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by the performance of the internal combustion engine and the aerodynamic design of
the body. One of the most important aspects of automobile design is aerodynamic styling.
A vehicle with low drag resistance provides advantages in terms of cost and efficiency.
This article will review design characteristics and implementation of various specific
reference models on drag issues using Computational Fluid Dynamics (CFD) techniques.
The benefits and limitations of these models are analysed, and the validity of results in
developing guidelines to improve the performance and stability of cars are described.
This review paper covers significant studies that utilise the CFD model and simulation on
a simplified vehicle model using various turbulence models to generate drag coefficient.
Characteristics and impacts of various vehicle design models with and without external
factors such as side mirrors and door handles are also discussed. Results obtained from
the research focuses on the physics flow structures such as static pressure contours, are
presented for the three types of car model geometry. The simplified generic models are
more efficient and advocated to apply compared to the specific model geometry based
on the result acquired by the latest studies. Simplified generic models are preferred due

Keywords: to their cost-effectiveness, procurement of optimum time, and better simulation effects.
Aerodynamic Forces; Car; CFD; Car Moreover, the study also demonstrates the importance of having a car with suitable
Model; Design; Flow separation; turbulence models that are appropriate to be applied for simulations in terms of its
Safety applicability, time effectiveness, and cost.

1. Introduction

Recent development area of high-speed cars aims to minimize aerodynamic force for safety
improvement, parallel with the growth of highways and roads. Innovations in automotive technology
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illustrate a tendency in producing faster, more powerful, and lighter cars. One of the significant
criteria in designing a modern car is an acknowledgement of general safety, namely stability and
control over the car [1-4].

‘Aerodynamics’ is defined as the study of airflow, especially when it interacts with moving objects
[5-7]. It can be divided into two categories, namely (a) External Aerodynamics, which interacts with
the flow of a solid body in various shapes and (b) Internal Aerodynamics, which concerns the flow
that passes through the internal compartment of a solid body based on the study by Desai and Molvi
[8]. Aerodynamic drag is another essential factor that affects the stability, energy efficiency, and
performance of cars [9,10].

The velocity and design of an automotive vehicle have a significant impact on aerodynamics.
Hence, it is important to reduce the air resistance and lift coefficient of a vehicle to increase its
performance. In the terms of aerodynamics, among the main forces that need to be inspected are
lift, thrust, drag, and weight [11,12]. The theory of forces derived from air movement around a
vehicle can be categorized into two parts, namely (a) Downward Force (lift force) and Aerodynamic
Drag (air resistance). The downward force acting on the vehicle due to the difference of air pressure
can enhance the performance of the car due to the force that leads to the stability of the vehicle is
increased [13,14]. On the other hand, the lift force is one of the net force’s components that is
perpendicular (or normal) to the flow direction. As shown in Figure 1, this net force component along
the flow of direction is called drag force [15]. It is defined as a force that opposes motion due to the
shape, material, and speed of an object [12,16]. It is called aerodynamic drag force if the fluid is air
and drag force has the greatest attention as compared to other forces due to its significant impact
on fuel consumption [17-21].
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Fig. 1. Element of the net forces for vehicle [15]

Previous findings have annotated that the shape of car model geometry is important and varieties
of vehicle design have been applied in both experimental and numerical studies [1,4,12,22-24]. These
shapes can be classified into three categories namely simple bodies, basic car shapes, and production
(series) cars [24]. These simple bodies can be described as simplified and generic car model with
neglected external parts, utilised for general analysis and research such as in the Ahmed model,
ASMO geometry, and Davis model. Next, the basic car shapes are related to the simplified car model
with some of its external parts are used for instance, side mirrors, utilised for the means of validation,
correlation, and investigation such as in MIRA reference car, TATA, and SAE reference car. Whilst the
production (series) cars are known as the small-scale and full-size versions with some of the external
parts are applied, used for varieties of specific investigation and correlational studies such as in the
actual model of Audi A4 and hybrid electric vehicle [24]. This study assesses the application and
characteristics of the simple bodies, basic car shapes, and production cars as a reference model for
vehicle aerodynamic performance. This review paper highlights the importance of developing a lot
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of design car models that affect simulation efficiency, avoiding vortices formation, and the overall
drag force acting on the car to improve aerodynamic performance.

2. Computational Fluid Dynamics (CFD)

Computational Fluid Dynamics (CFD) systems are built with numerical algorithms and equations
that can solve fluid flow problems especially when it comes to aerodynamics in vehicles [25]. CFD is
also a mechanism to figure out the governing equations of flow [26-28]. Based on the latest study
conducted by Soares [29], differential reliability and performance of turbulence models are applied
in CFD software to determine the aerodynamic features of vehicle and passenger cars. As for airflow
and aerodynamics simulation, three different CFD techniques are employed, Reynolds-Averaged
Navier-Stokes (RANS), unsteady RANS (URANS), and Large Eddy Simulation (LES) [30-35]. The
Reynolds-Averaged Navier-Stokes (RANS) solves time-averaged steady-state Navier-Stokes equations
while the unsteady RANS numerically solves unsteady Navier-Stokes equation [36-38]. On the other
hand, the Large Eddy Simulation (LES) solves space, position, area, and size for averaged Navier-
Stokes equations spatially. Based on the review, the most common CFD-techniques applied is the
Reynolds-Averaged Navier-Stokes (RANS) due to its low computational cost and capability in
producing accurate and reliable results for simulation.

The Reynolds-Averaged Navier-Stokes (RANS) equations are time-averaged equations for fluid
flow motions and mostly used to represent turbulent flows [39-41]. The characteristics of turbulence
flow provide approximate time-averaged alternatives for the Navier-Stokes equations [42,43]. The
Reynolds-Averaged Navier-Stokes non-linear equations cannot be solved numerically and
mathematically. In the RANS method, instantaneous velocity and pressure are divided into
fluctuating and average components.

Various turbulence models are available in the Reynolds-Averaged Navier-Stokes (RANS)
approach, including Standard k — €, RNG k — ¢ , Realizable k — ¢, Spalart-Allmaras, Standard k —
w, SST k — w , and Smagorinsky turbulence model. The k — € is less accurate as it is near to the wall
as compared to the k — w turbulence models [44]. This is because the modelling of the € equation is
neither precise nor simple to be resolved. It is important for the k — & turbulence models to use wall
treatment in order to improve simulation results near the wall based on research by Al-Saadi [44].

The accuracy of drag results is on the medium performance for the k — € model as compared to
other models. It is not feasible to predict the overall flow pattern around a car [29]. Any vortex in the
wake area is not fully detected as there is no separation and vortex formation distinguished at both
sides of the car. However, this model is very cost-effective as compared to other models in terms of
computational cost, time and memory usage. Notably, the k — w model provides the most precise
results in terms of drag results. Nonetheless, wake vortex predicted is bigger and recirculation region
at the wake is greater as compared to the k — € model [29,45]. The k — w models outperform the
k — £ model in terms of overall performance although its computational cost is higher than the k —
£ model. Most journals studied in this review paper applied the k — € model and the k — w model
due to its aerodynamic and airflow concepts. The k — € model is preferred when a study involves
with free-shear layers and wake field whilst the k — w model is suitable to provides more accurate
solutions in the near wall boundary regions [46-49].

2.1 Various Car Model Geometries

In terms of understanding and appreciating existing design practices and operational
requirements for car model geometry, it is crucial to conduct a comprehensive review of past studies.
Hence, this review will focus on previous studies related to the influence of various car model
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geometries on aerodynamic forces. Annotations from various sources such as journals, thesis, and
websites are analysed critically to obtain related information on three types of car model geometries.
Various car model geometries can be classified into simple bodies, basic car shapes, and production
(series) cars.

2.1.1 Simple bodies

Reference models in this classification are proven to be extremely significant in explaining the
fundamental flow behaviour in vehicles synchronized with the definition of ‘simple’ [24,50]. This
simple bodies can also be defined as a highly simplified model that is used for study and evaluation,
with all its external parts are ignored. Ahmed model is one of the prominent models used for
aerodynamic analysis that can be classified as simple bodies [51,52]. This model is more likely similar
to family car ratios because it is slightly longer, bigger, and exhibits the same flow patterns. It also
consists of a blunt nose with rounded edges fixed to a box-like middle section and a rear end that has
an upper slanted surface. Based on a study by Thabet and Thabit [53], the Ahmed model is applied
with a slant angle ¢ equals to 40°, with 1044 mm of horizontal length (L), 288 mm of vertical height
(H), and 389 mm of width (W), as shown in Figure 2. Based on inlet velocity, v value 40 m/s, the value
of drag coefficient forces (Cp) and lift forces (C;) are 0.323 and 0.0368 respectively. The k — ¢
turbulence model was utilised in this study due to its good convergence rate. The advantages of
utilizing this model for the studies due to the simple geometry, geometric parameters, ease flow
accessibility and drag data, and existing CFD experiences.
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Fig. 2. The Ahmed model’s dimensions employed by Thabet and
Thabit [53]

Aerodynamics Studien Model (ASMO model) is another model that can be categorized as simple
bodies. Daimler Benz research department has developed this geometry over a decade to examine
low drag shapes and to provide a neutral body for measuring CFD codes [54,55]. The shape consists
of a square-back rear, smooth surfaces, a boat tail, an underbody diffuser, and no pressure-induced
boundary layer separation based on research employed by Le Good and Garry [24]. Han, on the other
hand, applied the ASMO model in his study with the dimensions of length (L) = 810 mm, height (H) =
270 mm and width (W) =290 mm [56]. Whilst an inlet velocity, v utilised in this study is approximately
50 m/s and numerical values obtained for the drag coefficient forces (Cp) and lift forces (C;) are 0.165
and 0.125 respectively by using the Smagorinsky turbulence model. Many academics prefer to use
simpler vehicle model such as the ASMO model as the shape of the model that can be easily meshed
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without the need of larger computer resources and the ability to achieve a good simulation effect as
illustrated in Figure 3 [56].

Fig. 3. The Aerodynamics Studien Model (ASMO model)
utilised by Han et al., [56]

Davis model, on the other hand is a simple bluff body model utilised by researchers that involved
fundamental flow characteristics. This model was established by Davis due to its ability to produce
more accurate results that demonstrate measuring steady force and moments at fixed yaw angles by
assuming quasi-steady flow [24]. Mansor et al., [57], employed the Davis model in his study with the
dimensions of the length (L) = 625 mm, height (H) = 160 mm, width (W) = 225 mm, and rear angle =
20°, as shown in Figure 4 [57]. The inlet velocity, v applied in this research is 40 m/s with Reynolds
number 1.7x 10° based on the model length and numerical values obtained from the drag
coefficient forces (Cp) is 0.228 respectively. The k — w turbulence model was chosen for CFD
simulation as it can provide the closest agreement with pressure coefficient values against the k — ¢
models.

225
Airflow « -
P |
T80
625

All units is in mm

60 222
Fig. 4. The Davis model configurations used by
Mansor et al., [57]

2.1.2 Basic car shapes

Referential geometries in this classification elucidate a more obvious form of vehicle shapes than
in the simple bodies. These models have the proportions of production cars, but possess disentangled
and streamlined surfaces. The basic car shapes consist of few external parts such as side mirrors and
it is used for testing, validation, and research [58]. The example of basic car shapes illustrated in this
review paper is classified into two, namely Motor Industry Research Association (MIRA) model and
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the TATA model. The MIRA Concept car is one of the most popular concept cars among other
simplified car models that have been cited in 20 academic publications [24]. The original concept and
idea of this model were carried out using manufacturing reference vehicles of Volkswagen 1600 and
FIAT 124. As illustrated in Figure 5, Lai et al., [59], applied research geometry in the MIRA model build
in CATIA with the length (L), width (W), and height (H) of 520.625 mm, 203.125 mm, and 177.625 mm
respectively. In the study, the velocity inlet, v is configured to 30 m/s, in which the outlet is identified
as a pressure outlet, and the reference pressure is defined as atmospheric pressure. The numerical
value achieved in this study for the drag coefficient (Cp) is 0.329. The k — & turbulence model is
chosen for computational analysis due to its reasonable prediction of different flow types. Based
from previous studies, this model exhibits simple surface geometry, systematic geometry scales,
decreases computing power and cell capacity during simulation, and good optimism for numerical
methods to predict flow around vehicle shapes [24].

W=203.125mm

L=520.625mm

Back view
H=
177.625mm

Top view Side view

Fig. 5. Dimension of the MIRA model applied in Lai et al., [59]

TATA model is a fundamental car design from India that utilises a one-third scaled-down model
and is considered as a simplified base model when it ignores external parts such as side mirrors and
spoiler. This model can be divided into a few categories such as TATA Safari, TATA Nano, and TATA
Indica. The findings of literature reviews revealed that Samy et al., [22] applied the TATA Safari model
for the SUV segment with the length (L) of 4655 mm and the width (W) of 1855 mm [22]. The angle
of the windshield is 32° and it is located 100 mm from the centre of the front wheel as shown in
Figure 6. The drag coefficients (Cp) and lift (C;) of this model are 0.620 and 0.099 respectively with
the velocity inlet of 35 m/s and 34 degrees atmospheric temperature. The k — & turbulence model is
used in this study due to requirement of lesser computing resources as compared to other turbulence
models. The findings revealed that the application of this model in the research can minimise
computational time and yield good analysis.

Fig. 6. TATA Safari model used by Samy et al,,
[22]
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Figure 7 illustrates research by Ansari [17] that utilised the TATA Indica model by importing
sketches involved with blending 2D or 3D curves and rendering to produce realistic images. This
model can be classified as an A-segment vehicle and compact car. The drag coefficient of (Cp) the
TATA Indica model is 0.841 with the velocity inlet of 19.44 m/s. The k — ¢ turbulence model is
employed to analyse the air flow field of the model due to its dissipation rate and short
computational time.

Fig. 7. TATA Indica model used by Ansari [17]

Datta et al., [60], utilised a generic car model without any exterior components to reduce
complexity in the CFD simulation. Figure 8 elucidates specific dimensions of the base model car are
about 4 m of base length (L), 2 m of base width (W), and 1.8 m of height (H), but the design is
maximised to 1:10 scale to improve the computational process. The inlet velocity utilised for this
study is approximately 27.78 m/s (measured along normal direction to the boundary) with the
numerical value of drag coefficient (Cp) and lift (C;) are 0.3385 and 0.2531 respectively. The k — ¢
turbulence model is carried out to run computational analysis as it is robust with reasonable
computational time and generally applied by automotive design engineers [60].

—_—

A\

Fig. 8. Full-scale base model car utilised by
Datta et al., [60]

2.1.3 Production (series) cars

The reference models in this category are detailed and exhibit a more complex form of actual
vehicle shapes as compared to basic car shapes [61,62]. The differences between production (series)
cars and basic car shapes are their external parts. Most production cars use actual ratio-scale, more
precise geometry, include external parts such as side mirror and tires, and other related specific
investigations as compared to the basic car shapes. Nevertheless, these models cannot produce
smaller processing data and more systematic changes [24]. There are few examples of production
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(series) cars geometries applied in the previous studies namely KIA Pride, Swift Dzire, Volvo, Hybrid
Electric Vehicle (HEV), and Range Rover models [23,58,63,64].

As annotated by Dias et al., [23], the Swift Dzire model is implemented by neglecting various
complicated features such as exhaust and door handle to maximise the complexity of modelling
during the computational process. This model can simplify the method of meshing, as a smaller
number of surface and curves are used to construct a simpler topology although its side mirror
remains. Figure 9 indicates the dimension of the vehicle is 3995 mm in length (L), 1555 mm in width
(W), and 1695 mm in height (H) [23]. The inlet velocity applied for this research is 40 m/s and the
numerical value for drag coefficient (Cp) is 0.375. The k — w turbulence model is chosen in this study
to execute the CFD simulation as this model provides better prediction in regards with flow
separation and also produce a good behaviour in adverse pressure gradients.

Fig. 9. The Swift Dzire model applied in
computational analysis by Dias et al., [23]

Saleh and Ali [58] further performed the production (series) cars, KIA Pride model by ignoring the
side mirrors, grilles, exhaust, tires without rotational motion and no solid contents as illustrated in
Figure 10. The KIA Pride model has full-scale car dimensions for a small passenger car with a length
(L) of 3935 mm, height (H) of 1455 mm, and width (W) of 1605 mm. The numerical value for the drag
coefficient (Cp) is 0.355 with the inlet velocity of 30 m/s. The k — ¢ turbulence model is applied in
this CFD simulation because it is feasible for less computational cost and free-shear layer flows with
relatively small pressure gradients.

Fig. 10. The base model for the KIA pride
used in simulation by Saleh and Ali [58]

Le Good et al., [65], annotated that the ‘Resnick model’ is created to investigate airflow and
aerodynamic of vehicles. This concept adopts of autonomous driving technologies and it is suitable
for high-riding coupe/SUV style with full-scale car dimensions of length (L) = 267 mm, height (H) = 98
mm, and width (W) = 108 mm, as shown in Figure 11 [65]. The numerical value for the coefficient
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drag (Cp) is 0.27 with the inlet velocity of 40 m/s. The k — € turbulence model is utilised in
computational analysis as it is easier to converge solution with reasonable predication and suitable
in the case of free-shear layer flow conditions with small pressure gradients and wall-bounded [60].

-

Fig. 11. Full-scale specification of the
Resnick model applied in Le Good’s et
al., [65] simulation

Ramasamy et al., [64], utilized a Hybrid Electric Vehicle (HEV) model that is deconstructed and
several exterior components are removed except tires. The purpose of ignoring these parts is to
minimize the overall complexity design in the CFD simulation. The Hybrid Electric Vehicle (HEV) is the
car design by Drayton and Coombs [66] that created using data measure in actual car model in the
vehicle lab since 2003. Figure 12 illustrates specific dimensions of the HEV model car about 1360 mm
of base height (H), 1655 mm of base width (W), and 4110 mm of length (L) with 2380 mm of
wheelbase. The inlet velocity applied for this research minimum and maximum values are 11.11 m/s
and 30.56 m/s. The numerical values of drag coefficient (Cp) for the minimum and maximum values
are 0.312 and 0.356 respectively. The k — & turbulence model is used to run the CFD simulation due
to its accurate analysis of various fluid categories and as the most basic turbulence model that
requiring only initial and boundary conditions [67].

Overall Length 4119 mm

= e
== T 7

Track RearFront Wheelbase
134011390 mm 2380 mm

Fig. 12. The Hybrid Electric Vehicle (HEV) car model utilized in
CFD simulation by Ramasamy et al., [64]
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Table 1

Summary of literature reviews based on various car geometries model

Car Model Author Inlet Velocity, v Aerodynamic Car Turbulence Software
Classification / Reynolds Loads Dimensions Models
(Type) Number (LxH X
W) mm
Simple Bodies Thabet v=40m/s -Cp =0.323 (1044 mm x k—¢ Ansys
(Ahmed Model)  and Thabit -C, =0.0368 288 mm X Turbulence Fluent
[53] 389 mm) model Software
Simple Bodies Hanetal, v = 50m/s -Cp = 0.165 (810 mm x Smagorinsky  XFlow
(ASMO Model) [56] -C, = 0.125 270 mm X Turbulence Software
290 mm) model
Simple Bodies Mansoret -v = 40m/s -Cp = 0.228 (625 mm X k—w Ansys
(Davis Model) al., [57] - Reynolds 160 mm X Turbulence Fluent
Number = 1.7 X 225 mm) model Software
106
Basic Car Lai et al., v=30m/s -Cp = 0.329 (520.625 k—¢ STAR
Shapes (MIRA [59] mm X Turbulence CCM+
Model) 177.625 mm  model Software
X 203.125
mm)
Basic Car Samy et v= 35m/s -Cp = 0.620 (L = 4655 k—¢ Ansys
Shapes (TATA al., [22] -C, = 0.099 mm X W= Turbulence Fluent
Safari Model) 1855 mm) model Software
Basic Car Ansari[17] v =1944m/s -(C, = 0.841 Imported3D k —¢ Ansys
Shapes (TATA sketches Turbulence Fluent
Indica Model) model Software
Basic Car Datta et v=27.78m/s -C, = 0.3385 (4000mm x k—¢ Ansys
Shapes (Base al., [60] -C, = 0.2531 1800 mm X Turbulence Fluent
Generic Model) 2000 mm) model Software
Production Diasetal., v=40m/s -Cp = 0375 (3995 mm x  k—w Ansys
(Series) Cars [23] 1695 mm X  Turbulence Fluent
(Swift Dzire 1555 mm) model Software
Model)
Production Salehand v = 30m/s -Cp = 0.355 (3935mmx  k—¢ Ansys
(Series) Cars Ali [58] 1455 mm X  Turbulence Fluent
(KIA Pride 1605 mm) model Software
Model)
Production Le Goodet v = 40m/s -Cp = 0.270 (267 mm x k—c¢ Ansys
(Series) Cars al., [65] 98 mm X Turbulence Fluent
(Resnick Model) 108 mm) model Software
Production Ramasamy  Vpn -Cppyin = 0.312 (41170mmx k — ¢ CosmosFl
(Series) Cars etal., [64] = 11.11m/s - CDMax =0.356 1360 mm X Turbulence oWorkst™
(Hybrid Electric UMax 1655 mm) model software.
Vehicle Model) =30.56m/s

3. Outcomes

Computational Fluid Dynamics (CFD) is the best method in dealing with complex equations and
acquiring numerical solutions concerning complicated airflow equations as compared to
experimental analysis. This is because the experimental analysis is often impracticable, requires a
time-consuming process, expensive computational cost, and high tendency of human error [68].
Based on previous studies, the CFD simulation is mostly carried out using the Reynolds-Averaged
Navier-Stokes Equation (RANS) due to its ability to generate a faster and cost-effective prediction of
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aerodynamics for automotive as compared to other approaches namely the Unsteady Reynolds-
Averaged Navier-Stokes Equation (URANS) and the Large Eddy Simulation (LES).

On the other hand, several types of turbulence models are developed in the Reynolds-Averaged
Navier-Stokes (RANS) approach. The greatest type of turbulence models used in this review paper is
the k — € and the k — w turbulence models. Launder and Spalding introduced the k — ¢ turbulence
model, which is the most commonly applied turbulence models by automotive designers due to its
ease and simplicity in predicting accurate converge solution [60]. The k — w turbulence model also
can be utilised as it has the ability to predict flow separation greater than other RANS models and it
can generate good analysis performance of the pressure gradients [57].

The outcomes of these review papers are scrutinised for 3 different types of car model geometry,
namely the simple bodies, the basic car shapes, and the production (series) cars. The findings mainly
focus on the drag coefficient of various car geometry model to provide better performance on an
aerodynamic design by reducing the computational cost. The drag coefficient is identified by
analysing velocity contours, pressure contours, turbulent kinetic energy, and others. For instance,
different pressure contours for three different types of car model geometries are generated, as
depicted in Figure 13, Figure 14, and Figure 15 to determine different separated flow regions and
stagnation point in front of car models.

Based on a study by Thabet and Thabit [53], the highest value of static pressure (indicated as red-
coloured region) can be sought in the centre of the approaching Ahmed body and the lowest value
of static pressure (indicated as green-coloured region) can be identified at the separate flow region
as shown in Figure 13 [53]. A significant increase of pressure contours in front of the model is due to
the result of high-velocity acceleration, parallel with Bernoulli’s principle when the high-pressure
area corresponds with the low-speed area of the speed profile [69]. Research by Samy et al., [22]
further indicates that the front model represents the high value of static pressure whilst pressure
drop is experienced at the back and under the body of the vehicle which affects drag and lifts
coefficients as exemplified in Figure 14 [22]. Major pressure reduction can be seen on the roof of the
TATA Safari model due to the low-velocity acceleration as compared to the Ahmed model (the simple
bodies).
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Fig. 13. Pressure contour that surrounds the Ahmed
model (the simple body types) by Thabet and Thabit [53]

Figure 15 clearly shows stagnation points of pressure contour in front of the car model as air is
almost stagnant in the mentioned regions as compared to the Ahmed model and the TATA safari
model [23]. As a result of high-speed acceleration, the pressure profile in front of the model has
increased significantly, corresponds to the low-velocity region. There are few large magnitudes of
static pressures that exist on the upstream side, with little exaggeration of the pressure contour due
to the existence of engine vents, grilles, and other open spaces that have been ignored during the
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modelling process for simplification. The results show that car model geometry for production
(series) car types identified more various magnitudes of static pressure due to the complex form as
actual vehicle shapes as compared to the simple bodies and the basic car shapes.

42184002
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6 5774002
-8.7360+002
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+1.305¢+003
-1.521e+003
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Fig. 14. Pressure contour surrounds the TATA Safari
model (basic car shape types) by Samy et al., [22]
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Fig. 15. Pressure contour surrounds the Swift Dzire
model (production(series) car types) by Dias et al., [23]

Various shapes of the car model geometries such as the Ahmed model, the TATA Safari, and the
Swift Dzire model can be implemented in aerodynamics forces and drag reduction studies. This is due
to the model’s applicability to run smoothly during simulation with certain conditions and parameters
depending on the designs. There is a large volume of published literature that narrates about the
simple bodies specifically in detail by previous researchers [24,70].

The simple bodies have the greatest fundamental aerodynamic characteristics for a vehicle as
compared to other types such as the basic car shapes and the production (series) cars. It also has
been utilised to explore basic flow phenomena and structures, calibrate wind tunnels, and design or
enhance research methods. In addition, it can also be implemented to provide data sources to
evaluate the validation of experimental data and prepare test cases to verify CFD codes. Most of the
simple bodies and the basic car shape geometries have been used for over 15 years, and many of
these dimensions are based on the European family production vehicle of that era [24]. The simple
bodies model remains to be widely used in fundamental research, especially in the study of unsteady
effects.

As mention in past researchers, the advantages of this simple body reference model include
encouraging researchers to reproduce prototypes easily, either physically or electronically such as in
CAD model for CFD simulation. Moreover, the simplicity of the models enables them to quickly create
contributing to repeatable results which give the researchers more confidence and enabling a good
assessment of findings. The patterns in the impact of systematic shape adjustments on aerodynamic
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characteristics can be directly applied to the development of production cars even though the
geometry is simple.

In terms of weakness, the results obtained from these simple bodies are limited and could not be
transferable to production vehicle development that requires a more complex body surface. The
simple models rarely provide features to simulate the cooling process and underbody flow due to its
oversimplification in several scenarios such as in tests, which are commonly executed without any
wheels [24]. Furthermore, the simple bodies can also eliminate the effects of the underbody flow for
the vehicle especially when it is related to diffuser efficiency.

4. Conclusions

Aerodynamic design vehicles are significant in improving fuel efficiency during their life cycle, but
due to the constraints of space optimization, not all technically feasible designs can be adopted.
Hence, the current review paper proposes the CFD modelling and simulation strategy as a practical
guide to simulate the external aerodynamics of different car models accurately within a period. Most
researchers employ the Reynolds-Averaged Navier-Stokes (RANS) with the k—¢ and k —w
turbulence models due to their ability to predict surface flow visualizations, accurate pressure
distributions, and low computational cost. The influence of various car model geometries on
aerodynamic forces with different types of turbulence models are investigated and discussed by
scrutinising various literature reviews from previous researchers.

The importance of review issues concerning the concept and design considerations of car models
that influenced simulation effectiveness and aerodynamic performance especially in terms of drag
forces are described in detail. The CFD simulation results have been thoroughly validated for three
main types of car model geometries by analysing the flow separations in static pressure contours
related to Bernoulli’s concept. The difference in characteristics, results, and applications of the simple
bodies, the basic car shapes, and the production (series) cars are observed. Based on the reviews,
the most preferable car model geometries are the simple bodies as it is easy to mesh without any
requirement of computer resources and capable to yield good simulation. The implementation of
these simple body models has developed a wide understanding of basic aerodynamic flow
characteristics concerning vehicles. Recently, these models have provided fundamental data and in-
depth information related to the non-steady effect of fluid flow and are utilised in an assessment to
validate the CFD data. Thus, new models can only be developed if the dimensions of the current
vehicle are required during an investigation and the models should be based on the existing
geometries to enhance various shapes of models.
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