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In this article, an analysis has been carried out to study the effects of variable 
viscosity and variable thermal conductivity on the heat transfer characteristics of a 
Casson nanofluid over a slender Riga plate with zero mass flux and melting heat 
transfer boundary conditions. The nonlinear governing equations with the suitable 
boundary conditions are initially cast into dimensionless form by similarity 
transformations. The resulting coupled highly nonlinear equations are solved 
numerically by an efficient second-order finite difference scheme known as Keller Box 
Method. The effect of various physical parameters on velocity, temperature, and 
concentration profiles are illustrated through graphs and the numerical values are 
presented in tables. One of the critical findings of our study is that the effect of 
variable viscosity on velocity shows reducing nature, but there is an increasing nature 
in temperature and concentration. 
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1. Introduction 
 

In recent years, controlling the flow of electrically conducting fluids is one of the primary tasks 
to the scientists and engineers. The controlled flow of these fluids has enormous applications in 
industrial and technological processes involving heat and mass transfer phenomenon. However, the 
polymer industry has adopted a few conventional methods to control the fluid flow such as of 
suction/blowing and wall motion methods with the assistance of electromagnetic body forces. The 
flow of the fluids having high electrical conductivity such as liquid metals, plasma, and electrolytes, 
etc. can be significantly controlled by applying an external magnetic field. This concept can be used 
for controlling the classical electro magnetohydrodynamic (EMHD) fluid flows. In view of the 
industrial applications, Gailitis, and Lielausis [1] of the physics institute in Riga, the capital city of the 
Latvia country designed one of the devices known as Riga plate to generate simultaneous electric 
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and magnetic fields which can produce Lorentz force parallel to the wall in weakly conducting 
fluids. This plate consists of a spanwise aligned array of alternating electrodes and permanent 
magnets mounted on a plane surface. This array generates a surface-parallel Lorentz force with a 
neglected pressure gradient, which decreases exponentially in the direction normal to the 
(horizontal) plate. However, in vector product form the volume density of a Lorentz force is written 

as 1 F = J B and in terms of Ohm’s law it can be expressed as ( )J = σ E+V×B  where σ is an 

electrical conductivity of the fluid, V is the fluid velocity, and E is the electric field. In the absence of 

any extrinsic magnetic field, a complete contactless flow can be attained when 610−σ S/m. Where 

as in the presence of extrinsic magnetic field, an induced high current density ( )σ V×B  can be 

obtained and we have ( ) ( )1
  

2F = J ×B = σ V×B ×B = σ V×B B - B V . On the contrary, when 

610σ S/m, a low current density ( )σ V×B  can be seen. To tackle with such cases, an extrinsic 

magnetic field is used to obtain the EMHD flow. The expression ( )1 F = J×B σ E×B

 
reveals that 

the electrical conductivity of a fluid is very small, and it does not rely upon the flow field. According 

to Grinberg [2], the density force can be written as
1

1 0 0
1

8

y
a

M j
e


 −

F = . Tsinober and Shtern [3] 

observed the substantial improvement in the strength of the Blasius flow towards a Riga plate, 
which is due to the more significant influence of wall parallel Lorentz forces. Further, the boundary 
layer flow of low electrical conductivity of fluids over a Riga plate was scrutinized by Pantokratoras 
and Magyari [4]. Pantokratoras [5] extended the work of Pantokratoras and Eugen [4] to Blasius and 
Sakiadis flow. 

In addition to controlling the flow of electrically conducting fluids, the technological industry 
demands the control of heat transfer in a process. This can be achieved with the help of nanofluids 
technology. Nanofluid is the blend of the nanometer-scale (1nm to100 nm) solid particles and low 
thermal conductivity base liquids such as water, ethylene glycol (EG), oils, etc. Two different phases 
are used to simulate nanofluid. In both the methods researchers assumed as the common pure 
fluid and more precisely in the second method, the mixer or blend is with the variable 
concentration of nanoparticles. Choi [6] proposed the term nanofluid and verified that the thermal 
conductivity of fluids could be improved by the inclusion of nanometer-sized metals (Cu, Ag, Au), 
oxides 2 3(Al O , CuO) , carbide ceramics (Sic, Tic/carbon nanotubes/fullerene) into the base fluids. 

Buongiorno [7] established that Brownian diffusion and thermophoresis are important slip 
mechanisms in nanofluids. Makinde and Aziz [8] examined the impact of Brownian motion and 
thermophoresis on transport equations numerically. Ahmad et al., [9] and Ayub et al., [10] 
examined the boundary layer flow of nanofluid due to Riga plate. Further, Hayat et al., [11, 12] 
analysed squeezing flow of a nanofluid between two parallel Riga plates by considering different 
external effects. Recently, Naveed et al., [13] continued the work of Ref [12] and studied salient 
features of 3 4 2(Ag-Fe O /H O) hybrid nanofluid between two parallel Riga plates. Furthermore, 

several research articles can be found in the literature that covers the different physical and 
geometrical aspects of the classical liquids. Few of them can be seen in the references. [14-25].  

All the researchers, as mentioned earlier, have concentrated on conventional nonlinear 
stretching but not on the stretching. Fang et al., [26] have coined the word variable thickness for 
the specific type of nonlinear stretching and examined the performance of boundary layer flow 
over a stretching sheet with variable thickness. Khader and Megahed [27] reviewed the work of 
Fang et al., [26] via Numerical method to explain velocity slip effects. Farooq et al., [28] considered 
variable thickness geometry with Rega plate to analyze stagnation point flow and Prasad et al., [29-
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33] examined the impact of variable fluid properties on the Newtonian/non-Newtonian fluid flow 
field. 

The main objective of the present work is to reduce the skin friction or drag force of the fluids 
by applying an external electric field in the presence of variable fluid properties over a slender 
elastic Riga plate under the influence of zero mass flux and heat transfer boundary conditions. 
Suitable similarity variables are introduced to transform the coupled nonlinear partial differential 
equations into a set of coupled nonlinear ordinary differential equations. These equations are 
solved numerically via Keller Box method (See Vajravelu and Prasad [34]). The effects of various 
governing physical parameters for velocity, temperature, and nanoparticle concentration are 
discussed through the graphs and tables. The obtained results are compared with the actual results 
in previous literature and are found to be in excellent agreement. From this, it can be concluded 
that the present research work provides useful information for Science and industrial sector. 
 
2. Mathematical Analysis of the Problem 
 

Consider an electromagnetic flow of a steady, incompressible non-Newtonian nanofluid over a 
slender Riga plate with variable fluid properties. Here the non-Newtonian fluid model is the Casson 
model and the rheological equation of state for an isotropic and incompressible fluid is given by (for 
details see, Prasad et al., [32]). 
 

2( / 2 ) ,

2( / 2 ) ,

B y ij c

ij

B y c ij c

P e

p e

   


   

 + 
= 

+ 

                                                                                                            (1)  

 

where ij ije e = and ije is the ( , )thi j component of deformation rate,  is the product of the 

component of deformation rate with itself, B is the plastic dynamic viscosity of Casson fluid, yP is 

yield stress of the fluid and c is a critical value of this product depending on the non-Newtonian 

model. Further, the Riga plate is considered as an alternating array consisting of electrodes and 
permanent magnets mounted on a plane surface situated at y = 0 having x-axis vertically upwards. 
The fluid is characterized by a nanoparticle and is analyzed by considering Brownian motion and 
thermophoresis phenomena. The following assumptions are made 

i. Joule heating and viscous dissipation are neglected. 
ii. The fluid is isotropic, homogeneous, and has constant electric conductivity. 

iii. The velocity of the stretching Riga plate and the free stream velocity are respectively, 

assumed to be 0( ) ( )m

wU x U x b= +  and ( ) ( )m

eU x U x b= + , where 0andU U  are positive 

constants, m is the velocity power index and b is the physical parameter related to slender 
elastic sheet.  

iv. The Riga plate is not flat and is defined as ( )
( )1 2

 = A , m 1,
m

y x b
−

+  where the coefficient A 

is chosen as small so that the sheet is sufficiently thin, to avoid pressure gradient along the 
Riga plate ( /  = 0)p x   

v. The temperature and nanoparticle concentration at the melting variable thickness of the 

Riga plate are andM MT C respectively and further andT C  denote the ambient 

temperature and nanoparticle concentration of the fluid respectively. 
vi. For different applications, the thickness of the stretching Riga plate is assumed to vary with 

the distance from the slot due to acceleration/deceleration of an extruded plate.  
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For m =1 thickness of the plate become flat. The physical model of the problem is given below 

(Figure 1). 
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Fig. 1. Physical model of (a) variable thickness and (b) Riga plate 

   
Based on the above assumptions and the usual boundary layer approximations, the governing 

equations for continuity, momentum, thermal energy, and concentration for the nanofluid model 
are expressed as follows 

 
v

0
u

x y

 
+ =

 
                                                                                                                                                        (2) 
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( )

( )
1 0 0 1

1

1 1
v 1 ( ) exp

8

e
e

j M xdUu u u
u T U y

x y y y dx a x

 


   

    −   
+ = + + +              

                                      (3) 

 

( )
( )

2

01
v ( ) ( ) T

B

p p

Q x DT T T C T T
u K T T T D C

x y c y y c y y T y


 


  

          
+ = + − + +    

           

                       (4) 

 
2

2
v ( ) T

B

DC C C T
u D C

x y y y T y

     
+ = + 

     
                                          (5) 

 
where u and v are velocity components along x and y directions respectively.   is the Casson 

parameter, pc  is the specific heat at constant pressure, and   is the fluid density. The transport 

properties of the fluid  are assumed to be constant, except for  the fluid  viscosity ( )T , the fluid 

thermal conductivity ( )K T  and Brownian diffusion of the fluid BD , are assumed to be functions of 

temperature and  nanoparticle concentration,  and are expressed as follows 
 

1 1

2( ) [1 ( )] , i.e ( ) [ ( )] ,M rT T T T a T T   − −

= + − = −                                                                             (6)                                 

 

1( ) [1 (( ) / ( ))]M MK T K T T T T = + − −                                                                                                          (7)                                                         

 

2( ) [1 (( ) / ( ))]B B M MD C D C C C C
 = + − −                                                                                                   (8)                                                                                   

 

 

here 2 / and 1/ra T T   = = −  are constants and their values depend on the reference state and 

the small parameter   is known as thermal property of the fluid. Generally, the positive and 

negative values of 2a  describes two different states, namely, liquids and gases respectively, i.e. for 

2 0a   represents the liquid state and 2 0a   represents gas state. Here , and BK D
  are 

ambient fluid viscosity, thermal conductivity and Brownian diffusion coefficient respectively. 

1 2and 
 are small parameters known as the variable thermal conductivity parameter and variable 

species diffusivity parameter respectively. The term ( )0Q x  represents the heat generation when 

0 0Q   and heat absorption when
0 0Q  , and are used to describe exothermic and endothermic 

chemical reactions respectively. Further, 0j  is the applied current density in the electrodes, ( )0M x  

is the magnetization of the permanent magnets mounted on the surface of the Riga plate and 

( )1a x  is width between the magnets and electrodes. The special forms 

( ) ( )
(1 )/2

0 0 ,
m

Q x Q x b
−

= + ( ) ( )
(1 )/2

0 0

m
M x M x b

−
= + and ( ) ( )

(1 )/2

1 1

m
a x a x b

−
= +  are chosen to obtain 

the similarity solutions.   is defined as the ratio between the effective heat capacity of the 
nanoparticle material and heat capacity of the fluid, i.e. ( ) / ( ) ,p p p fc c   = TD  is the 

thermophoresis diffusion coefficient and  
0T  is solid temperature. The appropriate boundary 

conditions are 
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( )  
( )

0

1 0
1 2

( ) ( ) ,

( ) v(x,y),  

at
0

m

w

s M M
m

T
B

u U x U x b

K T y c T T T T

y A x bDC T
D

y T y

 
−



= = +


  = + − = 


= + 
+ = 

  


                (9)       

( ) ( ) , , asm

eu U x U x b T T C C y  → = + → → →                        

 
The second boundary condition defined in Eq. (9) 

( )  1 0( ) v(x,y)s MK T y c T T   = + − represents the melting temperature in which 1  is the latent 

heat of fluid, MT  is the melting temperature, 0  and sT C are the temperature and heat capacity of the 

concrete surface respectively. On substituting Eq. (6)-(8) in the basic Eq. (3)-(5), it reduces to 
 

( )

( )
0 0

1

1 1
v 1 exp

1 ( ) 8

e
e

j M xdUu u u
u U y

x y y T T y dx a x

 

   


  

       −
+ = + + +         + −      

               (10) 
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(11) 
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2 2
v 1 M T

B

M

C C DC C C T
u D

x y y C C y T y




 
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                                                                    (12)  

 
Now, we transform the system of Eq. (10)-(12) into dimensionless form. To this end, the 
dimensionless similarity variable be, 
 

( )
( 1)

0 ( )
1 2

mU x b
y m



−



+
= +                                                                                                                      (13)

  

 
and the dimensionless stream function, the dimensionless temperature and the dimensionless 
nanoparticle concentration are, 
 

( ) ( 1)

02 1 ( ) F( ), ( ) , ( ) ,m M M

M M

T T C C
m U x b

T T C C
    +



 

− −
= + +  =  =

− −
                                              (14)  

                      
with the use of Eq. (13) and (14), the velocity components are, 
 

( 1)

0 0

2 ( 1) ( 1)
( ) ( ), v =- = - ( ) ( ) ( )

( 1) 2 2

m m m m
u y U x b F x U x b F F

m
      −



+ − 
 =   = +   + + +  

              (15)  
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here prime denotes differentiation with respect to  . In the present work, it is assumed m >-1 for 

the validity of the similarity variable. With the use of Eq. (13)-(15), then Eq. (10)-(12) and the 
corresponding boundary conditions reduce to: 
 

 1

1

21 2 2 2
1 1 '' '' ( ') * 0

( 1) ( 1) ( 1)r

m m
F FF F A Qe

m m m

 

 

−

−

    
 + − + − + + =    + + +    

                  (16)  

 

( )( )1 2

2
1 ' Pr '[ (1 ) ' ' ] Pr 0

( 1)
Nb Nt F

m
  +   +  +   +  + +  =

+
                                         (17)   
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Nt

LeF
Nb
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                                                   (18) 

 

 

(1 )
'( ) Pr ( ) 0, '( ) 1, ( ) 0,
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m
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 
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 + − = =  → 

+ 

 +  =  →   →   →

                                                        (19)  

 

The non-dimensional parameters 1, *, , ,Pr, , , , , andr A Q Nb Nt Le M     represent the variable 

viscosity parameter, stretching rate ratio parameter, modified Hartman number, dimensionless 
parameter, Prandtl number, wall thickness parameter, Brownian motion parameter, 
thermophoresis parameter, heat source/sink parameter, Lewis number and the dimensionless 
melting heat parameter respectively and which are defined as follows 
 

0 0 0
12 ( 1)

0 0 1 0
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0 1 0
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, * , , , Pr , ,
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    

   
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= = = = = =

− + +

− − −
= = = =

+ −

(20)                                                                                

 

The value of the r  is determined by the viscosity of the fluid under consideration, it is worth 

mentioning here that for 0 .i e  → =  (constant) then .r →   It is also important to note that 

r
 is negative for liquids and positive for gases when ( )MT T −  is positive, this is due to fact that 

the viscosity of a liquid usually decreases with increasing in temperature. Further, 0M =  shows 
that there is no melting phenomenon, also it should be noted that M comprises of the Stefan 

constants 0 1 0( ) / and ( )p s Mc T T c T T − −
 of liquid and solid phase respectively.  Now, we define the 

following ( ) ( ) ( ), ( ) ( ) ( ), ( ) ( ) ( ),F f f               = − =  = − =  = − =  here  =  

indicates the flat surface. Then Eq. (16) to (19) reduce to 
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1

( )21 2 2 2
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f ff f A Qe
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2.1 Physical Quantities of Interest 
 

The important physical quantities of interest for the governing flow problem, such as skin 

friction
xfC , the local Nussult number ,xNu  and Sherwood number xSh are defined as follow. 
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m
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u T C
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 
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= = = = +

    
are respectively called the skin 

friction, the heat flux and the mass flux at the wall. These parameters in dimensionless form can be 
written as  
 

( )
1/21/2Re ( 1) / 2 (0),

( 1)x

r
x f

r

C m f




 
= +  

−   

( ) ( )
1/21/2

1Re ( 1) / 2 1 (0) andx xNu m  − = − + +

 

( ) ( )
1/21/2

2Re ( 1) / 2 1 (0)x xSh m  − = − + + , where Re ( ) /x wU x b = +  is called local Reynolds 

number.  
 
3. Exact Analytical Solutions for Some Special Cases   
 

In this section, we study the exact solutions for some special cases. It is important to analyze 
some theoretical analysis of the certain solutions for some given physical parameters and these 
solutions serve as the base function for computing general solutions through numerical schemes. In 

the case of absence of Casson parameter ,  variable fluid viscosity parameter ,r stretching rate 

ratio parameter *,A  and modified Hartman number Q  the present problem reduces to Fang et al. 

[26]. The discussions here will be emphasized on other parameters except 1m  .   
 

Case (i): when  1/ 3m = −  then Eq. (21) reduces to the following form, 
 

2( ') 0f ff f + + =                                                                                                                                        (26)   

 
with the associated boundary conditions (24) becomes,                         
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(0) 2 , '(0) 1, '( ) 0f f f= =  =                                                                                                                (27)  

 
On integration Eq. (26) twice yields to 
                                                                                               

2
2( 2 ) (2 1)

2

f
f     + = + + +                                                                                                                     (28)   

 
where (0),f = in order to have a finite solution it is essential to consider 2 = −  

2
2(2 1)

2

f
f  + = +   when , →  we have  2( ) 2 4 .f  = +                                                            (29) 

 

The solution is 
2

2 1

2

2 4 2
( ) 2 4 tanh tanh

2 2 4
f

 
  



−
  +

= + +  
+   

  and                                   (30) 

 
2

2 2 1

2

2 4 2
( ) 1 2 Sech tanh

2 2 4
f

 
  



−
  +

 = + +  
+   

                                                                       (31)   

   
It should be noted that, for  1/ 3,m = −  the above solutions reduce to the solutions for a flat 

stretching surface. This confirms that the present numerical solutions are in good agreement with 
those of Fang et al., [26] and these can be used for numerical code validation in this work.       

 
Case(ii): For 1/ 2,m = −  we can obtain another analytical solution, for this case, Eq. (21) reduces to,   

                                                                           
22( ') 0f ff f + + =                                                                                                                                      (32) 

 
with the respective boundary conditions (24) becomes as,                       
 

(0) 3 , '(0) 1, '( ) 0f f f= =  =                                                                                                                (33) 
 
Eq. (32) can be written in the form of                                                                                                                   

 

3/2 1/2 3/21 2
0

3

d d
f f f f

f d d 

−  
 + =  

  
                                                                                                        (34) 

 
Integrating Eq. (34) once reduces to the following form                                                                           

 

( )
2 2 21 1

3 9
2 2

f ff f f    − + + = − + +
                                                                                                    (35) 

 

Applying free boundary condition we get,                                                                                               

 
1

3
6

 


= − +                                                                                                                                                    (36)  
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On integration Eq. (35) leads to                                                                                                      

 

( )
3/21/2 3/22 2 1

3
3 3 3

f f f 


−  + = +
                                                                                                               (37)   

 

The final solution is                                                                                                                  

( )

2

1

22 2

21 3
ln tan 0

2 3

f d f d f d
D

d d dd f

 −

 
 + + + + = + =   

−    
                  (38) 

where 

 
3/2 1/3[(3 ) 3 / (2 3 )d  = +  

 
and 
 

( )

( )

2

1

22 2

3 31 3 2 3
ln tan 0

2 33

d d d
D

d d dd

  



−

 + +  + = + =   
 −  

                                                                  (39) 

 
Since the system of Eq. (21)-(23) with boundary conditions (24) has no exact analytical solutions, 
they are solved numerically via a Keller-Box method.  
 
4. Method of Solution 
 

The system of highly nonlinear coupled differential Eq. (21) to (23) along with appropriate 
boundary conditions in Eq. (24) are solved by finite difference scheme known as Keller Box Method. 
This system is not conditionally stable and has a second order accuracy with arbitrary spacing. For 
solving this system first write the differential equations and respective boundary conditions in 
terms of first order system, which is then, converted into a set of finite difference equations using 
central difference scheme. Since the equations are highly nonlinear and cannot be solved 
analytically, therefore these equations are solved numerically using the symbolic software known 
as Fedora. Further nonlinear equations are linearized by Newton’s method and resulting linear 
system of equations is solved by block tri-diagonal elimination method. For the sake of brevity, the 
details of the solution process are not presented here. For numerical calculations, a uniform step 
size is taken which gives satisfactory results and the solutions are obtained with an error tolerance 
of 610−  in all the cases. To demonstrate the accuracy of the present method, the results for the 
dimensionless Skin friction, Nussult number and Sherwood number are compared with the previous 
results. 
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4.1 Validation of Methodology 
 

The main objective of this section is to check the validation of the present work. The present 
numerical results are compared with the existing work of Farooq et al., [28] and Prasad et al., [31] 

in the absence and presence of Riga plate with 1 2Pr * 0, 0,A Nt Le M Nb  = = = = = = = = →  

, r →  →   and the results are in excellent agreement with the previous literature (Table 1).  

 
Table 1 
Comparison of Skin friction coefficient ''(0)f−  for different values of wall thickness parameter 

 
and 

velocity power index m  when the presence and absence of a Riga plate at fixed values of 

1 2Pr * 0, 0, , .rA Nt Le M Nb    = = = = = = = = → →  →   

  m  Presence of Riga plate Farooq 
et al., [28] by OHAM when 

10.1, 0.2Q = =  

Absence of Riga plate Prasad et al., 
[31] by OHAM, when 10, 0Mn Q = = = =  

Present results, Keller Box 
Method 

Presence of 
Riga plate 

Absence of 
Riga plate 

0.25 02 0.9990 1.0614 0.9990 1.06140 
03 1.0465 1.0907 1.0456 1.09050 
05 1.0908 1.1182 1.0902 1.11860 
07 1.1120 1.1328 1.1121 1.13230 
09 1.1244 1.1401 1.1247 1.14041 
10 1.1289 1.1439 1.1288 1.14334 

0.5 02 0.9673 1.0231 0.9672 1.02341 
03 0.9976 1.0358 0.9975 1.03588 
05 1.0252 1.0487 1.0253 1.04862 
07 1.0382 1.0551 1.0383 1.05506 
09 1.0458 1.0512 1.0458 1.05893 
10 1.0485 1.0604 1.0485 1.06034 

  
5. Results and Discussion 
  

The system of nonlinear ordinary differential Eq. (21) to (23) together with the appropriate 
boundary conditions (24) are numerically solved by using Keller Box method. The influence of  
various physical parameters such as Casson parameter  , variable fluid viscosity parameter 

,r velocity power index m , stretching rate ratio parameter *,A  modified Hartman number ,Q  
dimensionless parameter 1 , variable thermal conductivity parameter 1 , Brownian motion 

parameter Nb , thermophoresis parameter ,Nt  Prandtl number Pr , heat source/sink parameter  , 

variable species diffusivity parameter 2 , Lewis number Le , and wall thickness parameter   on the 

horizontal velocity profile ( )f  , the temperature profile ( )  , and the concentration profile ( )   
are exhibited through Figure 2-9. The computed numerical values for the skin friction ( )0 ,f   the 

Nussult number ( )0 and the wall Sherwood number ( )0 are presented in Table 2. 

In Table 2 we present the results for ( ) ( ) ( )0 , 0 and 0f     corresponding to different values 

of the physical parameters. The skin friction coefficient is a decreasing function of the parameters 

,m  , ,  1,  r  and increasing function of *,A  .Q  Nusselt number reduces for ,m , *,A  1  

and increases for 1, , ,Pr,and .r Nb Nt     Further, the Sherwood number decreases for 1&   
and increases for *A . 
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The effect of velocity power index m  and wall thickness parameter  on velocity, temperature 
and concentration boundary layers are depicted in Figure 2(a) – 2(c). Figure 2(a) elucidates that, for 

increasing values of ,m  ( )f   reduce and this is due to the fact that the stretching velocity 

enhances for larger values of m  which causes more deformation in the fluid, consequently velocity 
profiles decrease. A similar trend may be observed in the case of ( )   (Figure 2(b)), whereas 

concentration distribution (Figure 2(c)) shows a dual characteristic, that is for larger values of m  
concentration profiles reduces near the sheet and opposite behaviour is observed away from the 
sheet. When 1,m =  the sheet become flat. Similarly, for higher values of wall thickness parameter 

, velocity profiles fall, but the temperature distribution upgrade near the sheet and downwards 

away from the sheet. Whereas, the impact of   is quite opposite in the case of concentration 

distribution. Figure 3(a) through 3(c) indicates the influence of   and 1  on ( ), ( ) and ( )f      . 

For greater values of   velocity profiles are compressed, this is because as   increases the 

corresponding value of yield stress fall as a result velocity boundary layer thickness decreases. The 
temperature distribution rises for different estimations of   and concentration distribution exhibits 

exactly reverse trend. Effect of 1
 on these three profiles is same as that of   . It is noticed from in 

Figure 4(a) to 4(c) that both r and *A  exhibits opposite trend, increasing variable fluid viscosity 

reduces the velocity and concentration profiles while the enhancement is observed in the case of 

temperature profiles. This may be due to the fact that, lesser  r  implies higher temperature 

difference between the wall and the ambient nanofluid and the profiles explicitly manifest that 

 r is the indicator of the variation of fluid viscosity with temperature which has a substantial effect 

on ( )f  and hence on ( ) ,f  where as in the case of temperature the effect is reversed. Figure 5 

illustrates the impact of *A  and Q  on ( )f  . An improvement in *A  corresponds to the 

enhancement of velocity boundary layer thickness. The enhancement in the velocity profile is 
observed for amplifying Q . Conventionally the velocity profiles are the decreasing function of 

Hartman number where as in this case the Lorentz force which is produced due to the magnetic 
arrays parallel to the surface is responsible for the enhancement of the momentum boundary layer 
thickness. The influence of Nb  and Nt  on temperature and concentration distribution are 
sketched in Figure 6(a) and 6(b). It is seen that the higher values of Nb  enhances temperature 
profiles and its boundary layer thickness, whereas concentration distribution suppressed near the 
sheet and swells away from the sheet. The larger Nt  creates a thermophoresis force which compels 
the nanoparticles to flow from the hotter region to the colder region which results in raising 
temperature profiles. In the case of concentration distribution, the duel behavior is noticed which 
reduces near the sheet and increases away from it (See Figure 6(b)). The characteristic of Prandtl 

number Pr  and variable thermal conductivity parameter 1
 on temperature distribution is 

demonstrated in Figure 7. Usually temperature distribution reduces for higher values of Pr  and 

enhances for larger values of 1, but in this work quite opposite behaviour can be seen, this is due 

to the presence of melting heat transfer parameter M  and stretching rate ratio parameter *A . 
Figure 8 records the effect of heat source/sink parameter  on ( )  , an increase in   means rise in 

the temperature difference ( ),MT T − which leads to an increment in temperature distribution. 

Figure 9 is plotted for different values of Le  and 2  on ( )  . Lower the Brownian diffusion 

coefficient BD  the higher Lewis number: This leads to a decrease in the thickness of the 

nanoparticle concentration boundary layer. It is interesting to note that a distinct rock bottom in 
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the nanoparticle volume fraction profiles occur in the fluid adjacent to the boundary for higher 

values of Le  and lower values of 2 . This means that the nanoparticle volume fraction near the 

boundary is lesser than the nanoparticle volume fraction at the boundary; accordingly, 
nanoparticles are likely to transfer to the boundary.  
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Fig.2(a ) : Horizontal velocity  profiles for different values of  and m with Pr = 1,   
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Fig.2(c ) : Concentration profiles for different values of  and m with Pr = 1,   
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Fig. 2. The effect of velocity power index m  and wall thickness parameter  on (a) 
horizontal velocity, (b) temperature and (c) concentration boundary layers profiles 

for different values of Pr = 1, Nb = 0.5, Nt = 0.5, Le = 0.96, M = 0.2,  = 0.1, 1 = 0.1, 

2 = 0.1,  = -5, Q= 0.2, 1 = 0.3,  = 0.2, A* = 0.01. 
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Fig.3(b ) : Temperature profiles for different values of  and 
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 with Pr = 1,   

                  Nb = 0.5,  Nt = 0.5, Le = 0.96,  M = 0.2, Q = 0.1, 
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Fig. 3. The influence of   and 1
 
on (a) horizontal velocity, (b) temperature and 

(c) concentration profiles for different values of Pr = 1, Nb = 0.5, Nt = 0.5, Le = 

0.96, M = 0.2,  = 0.1, 1 = 0.1, 2 = 0.1,  = -5, Q= 0.1,  = 0.25, A* = 0.01 
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Fig. 4. The (a) horizontal velocity, (b) temperature and (c) concentration profiles for 

different values of  and A* with Pr = 1, Nb = 0.5, Nt = 0.5, Le = 0.96, M = 0.2,  = 

0.1, 1 = 0.1, 2 = 0.1, Q= 1,  = 0.25, m = 0.5 
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Fig. 6. The influence of  Nb and  Nt on the (a) temperature and (c) concentration 

profiles with Pr = 1, Le = 0.96, M = 0.2,  = 0.1, 1 = 0.1, 2 = 0.1,  = 0.25, Q = 1, 1 = 2, 

 = 1,   = -0.5 and A* = 0.01 
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and A* = 0.01 

 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 64, Issue 1 (2019) 19-42 

38 
 

0 1 2 3 4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2
 


 = 0,          


 = 0.2,            


 = 0.4

Le = 5, 2, 1.5, 0.96

Fig.9 : Concentration profiles for different values of 
2
 and Le with m = 0.5,   

             Nb = 0.5, Nt = 0.5,  M = 0.2,  = 0.1,  = 0.25, 

 = 0.1, A

*
 = 0.01,

            
r
 = -5, Q = 1, 

1
 = 0.3, = 1.

 

 

()

   
Fig. 9. The concentration profiles for different values of 2 and Le with m = 0.5, Nb = 
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Table 2 
Values of Skin friction, Nusselt number and Sherwood number for different physical parameters 

Pr  Le  Nb  Nt  1  2    *A  M  1    Q  
r  m  0.25 =  0.5 =  

1 0.96 0.5 0.5 0.1 0.1 0.1 0.01 0.2 2 1 0.1 -5 

 (0)f   (0)   (0)   (0)f   (0)   (0)   

-0.3 -0.0573 1.883 -1.8833 -0.1095 2.4189 -2.4189 
-0.1 -0.1990 1.520 -.15201 -0.2243 1.8289 -1.8289 
 0.0 -0.2369 1.390 -1.3905 -0.2561 1.6311 -1.6311 
 0.5 -0.3297 1.025 -1.0256 -0.3356 1.0937 -1.0937 
 1.0 -0.3697 08643 -0.8643 -0.3685 0.8643 -0.8643 

Pr  Le  Nb  Nt  1  2    *A  M  m  r  Q                          1 1.0 =                         1 2.0 =     

1 0.96 0.5 0.5 0.1 0.1 0.1 0.01 0.2 0.5 -5 0.1 

0.5 

0.25 

-0.4136 0.987 -0.9876 -0.4489 0.9879 -0.9879 
1.0 -0.4925 0.996 -0.9962 -0.5414 0.9969 -0.9969 

2.0 -0.5851 1.003 -1.0036 -0.6519 1.0044 -1.0044 

5.0 -0.6114 1.004 -1.0045 -0.6839 1.0056 -1.0056 

Pr  Le  Nb  Nt  1  2    *A  M  1  Q  
r                          0.5m =                         1.0m =  

1 0.96 0.5 0.5 0.1 0.1 0.1 0.1 0.2 2 1 

-10 

1 0.25 

-0.5288 0.968 -0.9682 -0.5628 0.8093 -0.8093 
-5.0 -0.5165 0.971 -0.9710 -0.5516 0.8105 -0.8105 
-2.0 -0.4863 0.977 -0.9776 -0.5234 0.8128 -0.8128 
-1.0 -0.4494 0.984 -0.9842 -0.4878 0.8143 -0.8143 
-0.5 -0.4009 0.989 -0.9890 -0.4395 0.8152 -0.8152 

r  Le  Nb  Nt  *A  2    m  M  1  Pr  Q                          1 0.2 =                         1 0.4 =  

-5 0.96 0.5 0.5 0.01 0.1 0.1 0.5 0.2 2 

0.72 

0.1 1 0.25 

-0.5275 0.873 -0.8735 -0.5283 0.8758 -0.8758 
1.0 -0.5113 1.042 -1.0429 -0.5118 1.0531 -1.0531 
2.0 -0.4932 1.394 -1.3949 -0.4934 1.4314 -1.4314 
5.0 -0.4844 1.681 -1.6814 -0.4850 1.7462 -1.7462 

Pr  Le  m    *A  2  1  1  M  Nb  r  Q                         
0.5Nt =  

                      
1Nt =

   
 

1.0 0.96 0.5 0.1 0.01 0.1 0.3 0.1 0.2 
0.5 

-5 0.1 1 0.25 
-0.5111 1.036 -1.0366 -0.5149 0.9594 -1.9188 

1.0 -0.5101 1.054 -1.5272 -0.5113 1.0229 -1.0229 
2.0 -0.3415 4.900 -3.6755 -0.5096 1.0544 -0.5272 

1  M  Nb  Nt  *A  1  m    Le  Pr  r  Q                          2 0.2 =                        2 0.2 =  

0.3 0.2 0.5 0.5 0.01 0.1 0.5 0.1 

1.5 

1 -5 0.1 1 0.25 

-0.3365 1.0526 -1.0526 -0.3394 0.9289 -0.9289 
2.0 -0.3358 1.0755 -1.0755 -0.3385 0.9599 -0.9599 

5.0 -0.3339 1.1495 -1.1495 -0.3359 1.0579 -1.0579 
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6. Conclusions 
 

The present article examines the effects of variable fluid properties on the heat transfer 
characteristics of a Casson nanofluid over a slender Riga plate with zero mass flux and melting heat 
transfer boundary conditions. Here, the thickness of the sheet is erratic. The critical points of the 
present study are summarized as follows: 

i. The effect of velocity power index m on velocity and temperature field is similar, that is, in 
both the cases the profiles increases as m reduces, whereas in the case of concentration 
distribution dual nature is observed. 

ii. Velocity and concentration distributions reduces for increasing values of Casson parameter, 
but the temperature distributions show exactly opposite behavior for larger values of 
Casson parameter. 

iii. Enhanced variable fluid viscosity parameter influences the velocity and temperature field in 
opposite manner.  

iv. The modified Hartmann number enhances the velocity distribution and reduces the 
temperature distribution. 

v. The squeezed thermal boundary layer is observed for the increasing values of variable 
thermal conductivity parameter. 

vi. The concentration distribution improves for higher values of variable species diffusivity 
parameter. The duel nature of the concentration profiles is recorded for the Brownian 
motion parameter and thermophoresis parameter.                                                                                   
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