/Water 

10 0.005-0.15 0.98-7.35 [47] 

ZnO Water 90-210 
(rectangular) 

0.5-5 3-19.8 [37] 

Ethylene glycol 15 5 26.5 [38] 

 
Table 5  
Empirical correlation for thermal conductivity of nanofluids 

Model  Information Correlation References 

Theoretical 

-For liquid and solid 
suspension 
-Spherical particles 

knf=
2kbf+knp+2∅(knp-kbf)

2kbf+knp-∅(knp-kbf)
kbf [48] 

-Spherical particles 
-Valid for high volume 
concentration nanofluid 

knf=
1

4
[(3∅-1)knp+(2-3∅)kbf]+

kbf

4
√∆ 

∆=(3∅-1)2 (
knp

kbf
)

2

+(2-3∅)2+ 

2(2+9∅-9∅2) (
knp

kbf
) 

[49] 

Brownian movement knf=∅knp+(1-∅)kbf [50] 

Experimental 

Al2O3/water knf − k𝑏𝑓

kbf
= 0.764∅+0.0187(T-273.15)-0.462 [51] 

Al2O3/water knf = (1 + 3∅)kbf [52] 

Al2O3/water knf

kbf
= (

Cpnf

Cpbf

)

a

(
ρnf

ρbf

)

b

(
Mbf

Mnf
)

c

 

a=-0.023, b=1.358, c=0.125 

[20] 

Al2O3/water  knf

kbf
=1+4.4Re0.4Pr0.66 (

T

Tbf
)

10

(
knp

kbf
)

0.03

∅0.66 

 

[53] 

 
3.4 Convective heat transfer and Application of Nanofluid in Plate Heat Exchanger 
 

Convective heat transfer is the amount of energy being transported between surface of solid in 
heat exchanger and nanofluid particles. Several factors that affects the value of convective heat are 
the type of nanofluid itself, specification geometry of plate heat exchanger and also the size and 
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shape of nanoparticles. Based on theoretical and experimental studies, Tiwari et al. discovered 27% 
enhancement in overall heat transfer coefficient [2]. The type of nanofluid used in their study was 
aluminium oxide/water nanofluid with vol% ranging from 0.5% to 3%. Separate research done by 
Kabeel et al. and Jokar and O’Halloran using the same type of nanofluid and range of volume 
concentration but different size of nanoparticles shows a contradictory result [54,55]. When the 
particle sizing is 47nm, overall heat transfer coefficient shows an increment approximately 13% but 
when the sizing is 36nm, no significant enhancement was recorded. Increase in HTC was calculated 
with respect to water as working fluid. Table 6 shows the summary of past research works done by 
various researchers and Table 7 consist of empirical correlations that have been derived by the 
researchers. 
  
Table 6  
Summary of past researches on Heat Transfer Coefficient of Nanofluid 

Nanoparticle Working fluid 
Particle size 

(nm) 
Concentration Observation Ref. 

ZnO Water - 0.5-2 %vol 
Enhancement range of 24%-
28% 

[3] 

Al2O3 
Water 

45 0.5-3 %vol 
Ratio of HTC approximately 
increase 27% 

[2] 

45 2-4 %vol 
Ratio of HTC approximately 
increase 11% 

[21] 

47 1-4 %vol 
Ratio of HTC approximately 
increase 13% 

[54] 

36 1-4 %vol No significant enhancement [55] 

50 0.3% 
Heat transfer enhancement of 
46% 

[56] 

Ethylene glycol 20 0.1-1 %vol Enhancement range of 3%-49% [57] 

Ag Water 16.2 0-10 mg/L 
Enhancement of 36.6% at 2.5 
mg/L 

[58] 

Graphene 
Ethylene 
glycol/Water (50:50) 

2 0.01-1 wt% Maximum enhancement of 4% [59] 

CuO Water 50 0.1-0.5 %vol 
Enhancement of 52% at 
0.3%vol 

[60] 

 
Table 7  
Empirical correlations for Heat Transfer Coefficient 

Information Correlation References 

 Experimental 

 Turbulent flow 

 Al2O3/water 

 104< Re <105 

 6.5< Pr < 12.3 

Nu=0.021 Re0.8Pr0.5 [17] 

 Experimental 

 Turbulent flow 

 Al2O3/water 

 3000<Re< 1.6x104 

 0< ∅ < 10vol% 

Nu=0.065(Re0.65-60.22)(1+0.0169∅0.15) Pr0.542 [28] 

 Numerical 

 Laminar flow 

 Al2O3/water 

 Re ≤ 1000 

 6.0< Pr < 753 

For constant temperature: 
𝑁𝑢 = 0.28 𝑅𝑒0.35𝑃𝑟0.35 

For constant wall heat flux: 

Nu=0.086 Re0.55Pr0.5 

[42] 
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 0< ∅ < 10vol% 

 Numerical 

 Turbulent flow 

 104<Re< 5x105 

 6.6 < Pr < 13.9 

 0< ∅ < 10vol% 

Nu=0.085 Re0.71Pr0.35 [61] 

 Numerical 

 Fully-developed 
turbulent flow 

Nu=
(

f
8) (Re-1000)Pr

1+δ+√(
f
8) (Pr

2
3-1)

 [62] 

 
4. Conclusions 
 

In conclusion, nanofluids exerts superior thermal properties that can enhance heat transfer 
process. Utilization of nanofluids in heat exchanger is expected to replace conventional working fluids 
used in current industries. However, plate heat exchanger is a complex system that need a thorough 
studies in order to be successfully applied in a real scale heat exchanger. Optimum conditions for 
each parameter such as specific heat capacity, nanofluids viscosity, heat transfer capacity and 
thermal viscosity of nanofluids must be defined for maximum heat transfer efficiency. Theoretical 
and experimental studies done by past researchers were able to demonstrate its behaviour and 
narrowing the research gap in heat transfer by plate heat exchanger.   
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