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Solar water heating system has a vital potential for low and medium thermal 
applications. This study proposes a metaheuristic optimization technique, namely 
Search Group Algorithm (SGA), for energetic optimization of solar water heating 
system using flat plate collector (SWH-FPC). For this purpose, the following parameters 
are considered as design variables: mass flow rate, fluid inlet temperature, absorber 
plate thickness, riser tube outer diameter, tube spacing, and insulation thickness. In 
this study, SGA is applied to find optimal values of such parameters for maximum 
energy efficiency of flat plate solar collector. Moreover, the impact of each design 
variable on energy efficiency is also analyzed. The simulation results show that energy 
efficiency is improved by 4.904 % compared to the base case, which emphasizes the 
effectiveness and robustness of SGA to achieve high performance of solar thermal 
collector. 
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1. Introduction 
 

Global energy demand is rapidly progressing due to global population growth, technological 
development, commercial and industrial activities [1, 2]. Energy is an extremely important factor for 
economic operation of the country [3]. Fossil fuels including oil, coal and natural gas currently 
account for a large portion of total energy consumption [4, 5]. The excessive usage of conventional 
fossil fuels and nuclear power would cause detrimental effects on the natural environment like 
emitting harmful emissions that exacerbate to global warming. These emissions also aggravate 
pollution which is the contributing element for smog, ozone depletion, acid rain, nuclear waste, and 
other environmental contaminants [6, 7]. Therefore, reducing energy consumption and using 
renewable energy have always been a concern of worldwide governments. 

Renewable energy which has the advantages of being sustainable and eco-friendly provides a 
perfect solution for limiting fossil fuel consumption and environmental issues from combustion 
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processes for energy generation [8]. Solar energy is endless and a reliable source of energy that 
delivers sunlight freely for everyone [9]. Solar thermal system is one of the potential applications of 
renewable energy utilization. Of all the applications of solar thermal system, solar water heating 
system (SWH) is an extremely efficient technology to convert solar energy into thermal energy, which 
currently contributes an essential role significantly for the domestic and industrial area. Solar thermal 
collector is a critical component of SWH in which flat plate solar collector (FPC) is popularly used for 
low and medium thermal applications. One of the most significant barriers and obstacles to the 
development of SWH is the low energy efficiency of FPC. Thus, the enhancement in the performance 
of FPC has considerably drawn the attention of researchers in this field. 

In the literature, many meta-heuristic algorithms have been developed and applied for assessing 
optimal thermal performance of FPC and gained impressive results. Siddhartha [10] indicated that 
the efficiency of smooth flat plate solar air heater (SFPSAH) improves by raising the heat transfer 
rate, number of glass cover. The performance came out at 72.42% by using Particle Swarm 
Optimization (PSO). Hajabdollahi [11] analyzed a multi-objective PSO technique for optimizing cost 
and efficiency of SWH-FPC. The outcomes indicated that better values of thermal-economic were 
achieved at a lower rate of heat transfer. Bornatico [12] used PSO to define the optimum value of 
the key components of the solar thermal building installation. In [13], Genetic Algorithm (GA) was 
implemented for estimating the yield and the costs of the SWH with the lowest payback time. The 
GA method in [14] and a Simulated Annealing algorithm (SA) in [15] is applied to predict the minimum 
efficiency of SFPSAH. In general, by increasing Reynolds number, tilt angle, and number of covers, 
the efficiency was enhanced for all the cases considered. Sahin [16] applied Artificial Bee Colony 
Algorithm (ABC) and GA to investigate the correlation between different parameters of SFPSAH. The 
outcomes displayed that efficiency of solar air collector obtained by ABC is slightly higher than the 
GA method. The optimal value of thermal efficiency reached about 74.98%. Yildirim [17] analyzed 
the optimal thermohydraulic condition of the single pass solar air heaters examining the channel 
depth and air flow rate. For further analysis, numerical simulation has been carried out for an in-
depth analysis of the impact of design parameters on the performances of FPC in [18]. Sopian [19] 
and Rosli [20] investigated recent applications and advancement in high efficiency and cost-effective 
photovoltaic thermal (PV/T) collectors. Taloub [21] studied the impact of albedo and wind velocity 
on the solar collector operating in forced circulation. The results found that solar radiation obtains 
optimum values in the desert regions. In [22], two computer programs were carried out using 
Engineering Equation Solver (ESS) to determine the monthly and seasonal optimum tilt angle of solar 
collector for Nigeria. Kinan [23] studied to determine the performance of a circular and square 
collector for the Solar updraft tower power plant. Kalogirou [24] investigated a technique to obtain 
the maximum the storage tank mass and area of collector for maximizing the lifetime circle saving of 
solar energy system by developing a combination of GA and Artificial Neural Networks (ANN). 
Kalogirou [25] proposed ANN to predict parameters of FPC, and obtained results were compared to 
experimental data. Krause [26] improved the performance of solar heating systems by optimizing the 
operating parameters. The results revealed that solar heat cost decreased by 18% compared to the 
conventional system. Several studies adopted hybrid optimization techniques to solve the problem 
of FPC, namely a combination of PSO and Hooke-Jeeves in [27], a combination of GA and binary 
search method [28]. However, there is always requires a new algorithm which enables for 
optimization of solar thermal collector effectively. 

Search Group Algorithm (SGA) is one of the most recent metaheuristic algorithms, which was 
developed by Gonçalves et al., [29]. The primary purpose of SGA is to generate an appropriate 
balance between exploration and exploitation of the design domain to obtain feasible solutions. For 
this reason, SGA has been achieved promising results for different engineering problems, namely 
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truss structures optimization [29, 30], optimization of planar steel frames [31], networked control 
systems [32], automatic generation control [33, 34], power systems [35, 36]. 

Most related research has only determined optimal design parameters (i.e. depth or length) and 
optimal operating parameters (i.e. mass flow rate or fluid inlet temperature) and has not concerned 
about the geometric parameters of FPC including absorber plate thickness, tube diameter, tube 
spacing, and insulation thickness. This research presents the first attempt of the SGA technique for 
energetic optimization of SWH-FPC considering six design variables, comprising mass flow rate, fluid 
inlet temperature, absorber plate thickness, tube diameter, tube spacing, and insulation thickness. 
The objective of this work is to find optimal values of design variables for maximum energy efficiency 
of FPC. Furthermore, the trend and impact of each design variables on the variation of energy 
efficiency are also implemented. The obtained outcomes emphasize the effectiveness and 
robustness of SGA for energetic optimization of solar thermal collector. 

Section 2 describes the mathematical formulation of FPC. Section 3 provides an overview of the 
SGA algorithm and application of SGA for optimizing the efficiency of FPC. Section 4 discusses the 
trend of change in efficiency with the effect of design variables, and the results after optimization 
using SGA. Finally, Section 5 presents the main conclusions of this research. 
 
2. Problem Formulation 
 

The energy efficiency of FPC can be evaluated and predicted by applying the empirical 
correlations for heat transfer coefficients and other parameters, namely the heat removal factor, 
total heat loss coefficient. This section presents a thermal analysis of FPC for water heating system 
under steady state condition. 
 
2.1 Thermal Modelling of Flat Plate Solar Collector 
2.1.1 Collector energy balance 

 
Solar radiation absorbed by FPC is estimated as follows [37] 
 
𝑆 = (𝜏𝛼)𝐼𝑇              (1) 
 
where 𝐼𝑇 is the total solar radiation intensity and (𝜏𝛼) is the effective transmittance-absorptance. 

The thermal energy balance of FPC can be expressed as follows 
 

𝑄𝑢 = 𝑄𝑎𝑏 − 𝑄𝑙𝑜𝑠𝑠             (2) 
 
where 𝑄𝑢 is the useful energy, 𝑄𝑎𝑏 is the absorbed energy and 𝑄𝑙𝑜𝑠𝑠 is the total heat loss. 

Absorbed energy represents solar radiation energy which passes the glass cover and is absorbed 
by the collector. Hence, it can be stated as 

 
𝑄𝑎𝑏 = 𝐴𝑝𝑆 = 𝐴𝑝(𝜏𝛼)𝐼𝑇            (3) 

 
where 𝐴𝑝 is the area of the absorber plate. 

 
 
 
 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 61, Issue 2 (2019) 306-322 

309 
 

2.1.2 Collector energy loss 
 
In a simplified way, total heat loss is the lost energy from the collector to the surrounding can be 

computed by [38] 
 

𝑄𝑙𝑜𝑠𝑠 = 𝑈𝐿𝐴𝑐(𝑇𝑝𝑚 − 𝑇𝑎)            (4) 

 
where 𝑈𝐿 is the overall heat loss coefficient, 𝑇𝑝𝑚 is the mean temperature of absorber plate, and 𝑇𝑎 

is the ambient temperature. 
The overall heat loss coefficient is composed of the top, edge and back loss coefficient 
 

𝑈𝐿 = 𝑈𝑡 + 𝑈𝑒 + 𝑈𝑏             (5) 
 
The top loss coefficient is computed by following the empirical formulas of Klein [39] as follows 
 

𝑈𝑡 = [
𝑁

𝐶

𝑇𝑝𝑚
[

(𝑇𝑝𝑚−𝑇𝑎)

(𝑁+𝑓)
]

𝑒 +
1

ℎ𝑤
]

−1

+
𝜎(𝑇𝑝𝑚+𝑇𝑎)(𝑇𝑝𝑚

2 +𝑇𝑎
2)

(𝜀𝑝+0.00591𝑁ℎ𝑤)
−1

+
2𝑁+𝑓+1+0.133𝜀𝑝

𝜀𝑔
−𝑁

       (6) 

 
In Eq. (6), 𝑓, 𝐶, 𝑒 and ℎ𝑤 are presented by the following equations 
 

𝑓 = (1 + 0.089ℎ𝑤 − 0.1166ℎ𝑤𝜀𝑔)(1 + 0.07866𝑁)        (7) 

 

𝐶 = 520(1 − 0.000051𝛽2), {
0 < 𝛽 < 70°

𝛽 = 70° 𝑖𝑓 𝛽 > 70°         (8) 

 

𝑒 = 0.430 (1 −
100

𝑇𝑝
)             (9) 

 
ℎ𝑤 = 5.7 + 3.8𝑣                       (10) 
 
where 𝜎 is the Stefan-Boltzmann constant; 𝑁 is the number of glass cover; 𝛽 is the collector tilt; 𝜀𝑔 is 

the emissivity of glass cover; 𝜀𝑝 is the emissivity of absorber plate; 𝑣 is wind speed of ambient air; ℎ𝑤 

is the heat transfer coefficient of wind. 
The edge and back loss coefficients are calculated as 
 

𝑈𝑒 =
𝑘𝑒

𝛿𝑒
×

𝐴𝑒

𝐴𝑐
                        (11) 

 

𝑈𝑏 =
𝑘𝑏

𝛿𝑏
                        (12) 

 
where 𝐴𝑒 is the area of edge heat transfer surface; 𝑘𝑒 and 𝛿𝑒 are the thermal conductivity and 
thickness of edge insulation, respectively; 𝑘𝑏 and 𝛿𝑏 are the thermal conductivity and thickness of 
back insulation, respectively. 
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The mean temperature (𝑇𝑝𝑚) is computed by assuming an initial value to estimate 𝑈𝐿 and 𝑄𝑢. 

The next value of 𝑇𝑝𝑚 is calculated according to the below equation, and the initial value is modified 

through each iteration [40] 
 

𝑇𝑝𝑚 = 𝑇𝑖 +
𝑄𝑢

𝐴𝑝𝐹𝑅𝑈𝐿
(1 − 𝐹𝑅)                      (13) 

 
where the heat removal factor (𝐹𝑅) can be expressed as 

𝐹𝑅 =
�̇�𝐶𝑝

𝐴𝑝𝑈𝐿
[1 − 𝑒𝑥𝑝 (−

𝐹′𝑈𝐿𝐴𝑝

�̇�𝐶𝑝
)]                     (14) 

 
in which �̇� is the mass flow rate, 𝐶𝑝 is the special heat capacity, and 𝑇𝑜 is fluid outlet temperature. 

The collector efficiency factor (𝐹′) is 
 

𝐹′ =

1

𝑈𝐿

𝑊(
1

𝑈𝐿[𝐷𝑜+(𝑊−𝐷𝑜)𝐹]
+

1

𝐶𝑏
+

1

𝜋𝐷𝑖ℎ𝑓𝑖
)

                     (15) 

 
where 𝐷𝑜 and 𝐷𝑖  are the outer and inner diameter of riser tube, respectively; 𝑊 is the tube spacing; 
𝐶𝑏 is the thermal conductance of bond; ℎ𝑓𝑖  is the convection heat transfer coefficient between fluid 

and tube wall. 
𝐹 is the standard fin efficiency is given by 
 

𝐹 =
𝑡𝑎𝑛ℎ[𝑚(𝑊−𝐷𝑜)/2]

𝑚(𝑊−𝐷𝑜)/2
                       (16) 

 

𝑚 = √
𝑈𝐿

𝑘𝛿
                        (17) 

 
where 𝑘 and 𝛿 are the thermal conductivity and thickness of absorber plate, respectively. 
 
2.1.3 Useful heat output and energy efficiency 

 
In steady-state conditions, the useful energy gain can be obtained from Eq. (2)-(4) 
 

𝑄𝑢 = 𝐴𝑝[𝑆 − 𝑈𝐿(𝑇𝑝𝑚 − 𝑇𝑎)]                      (18) 

 
Furthermore, useful heat energy output can be rewritten as follows 
 

𝑄𝑢 = 𝐴𝑝𝐹𝑅[𝑆 − 𝑈𝐿(𝑇𝑖 − 𝑇𝑎)]                      (19) 

 
Finally, the energy efficiency of FPC is determined by 
 

𝜂 =
𝑄𝑢

𝐴𝑐𝐼𝑇
                        (20) 
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2.2 Process of Thermal Modelling 
 
An iterative process is implemented to compute the energy efficiency of FPC as follows 

i. At the start of the iteration process, the mean temperature of absorber plate (𝑇𝑝𝑚) is assumed 

from the inlet temperature of fluid as: 𝑇𝑝𝑚 = 𝑇𝑖 + 10. 

ii. Top loss coefficient (𝑈𝑡), edge loss coefficient (𝑈𝑒), back loss coefficient (𝑈𝑏), and as a result 
overall loss coefficient (𝑈𝐿) are calculated according to Eq. (5)-(12). 

iii. By applying the obtained overall heat loss coefficient, heat removal factor (𝐹𝑅) and useful 
energy output (𝑄𝑢) are computed by using Eq. (14)-(18). 

iv. Then the new mean temperature of absorber plate is adjusted using Eq. (13). 
v. This new value of 𝑇𝑝𝑚 is compared to the previous value. If the difference is within the 

acceptable boundary, the procedure is stopped and move to Step 6; if the difference exceeds 
the specified limit, the new value of 𝑇𝑝𝑚 is adopted as replaced value and back to Step 2. 

vi. When the correct value of 𝑇𝑝𝑚 is obtained, energy efficiency of FPC is calculated by Eq. (20). 

 
2.3 Objective Function of the Energetic Optimization 
 

In this study, the energy efficiency of FPC in Eq. (20) is selected as the objective function of 
energetic optimization and to be maximized. Hence, the optimization problem is expressed as follows 

 
Find 
 
𝑥∗ = [�̇�, 𝑇𝑖, 𝛿, 𝐷𝑜 , 𝑊, 𝛿𝑏]                      (21) 
 
Maximize 
 

𝜂(𝑥) =
�̇�𝑢

𝐴𝑐𝐼𝑇
                        (22) 

 
Subject to 
 
0.01 ≤ �̇� ≤ 0.1                       (23) 
 
20 ≤ 𝑇𝑖 ≤ 40                        (24) 
 
0.0002 ≤ 𝛿 ≤ 0.001                       (25) 
 
0.008 ≤ 𝐷𝑜 ≤ 0.02                       (26) 
 
0.06 ≤ 𝑊 ≤ 0.2                       (27) 
 
0.01 ≤ 𝛿𝑏 ≤ 0.1                       (28) 
 
where mass flow rate (�̇�), fluid inlet temperature (𝑇𝑖), plate thickness (𝛿), outer diameter of riser 
tube (𝐷𝑜), tube spacing (𝑊), and insulation thickness (𝛿𝑏) are selected as design variables as well as 
the control variables in the optimization procedure. 
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3. Search Group Algorithm 
 

SGA is a population-oriented algorithm. This algorithm is classified into two stages (global stage 
and local stage), both stages comprising generation, mutation, and selection procedures [30]. To 
attain solutions from the optimization problem in Section 2.3, SGA created search groups that explore 
the promising regions in global search and exploit the best design of these promising domains in local 
search [31]. The principal goal of this algorithm is to balance between the exploration stages and 
exploitation stages [29]. The procedures of SGA are described as below. 
3.1 Population Initialization 
 

In the initialization procedure, SGA generates a random initial population P on the search space 
 

𝑃𝑖𝑗 = 𝑥𝑗
𝑚𝑖𝑛 + (𝑥𝑗

𝑚𝑎𝑥 − 𝑥𝑗
𝑚𝑖𝑛)𝑈[0,1]                     (29) 

 
for 𝑗 = 1, … , 𝑛, 𝑖 = 1, … , 𝑛𝑝𝑜𝑝, 

 
where 𝑃𝑖𝑗 is the 𝑗th design variable of the 𝑖th entity of P; 𝑈[0,1] is a stochastic variable between a 

range [0,1]; 𝑥𝑗
𝑚𝑎𝑥 and 𝑥𝑗

𝑚𝑖𝑛 are the upper and lower limit of the 𝑗th design variable, respectively; 𝑛 

is the sum of design variables; and 𝑛𝑝𝑜𝑝 is the sum of P. 

 
3.2 Selection of the First Search Group 
 

After the generation of the population P, SGA calculated the objective function of the entire 
entity. A benchmark tournament selection is performed to create a search group R by choosing 𝑛𝑔 

entities from P. 
 
3.3 Mutation of the Search Group 
 

In this step, 𝑛𝑚𝑢𝑡 entities of the search group R are replaced by new entities to enhance the global 
search ability by Eq. (30) 

 

𝑥𝑗
𝑚𝑢𝑡 = 𝐸[𝑅𝑗] + 𝑡𝜀𝜎[𝑅𝑗] for 𝑗 = 1, … , 𝑛                    (30) 

 
where 𝑥𝑗

𝑚𝑢𝑡 is the 𝑗th design variable of a mutated entity; 𝐸 is the mean value; 𝜎 is the standard 

deviation operators; 𝜀 is the convenient stochastic variable; 𝑡 is the value that manages how far the 
new entity is formed; and 𝑅:,𝑗 is the 𝑗th column of the search group matrix. 

The possibility of the individual can be displaced depending on its rank of the present search 
group. An inverse tournament selection is employed to implement this procedure. 
 
3.4 Formation of the Families 
 

‘Each member of the search group is considered as a family leader. The family is a set of a family 
leader and the entities that it generated. Therefore, each one of the family leaders creates a family 
as follows 

 
𝑥𝑗

𝑛𝑒𝑤 = 𝑅𝑖𝑗 + 𝛼𝜀 for 𝑗 = 1, … , 𝑛,                     (31) 
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in which 𝛼 adjusts the size of the perturbation. 𝛼 is reduced as follows 
 
𝛼𝑘+1 = 𝑏𝛼𝑘                        (32) 
 
3.5 Selection of the New Search Group 
 

The optimization process consists of two stages: the global stage and local stage. In the global 
stage, the best member of each family is selected to create a new search group to explore most of 
the search domain. In the local stage, best 𝑛𝑔 entities of all the families are selected to create the 

new search group to exploit the domain of the current best design. 
 
3.6 Overall Procedure of SGA for Energetic Optimization of SWH – FPC 
 

The objective function to be maximized using SGA for energetic optimization of FPC is defined in 
Eq. (21). Each entity of the population P characterizes a set of control variables. These design 
variables are mass flow rate (�̇�), fluid inlet temperature (𝑇𝑖), plate thickness (𝛿), outer diameter of 
riser tube (𝐷𝑜), tube spacing (𝑊), and insulation thickness (𝛿𝑏), which is described as follows 

 
𝑥𝑖 = [�̇�, 𝑇𝑖, 𝛿, 𝐷𝑜 , 𝑊, 𝛿𝑏] for 𝑖 = 1, … , 𝑛𝑝𝑜𝑝,                    (33) 

 
The overall procedures of the implementation of SGA for energetic optimization of FPC are 

described as follows 
i. Set the parameters of SGA: 𝑘 = 0, 𝑖𝑡𝑚𝑎𝑥 , 𝑖𝑡𝑔𝑙𝑜𝑏𝑎𝑙

𝑚𝑎𝑥 , 𝛼𝑘, 𝛼𝑚𝑖𝑛, 𝑏, 𝑛𝑝𝑜𝑝, 𝑛𝑔, 𝑛𝑚𝑢𝑡 , ℎ, 𝑡, 𝜀, 𝜐. 

ii. Determine design variables within their lower and upper boundary. 
iii. Randomly initialize the population P using Eq. (29). 
iv. Initialize the first search group 𝑹𝑘 choosing 𝑛𝑔 entities from P adopting a benchmark 

tournament selection. 
v. Substitute 𝑛𝑚𝑢𝑡  entities by new candidates generated as defined in Eq. (30). 

vi. Create the families 𝑭𝑖 following Eq. (31) 
vii. Select the new search group as below 

If 𝑘 < 𝑖𝑡𝑔𝑙𝑜𝑏𝑎𝑙
𝑚𝑎𝑥 : search group 𝑹𝑘+1 is created by the best member of each family. 

Else: search group 𝑹𝑘+1 is created by the best 𝑛𝑔 entities of P. 

viii. Update 𝛼𝑘+1 using Eq. (32). 
ix. Set 𝑘 = 𝑘 + 1, if 𝑘 = 𝑘 + 1, move to Step 10, else back to Step 5. 
x. Solution: 𝒙∗ = 𝑹1. 

 
4. Numerical Results 
4.1 Validation of the Thermal Modelling 

 
In this research work, the simulation of SWH-FPC is implemented in MATLAB platform. The 

specification of FPC is referenced from the technical details of TitanPower-ALDH29-V3 premium flat 
plate solar collector [41]. Aluminum sheet with the emissivity of 0.05 and the thermal conductivity 
of 240 (W/m K) is used as the absorber plate. The characteristics and test conditions of FPC are 
summarized in Table 1. 
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The simulation results of this research are verified by comparing with experimental results of [41], 
which is presented in Table 2 for the same input values stated in Table 1. As shown in Table 2, the 
difference in percentage values for the results of the simulation and experimental are acceptable. 
 

Table 1 
Specifications and test conditions of flat plate solar collector 

Parameter Value 

Gross dimensions 1.158 m × 2.368 m × 95 mm 
Emissity of glass cover (𝜀𝑔) 0.9 

Absorber dimensions 1.11 m × 2.32 m × 0.5 mm 
Emissivity of absorber plate (𝜀𝑝) 0.05 

Outer diameter of tube (𝐷𝑜) 9.0 mm 
Inner diameter of tube (𝐷𝑖) 8.6 mm 
Tube Spacing (𝑊) 105 mm 
Back insulation thickness (𝛿𝑏) 50 mm 
Edge insulation thickness (𝛿𝑒) 25 mm 
Mass flow rate (�̇�) 0.04 kg/s 
Total solar radiation intensity (𝐼𝑇) 1000 W/m2 
Effective transmittance-absorptance (𝜏𝛼) 0.874 
Slope of collector (𝛽) 45° 

 
Table 2 
Comparison of experimental results of Ref. [41] and simulation 
results 
Output Parameter Ref. [41] Base case of this work Difference 

Useful heat gain (W) 2019 2115 4.75 % 
Collector efficiency (%) 74.7 77.16 3.29 % 

 
This comparison can be visually verified in Figure 1, which shows that the efficiency curve with 

the temperature difference between the fluid inlet temperature (𝑇𝑖) and ambient temperature (𝑇𝑎) 
under various solar radiation intensity. Similar trends are observed in the efficiency curve for both 
Ref and this work. Therefore, thermal modeling of this work is suitable for the simulation of FPC. 

 

 
(a) 

 
(b) 

Fig. 1. Efficiency curve with temperature difference under various solar radiation intensity (a) 
Experimental results of [41]; (b) Simulation Result of this work 
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4.2 Effect of Design Variables on Energy Efficiency 
 

In this section, numerical studies to determine the effect and sensitivity of energy efficiency to 
variation in the design parameters of SWH-FPC including mass flow rate, fluid inlet temperature, 
plate thickness, riser tube outer diameter, tube spacing, and insulation thickness were analyzed as 
follows 

 
4.2.1 Mass flow rate 

 
Figure 2 presents the trend of energy efficiency versus mass flow rate as can be observed that 

the mass flow rate rises, the efficiency is enhanced. Factually, by increasing this parameter, heat 
removal factor and the useful heat gain rise; therefore, the efficiency also increases. 

 

 
Fig. 2. Variation of energy efficiency versus mas flow 
rate 

 
In general, when mass flow rate varies from 0.01 kg/s to 0.06 kg/s resulting in a significant climb 

in energy efficiency from 68.17 % to 77.77 % (a value of 9.6 %). Additionally, the efficiency shows a 
slight upward trend from 77.77 % to 79.59 % (a value of 1.82 %) as increasing the mass flow rate from 
0.06 kg/s to 0.2 kg/s. This reveals that the impact of mass flow rate on energy efficiency is more 
obviously at the low level of mass flow rate. Maximum efficiency of 79.59 % achieved at the highest 
mass flow rate (0.2 kg/s) and the minimum efficiency of 68.17 % achieved at the lowest mass flow 
rate (0.01 kg/s). 
 
4.2.2 Fluid inlet temperature 

 
As it is shown in Figure 3, fluid inlet temperature increases result in a reduction in energy 

efficiency. This is mainly due to the difference between the fluid inlet temperature and the ambient 
temperature (𝑇𝑖 − 𝑇𝑎) which increases overall heat losses. When the ambient temperature is 
constant, the inlet temperature increases from 20°C to 40°C shows a clear downward trend in 
efficiency from 79.23 % to 70.31 %. 
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Fig. 3. Variation of energy efficiency versus fluid inlet 
temperature 

 
4.2.3 Absorber plate thickness 

 
Energy efficiency increases by increasing absorber plate thickness as shown in Figure 4. This is 

due to increasing plate thickness leads to an increase in fin efficiency, collector efficiency factor, and 
overall efficiency. 

 

 
Fig. 4. Variation of energy efficiency versus absorber 
plate thickness 

 

Energy efficiency increases from 74.18 % to 77.92 % (a value of 3.74 %) as increasing the thickness 
of absorber plate from 0.2 mm to 0.8 mm. Additionally, energy efficiency is enhanced from 77.92 % 
to 78.63 % (a value of 0.71 %) when the plate thickness value varies from 0.8 mm to 1.8 mm. This 
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indicates that when the absorber plate is comparatively slim (𝛿 < 0.8 mm), energy efficiency can be 
dramatically improved through increasing the absorber plate thickness. 
 
4.2.4 Riser tube diameter 
 

As shown in Figure 5, energy efficiency increases by rising tube diameter, but the change in 
efficiency is insignificant. In fact, by raising this parameter, the heat transfer coefficient decreases 
result in useful heat and efficiency increase. By varying tube diameter from 0.008 to 0.02 m, energy 
efficiency tends to increase slightly by 0.24 %. 
 

 
Fig. 5. Variation of energy efficiency versus tube diameter 

 

4.2.5 Tube spacing 
 

By increasing tube spacing, energy efficiency decreases as shown in Figure 6. Factually, by 
increasing tube spacing, collector fin efficiency, heat removal factor, and consequently useful heat 
decrease, resulting in reduced efficiency. When tube spacing varies from 60 mm to 200 mm, 
efficiency is reduced from 78.86 % to 70.75 % (a value of 8.11 %); therefore, varying the tube spacing 
has a dramatic effect on energy efficiency. 
 
4.2.6 Insulation thickness 

 
Figure 7 shows that energy efficiency increases by increasing the thickness of back insulation. 

This is mainly due to the rise in insulation thickness which can enhance thermal conduction resistance 
of insulation. Hence, the heat loss to the back decreases and energy efficiency simultaneously 
increases. 
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Fig. 6. Variation of energy efficiency versus tube 
spacing 

 
 

 
Fig. 7. Variation of energy efficiency versus insulation 
thickness 

 

When the thickness of insulation increases from 20 mm to 40 mm, energy efficiency is improved 
by 3.66 %. By changing the thickness of insulation from 40 mm to 100 mm, energy efficiency rises by 
0.77 %. When the thickness of insulation is comparatively thin (𝛿𝑏 < 40 mm), increase insulation 
thickness has a significant effect on energy efficiency. When the insulation thickness is approximately 
thick (𝛿𝑏 > 40 mm), the change in insulation thickness has an insignificant effect on efficiency. 
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4.3 Results of the Optimization Procedure 
 

For the detailed input data in Table 1, the optimization procedure using the SGA method leads to 
the optimal value of the objective function is implemented. The obtained results include optimal 
design variables, maximum efficiency, overall heat loss coefficient, and useful heat gain after 
optimization are recorded in Table 3 in which the maximum efficiency is (82.064 %). Comparing the 
optimized efficiency with the base case from Table 1 shows that it is dramatically improved from 
77.16 % to 82.064 %, i.e., by 4.904 %. 

 
Table 3 
Optimal solution of design variables and output 
parameters 
Parameter Value 

Mass flow rate (�̇�) 0.1958 kg/s 
Fluid inlet temperature (𝑇𝑖) 22.4079°C 
Absorber thickness (𝛿) 0.0006 m 
Tube diameter (𝐷𝑜) 0.0130 m 
Tube spacing (𝑊) 0.0604 m 
Insulation thickness (𝛿𝑏) 0.0825 m 
Overall heat loss coefficient (𝑈𝐿) 1.7635  
Heat removal factor (𝐹𝑅) 0.9946 
Useful heat gain (𝑄𝑢) 2250.3 W/m2 
Energy efficiency (𝜂) 82.064 % 

 
Moreover, the evolution of the objective function over iterations is described in Figure 8. Energy 

efficiency shows a tendency toward convergence when the number of iterations is 20. In other words, 
the SGA finds a feasible solution for this system after 20 iterations. 

 

 
Fig. 8. Convergence characteristic for energetic 
optimization of FPC 

 
In order to assess the robustness of the proposed algorithm, SGA was run independently 50 trials, 

and the outcomes are tabulated in Table 4. From this table, the average values are approximate to 
the best ones. Furthermore, the history of 50 runs from the proposed SGA technique for this system 
is given in Figure 9. Therefore, the SGA is very robust in solving this problem. 
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Fig. 9. History of 50 runs by SGA for energetic 
optimization of FPC 

 
Table 4 
Results of 50 runs for energetic optimization of FPC 
Min Average Max Standard deviation Computational time (s) 

82.044 82.055 82.064 0.004 0.31 

 
4. Conclusions 
 

The principal conclusion derived from this paper is that SGA is an efficient and robust algorithm 
for obtaining the optimal value of design variables at which the energy efficiency of FPC is maximum. 
It has good convergence characteristics and can achieve a feasible solution with fast convergence 
speed. Moreover, the effect of design variables on the energy efficiency of FPC is also carried out. 
The algorithms proposed here can assist the manufacturer and engineers in improving the energy 
efficiency of SWH-FPC in solar thermal system. 
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