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This article deals with the influence of heat and mass transfer on peristaltic flow of 
non-Newtonian Williamson fluid in the gap between concentric tubes. A perturbation 
solution, under the assumptions of long wavelength and low Reynolds number is 
obtained which satisfies the momentum, energy and concentration equations for the 
case of small porosity parameter and Weisseing number. Numerical results for the 
behaviors of the velocity, temperature and concentration as well as the skin friction, 
Nusselt number and Sherwood number with other physical parameters are displayed 
and discussed in detail. The obtained results point to that the temperature increases 
with the increase each of Eckert number Ec and Weisseing number, We. While, an 
opposite behavior for the concentration compared to temperature behavior is found. 
Morever, The axial velocity decreases with the increase each of Sc and Sr, whereas it 
decreases as Ec, GT and GC increase. 
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1. Introduction 
 

Peristalsis is an important mechanism for mixing and transporting fluids, which is generated by a 
progressive wave of contraction or expansion moving on the wall of the tube. Physiological fluids in 
animal and human bodies are, in general, pumped by the continuous periodic muscular oscillations 
of the ducts. These oscillations are presumed to be caused by the progressive transverse contraction 
waves that propagate along the walls of the ducts. Peristaltic flow occurs widely in the functioning of 
the ureter, food mixing and chime movement in the intestine, movement of eggs in the fallopian 
tube, the transport of the spermatozoa in cervical canal, transport of bile in the bile duct, transport 
of cilia, and circulation of blood in small blood vessels. Peristaltic flows have attracted several 
researchers because of wide applications in physiology and industry.  

The theoretical work on peristaltic transport with sinusoidal transverse wave of small amplitude 
is primarily investigated by Fung and Yih [1]. Burns and Parkes [2] studied the peristaltic motion of a 
viscous fluid through a pipe and a channel by considering sinusoidal variation at the walls. Abd El-
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Naby and El-Misiery [3] picked up peristaltic pumping of a Carreau fluid in presence of an endoscope. 
Recently a study of ureteral peristalsis in cylindrical tube through porous medium has been discussed 
by Rathod et al., [4]. A variety of analysis have been presented on the peristaltic problems keeping 
different flow geometries and fluid models [5-11]. 

In the studies mentioned above, the peristaltic problems in the absence of heat and mass transfer 
are considered. Only limited studies have been made to examine the effects of heat and mass 
transfer on the peristaltic flow problems [12-21].  

Flow through a porous medium has several practical applications especially in geophysical fluid 
dynamics. Examples of natural porous media are beach sand, sandstone, limestone, the human lung, 
bile duct, gall bladder with stones in small blood vessels. The first study of peristaltic flow through a 
porous medium is presented by Afifi [22]. El-Shehawey et al., [23] studied the peristaltic flow of a 
generalized Newtonian fluid thorough a porous medium. The effects of chemical reaction on the 
interaction among peristalsis, heat, and mass transfer for the motion of a non-Newtonian Jeffrey fluid 
embedded in a vertical porous medium in two-dimensional tubes by El-Sayed et al., [24]. Hayat et al., 
[25] studied the effect of heat transfer on the peristaltic flow of an electrically conducting fluid in a 
porous space. 

In the previous works they studied the peristaltic motion alone or with heat and mass transfer, 
but they did not study the effect of the porous media in the energy equation with the existence of 
heat convection. This is what we will show in the next sections. In this article, a mathematical model 
is presented to study the effects of the interaction among peristalsis, heat, and mass transfer for the 
motion of a non-Newtonian Williamson fluid embedded in a porous medium between two-
dimensional vertical tubes. The outer tube is non-uniform and has a sinusoidal wave traveling down 
its wall, and the inner one is a rigid, and uniform tube. Blood flow through arterial catheterization is 
considered as a model of peristaltic flow of non-Newtonian fluid. The momentum, energy, and mass 
equations have been linearized under long-wavelength and low Reynolds number assumptions. 
Analytical solutions for the velocity, temperature and concentration have been obtained. The 
influence of various pertinent parameters on the velocity, temperature, concentration, skin-friction, 
Nusselt number and Sherwood number are discussed in detail through graphs. This study may have 
application in many clinical applications such as the endoscope problem. 
 
2. Formulation of The Problem 
 

Consider the flow with heat and mass transfer of an incompressible non-Newtonian fluid obeying 
Williamson model through a porous medium in the gap between two coaxial vertical tubes. The inner 
tube is rigid and uniform, while the outer tube has a sinusoidal wave traveling down its wall. We 
choose a rectangular coordinate system for the tubes with y along the center line of the inner and 
the outer tubes, x  is the radial distance measured, the inner tube is at 𝑥 = 𝑥1 and kept at a 
temperature Ti and concentration Ci, and the outer tube is at  𝑥 = 𝑥2 and kept at a temperature To 
and concentration Co. The geometry of the wall surfaces is described in Figure 1, the equations for 
the radii are 
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Fig. 1. The geometry of the wall surfaces 
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where ia  signifies the radius of the inner tube, oa indicates the radius of the outer tube at the inlet, b 

is the wave amplitude,  is the wavelength, c is the propagation velocity along 𝑦 direction, and t is 
the time. The radius of the tapered tube is given by El-Sayed et al., [24] 
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where R is the radius at y = 0,   is the angle of taper which is considered as a constant. The governing 

continuity, momentum, temperature, and concentration equations for this problem can be written 
as 
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where V = 22 vu   , u and v are the velocities in the x and y directions, respectively, T is the 

temperature, C is the concentration,  is the fluid density, P is the pressure,   is the dynamic 

viscosity, kp is the permeability of porous medium, g is the acceleration due to gravity,   is the 

volumetric expansion coefficient, * is the coefficient of expansion with concentration, T is the 

mean of Ti and To, C  is the mean of Ci and Co , k is the thermal conductivity, cp is the specific heat 
at constant pressure, D is the mass diffusivity, and kT is the thermal diffusion ratio. 

 Equations for an incompressible Williamson fluid are 
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Here 𝛾 = √𝑒𝑖𝑗𝑒𝑖𝑗, where 𝑒𝑖𝑗 is the (i,j) component of the deformation rate and We  is Weisseing 

number. For ordinary Newtonian fluid ( 0We ). 
The boundary conditions for this system are given by 
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The appropriate non-dimensional variables for the flow are defined as 
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In terms of these variables, after applying the long wavelength approximation [24], and dropping 

the star mark for simplicity, Eq. (4)-(8) become 
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Thus, the boundary conditions (10) and (11) in their dimensionless form read 
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 is the amplitude ratio, n is the wall-

temperature ratio, m is the wall-concentration ratio. Eq. (4) indicates that P is not function of x. Hence 
P is function of y and t only. In the case of We = 0, the Eq. (15) reduces to classical Navier–Stokes 
equation. 

 
3. Method of Solution 
 

Following the studies by El-Sayed et al., [24], we assume solutions for the velocity, temperature 

and concentration in terms of small perturbation parameters 2  in the form 
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Substituting Eq. (20) in Eq. (15)-(17) and collecting the coefficient of like powers of 2 , we get 
the following set of equations with boundary conditions up to the first order. 

The system of the zeroth order is 
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and 
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The system of the first order is 
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and 
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Because, it is not possible to get closed form solutions for Eq. (21)-(23) and (26)-(28) for arbitrary 

values of all the parameters, we seek the solution of the problem as a power series expansion in the 
small parameter We as follows 
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Substituting from Eq. (31) in Eq. (21)-(23), we obtain the following system of equations 
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with the boundary conditions 
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Solving Eq. (33)-(38) using (39) and (40), yields 
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Substituting from Eq. (32) in Eq. (26)-(28), we obtain the following system of equations 
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The solutions of Eq. (46)-(51) subject the boundary conditions (52) and (53) are given by 
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All coefficients appearing in the above expressions of solutions are calculated by usual lengthy 
algebra that involved in regular perturbation method.  

Now, the skin friction coefficient τω, the heat transfer coefficient (Nusselt number) Nu and the 
mass transfer coefficient (Sherwood number) Sh at the outer tube, are defined, respectively by 

 

 
2

1
xxx

v
We














 ,  

2xxx

T
Nu




 ,     

2xxx

C
Sh




 .                                              (60)  

 

The expressions for  , Nu and Sh have been obtained by substituting from Eq. (41)-(45) and (54)-

(59) into Eq. (60), and they have been evaluated numerically for several values of the parameters of 
the problem. The obtained results will be discussed in the next section. 
 
4. Results and Discussion 
 

We must choose the porosity parameter and Weisseing number less than one because they have 
been used as a perturbation parameter. Moreover, the approximation which have been used (long-
wavelength approximation) restricted us to choose the values of propagation velocity, wavelength, 
and radius of the tube such that the wave number is neglected, and Reynolds number is very small. 
The following values of human small intestine parameters are used as in the previous studies [24, 26, 
27]. 
 
y0 = 1.25 cm, c = 2 cm/ min, and λ = 8.01 cm. 
 
To discuss the effect of various parameters involved in the problem such as Eckert number Ec, 
Grashof number GT, the modified Grashof number GC, the pressure gradient 

yP , Schmidt number 

Sc and Soret number Sr, and Weisseing number We on the solution of the considered problem, a 
numerical results are calculated using Mathematica package 7, for the axial velocity v, the 
temperature distribution T, the concentration distribution C, the skin friction coefficient τω, the heat 
transfer coefficient (Nusselt number) Nu, and the mass transfer coefficient (Sherwood number) Sh 
such that 𝜓 = 8.8, ∅ = 0.1, 𝑦 = 0.4, 𝑆𝑟 = 1, 𝑆𝑐 = 1.5, 𝑃𝑦 = 2.5, 𝐺𝐶 = 1.5, 𝐺𝑇 = 3.5, 𝜀 =

0.22, 𝑊𝑒 =  0.05,  𝐸𝑐 = 1, 𝑛 = 1.25, 𝑚 = 0.75, and 𝑡 = 0.5 
Figure 2 and 3 illustrate the change of the axial velocity v versus the radial coordinate y with 

several values of Ec and Sr, respectively. It is seen, from Figure 2 and 3, that the axial velocity 
increases with the increase of Ec, whereas it decreases as Sr increases, respectively. It is also noted 
that the difference of the axial velocity for different values of Ec and Sr becomes greater with 
increasing the radial coordinate and reaches maximum value after which it decreases. Note that the 
maximum value of v increases by increasing Ec and Sr, and this also occurs at another value x >x0. 
The effects of GT and GC on the axial velocity ware found to be exactly like the effect of Ec given in 
Figure 2. Similar result to that shown in Figure 2 can be obtained if Ec is replaced by GT or GC. Also, 
the behaviour of w with Sc is found to be like the curves in Figure 3, with the only difference that the 
obtained curves are very close to those obtained in Figure 3.  
 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 61, Issue 1 (2019) 44-62 

53 
 

 
Fig. 2. Change of the axial velocity v versus the radial coordinate y with 
several values of Ec 

 

 
Fig. 3. Change of the axial velocity v versus the radial coordinate y with several 
values of Sr 

 

Figure 4 shows the variation of the axial velocity v with x for various values of Weisseing number 
We, and indicates that for a constant value of We, the axial velocity v increases by increasing x till a 
maximum value (at a finite value of x: x = x0) after which it decreases. Also, it is found from this figure 
that the axial velocity v decreases by increasing Weisseing number We when x∈ [0.4, 1.5], while it 
increases afterwards.  
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Fig. 4. Variation of the axial velocity v with x for various values of Weisseing 
number, We 

 
The variations of the temperature distribution T with the dimensionless radial coordinate x for 

various values of Ec and 
yP , respectively, are displayed in Figure 5 and 6. The graphical results of 

Figure 5 and 6 indicate that the temperature distribution T increases with increasing in the parameter 
Ec, while it decreases by increasing the parameter

yP , respectively. It is also noted that for small 

values of Ec and large values of
yP , the relation between T and x is approximately linear, and T 

increases with x till a definite value x=x0 (represents the maximum value of T) and it decreases 
afterwards. This maximum value of T increases by increasing Ec, while it decreases by increasing 

yP . 

 

 
Fig. 5. Variations of the temperature distribution T with the dimensionless 
radial coordinate x for various values of Ec 
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Fig. 6. Temperature distribution T with the dimensionless radial coordinate x for 

various values of 
yP  

 
The effect of We on the temperature distribution T as a function of the dimensionless radial 

coordinate x is shown in Figure 7. It is found that the temperature distribution T increases by 
increasing We in the interval x∈ [0.4, 1.5]; otherwise it decreases by increasing We. So, the behavior 
of T in the interval x∈ [0.4, 1.5], is an inversed manner of its behavior in the interval x∈ [1.5, 2.7] 
except that the curves are very close to each other in the second interval. In this case, for small values 
of We, there is a maximum value of T holds at x =0.4. 
 

 
Fig. 7. Temperature distribution T as a function of the dimensionless radial 
coordinate x 

 
Figure 8 and 9 represent the behaviours of the concentration distribution C with the 

dimensionless radial coordinate x for different values of Ec and yP , respectively. It is observed from 

Figure 8 and 9, that the concentration distribution C decreases with the increase of Ec, whereas it 
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increases as
yP increases, respectively. It is also noted that the difference of the concentration 

distribution C for different values of Ec and 
yP becomes greater with increasing the radial coordinate 

x and reaches minimum value, after which it increases. Figure 10 illustrates the effect of We on the 
concentration distribution C as a function of the dimensionless radial coordinate x. It is found that in 
the interval of the radial coordinate x∈ [0.4, 1.5], the behavior of C for various values of We is exactly 
similar to the behavior of C for various values of

yP  given in Figure 9. It is also noted, from Figure 10 

that in the interval of the radial coordinate x∈ [0.4, 1.5], the behavior of C is an inversed manner of 
its behavior in the interval x∈ [1.5, 2.7] except that the curves are very close to each other in the 
second interval. In this case, for any value of the parameter We, there is a minimum value of C holds 
at x =1.2, and this minimal slightly decreases by increasing the value of We. 
 

 
Fig. 8. Behaviours of the concentration distribution C with the dimensionless 
radial coordinate x for different values of Ec 

 

 
Fig. 9. Behaviours of the concentration distribution C with the 
dimensionless radial coordinate x for different values of 

yP  
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Fig. 10. Effect of We on the concentration distribution C as a function of the 
dimensionless radial coordinate x 

 

The skin-friction distribution within the axial coordinate y∈[0, 1] are exhibited in Figure 11 and 
12, for various values of Sr and Ec, respectively. From these figures, it is observed that the skin-

friction increases with the increase of Sr, whereas it decreases as Ec increases, respectively. It is 

also noted that for each value of both Sr and Ec,  is always negative, and all obtained curves are 

coinciding in the wide part of the tube y∈[0, 0.4], after which  decreases as y increases. The effects 
of the other parameters are found to be similar to them; these figures are excluded here to avoid 
any kind of repetition. 
 

 
Fig. 11. Skin-friction distribution within the axial coordinate y∈[0, 1] for 
various values of Sr 
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Fig. 12. Skin-friction distribution within the axial coordinate y∈[0, 1] for 
various values of Ec 

 
Figure 13 and 14 show the behaviours of Nusselt number Nu with the axial coordinate y, for 

various values of 
yP  and GT respectively. It is noted from Figure 13 that the resulting in this case will 

be like those obtained in Figure 11 for the effect of Sr on   except that Nu increases as y increases 
till its maximum value after which it decreases. Also, Figure 14 shows that the effect of GT on Nu is 

like the effect of Ec on   given by Figure 12, except that for small values of GT, there is a linear 
relation between Nu and y. The effects of GC and We on Nu (figures are removed) are found to be 
exactly like the effect of GT on Nu given in Figure 14, with the only difference that the obtained curves 
are very close to those obtained in Figure 14.  
 

 
Fig. 13. Behaviours of Nusselt number Nu with the axial coordinate y, for 
various values of 

yP  
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Fig. 14. behaviours of Nusselt number Nu with the axial coordinate y, for 
various values of GT 

 
Figure 15 and 16 illustrate the effects of GC and

yP  on Sherwood number Sh with the axial 

coordinate y, respectively. It is clear from these figures that Sh decreases as y increases till a minimum 
value, after which Sh increases and all obtained curves are coincide in the wide part of the tube, 
namely y∈[0, 0.25]. Also, the effect of

yP is to decrease Sherwood number, whereas it increases as GC 

increases. The effects of the parameters Ec, GT and We on Sh (figures are excluded) are found to be 
like the effect of GC on Sh given in Figure 15. 
 

 
Fig. 15. Effects of 

yP  on Sherwood number Sh with the axial coordinate y 
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Fig. 16. Effects of GC on Sherwood number Sh with the axial coordinate y 

 

5. Conclusion  
 
In this article, peristaltic flow of an incompressible Williamson fluid through vertical porous 

medium in the gap between two co-axial tubes with heat and mass transfer has been studied for the 
long wavelength at low Reynolds number. The outer tube is non-uniform and has a sinusoidal wave 
traveling down its wall, while the inner one is a rigid, and uniform. We studied the problem in 2D 
case using the cartesian coordinates, because it is well known that the long-wavelength asymptotic 
approximation in 3D case is not as good as in 2D case and the 3D flow is more sensitive to Reynolds 
number change [24, 27]. The present analysis can serve as a model which may help in understanding 
the mechanics of physiological flows[28, 29]. The expressions for the velocity, temperature, 
concentration distributions as well as the skin friction, Nussselt number and Sherwood number at 
the wavy wall of the outer tube have been discussed graphically. The following observations have 
been found. 

i. The axial velocity v increases or (decreases) with the increase in Weissenberg number We. 
ii. The axial velocity v increases with the increase each of Ec, GT and GC, whereas it decreases 

as Sc and Sr increase. 
iii. The axial velocity v for different values of all parameters becomes greater with increasing the 

radial coordinate x and reaches maximum value (at a finite value of x: x = x0) after which it 
decreases. 

iv. The temperature increases with the increase each of Ec, GT and GC, and We  whereas it 
decreases as 

yP  increases. 

v. The concentration has an opposite behavior compared to temperature behavior except that 
it decreases with the increase of both Sr and Sc, while all the obtained lines of temperature 
will coincide. 

vi. By increasing each of Ec, GT and GC, the skin-friction distribution  decreases, while it 
increases as Sc and Sr increase. 

vii. By increasing each of GT and GC, Nusselt number Nu decreases, while it increases as yP
 

increases. 
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viii. Sherwood number Sh has an opposite behaviour compared to Nusselt number Nu. 
ix. For any values of 0.4 ≤ 𝑦 ≤ 1, Nu and Sh decrease, while for any values of 0 ≤ 𝑦 ≤ 0.4, all 

the obtained lines will coincide. 
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