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In this paper, the effect of physical parameters on the velocity and temperature
distributions for heat transfer of unsteady two-dimensional squeezing flow of a Casson
fluid between parallel circular plates is studied. Thrive similarity transforms is used to
reduce the equations of problem into highly nonlinear ordinary differential equations.
The resulting equations are solved by a new analytical technique and obtained new
analytical approximate solution. This new analytical technique essentially depends on

the coefficients of powers series that result from integration Nthorder of a differential
equation. Fourth order Runge-Kutta method is also using to obtain numerical solution.
The influence of involved physical parameters on the velocity and temperature
distributions is discussed with the help of tables and graphics. Also, as novel idea in
this work, some theorems to prove the convergence of a new analytical technique
theoretically, and the verifications of these theorems computationally are introduced.
The results of new analytical approximate technique are verified an excellent
agreement by comparing it with Runge-Kutta method and homotopy perturbation
method (HPM).

Copyright © 2019 PENERBIT AKADEMIA BARU - All rights reserved

1. Introduction

Heat transfer occurs in many physical situation. Moving objects are heated not only because of
some external sources but their movement against other surfaces may also produce hypothermia of
great importance. Mechanical systems consisting of fast moving pistons or parts can be sustained by
proper understanding of heat transfer occurring in these systems. For proper operation of these
machines lubricants are used to reduce friction between the parts. Rheology is a branch of physics in
which we study how material is distorted or flowing response to applied forces or pressures. The
properties of the substances that control the specific way in which these deformations or flow
behaviors are called rheological requirements. The rheological properties of these lubricants under
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the thermal conditions for assembling highly efficient mechanical heat transfer analysis are very
important. The squeezing flow between circular plates moves orthogonal in many practical
situations. Special applications have in polymer processing, modeling of synthetics transportation
inside living bodies, hydro-mechanical machinery and compression injection processes. Many
researches have considered these flows and contributed to their effort to make these typesof flow
better. Stefan's [1] pioneering efforts have opened new doors for researchers, and many studies have
been carried out following him. As an example, Homotopy perturbation solution for two dimensional
MHD squeezing flow between parallel plates has been determined by Siddiqui et al., [2]. Domairry
and Aziz [3] investigated the same problem for the flow between parallel disks. Jafari et al., [4]
studied analytically the heat and mass transfer in a viscous fluid which squeeze between parallel
plates by using homotopy perturbation method. Syad et al., [5] proposed and applied for semi-
analytic solution of heat transfer analysis for the squeezing flow of a Casson fluid between parallel
circular plates by using differential transform method. Mustafa et al., [6] tested heat and mass
transfer for squeezing flow between parallel plates using homotopy analysis method (HAM). Khan et
al., [7] showed that heat transfer analysis for unsteady squeezing flow of a Casson fluid between
parallel plates by using homotopy perturbation method (HPM). Rashidi et al., [8] used a homotopy
simulation of nanofluid dynamics from a nonlinearly stretching isothermal permeable sheet with
transpiration. The homotopy analysis of transient magneto-bio-fluid dynamics of micropolar squeeze
-film in a porous medium was studied by Anwar et al., [9]. Rashidi and Erfani [10] an analytical method
for solving steady MHD convective and slip flow due to a rotating disk with viscous dissipation and
ohmic heating. Recently, Al-saif and Harfash [11] used similarity transformation to transform the
problem of unsteady squeezing flow between parallel plates into ordinary differential equations and
then solved it to obtain analytical approximate solutions by perturbation-iteration algorithm. All
above contributions for authors focus on analytical approximate methods. These methods are
alternative to numerical method and are useful for finding analytical approximate solutions of highly
non-linear differential equations. This encouraged us to adopted the new analytical method that is
proposed in [12, 13] to solve the squeezing flow between two parallel plats and give good results
with less computational workload compared with other methods. Moreover, to the best of our
simple knowledge, a comparative study on heat transfer unsteady two-dimensional squeezing flow
of a Casson fluid between parallel circular plates using a new analytical technique has not been
implemented in literature. Therefore, in this paper, a comparative study and analytical
investigations are presented using new proposed technique that is to consider modified integral
method and presented in our previous works [12, 13], depending on its structure on power series
coefficients that are resulting from integration processes. The new analytical technique has been
successfully applied to find analytical approximate solution. Also, the effect of physical parameters
on the velocity and temperature distributions for heat transfer of unsteady two-dimensional
squeezing flow of a Casson fluid between parallel circular plates is discussed and established. From
current work, one can see that the obtained analytical approximate solution shows excellent
compatibility with numerical solution obtained by Runge-Kutta fourth order and other methods in
literatures. The organization of this paper is as follows: The governing equations are derived in
section (2). Details of derivation of the new analytical technique have been written as steps in the
section(3). The performance of the new analytical technique for the squeezing flow is applied in
section (4). In section (5) the convergence analysis is presented. Results and discussions are given in
section (6). Finally, the conclusions are indicated in section (7).
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2. Mathematical Formulation

The governing equations for the heat transfer in an the unsteady two-dimensioned
incompressible flow of a Casson fluid between two parallel plates can be expressed :

a_lj_f_@A:O, (1)
ox oy
~ A ~ 2A 24 2%
ST =2 R el 2+ 040,
ot x oy pax ; 9% oRex 2
A A ~ 24 2n
L R0 . Yok Mk )
ot ; 9% oRex
2 2
Ty X @100, o o
o & o, % o A 5
o4 o0 0% R
2 2+ +—)"+2 2
@+ + 2 +2C)

Boundary conditions for the flow problem are

G4=0, V=v,=—', T=T,, at §=h(),
(4)

In the above equation U and V are the velocity components in X and y -direction respectively, p
is the pressure, T is the temperature, v is the kinematic viscosity of the fluid, p is density of the

/2
is the Casson
y

fluid parameter. Where /4 is the dynamic viscosity of the non-Newtonian fluid, p, isyield a stress

fluid, Cp is the specific heat and K is thermal conductivity of the fluid and £ = y;

of fluid and 7 is the product of the component of deformation rate with itself , i-e. 7 = e;€; , where

ij’
eij isthe (i, j) the component of the deformation rate. Rheological equation of Casson f|UId is defined

as under [14-17].

= [ug +( )]2e (4)

The effects of viscosity dissipation are maintained for the study of heat generation due to the
friction caused by shear flow. The viscosity of the fluid is taken as constant, and it does not depend

on temperature. Distance Y = +l(1—at)"? = £h(t) apart, where | is the initial position (at t=0).

1
Further, & >0 corresponds to squeezing motion of both plats until they touch each otherat t = —,
a
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for a <0 the plates leave each other and dilate. The flow geometry and the coordinate system are
shown in Figure 1.

.
g >
>

Fig. 1. Schematic diagram for the flow problem

We can simplify this system of equation by eliminating pressure terms from Eq. (2)-(4). After cross
differentiation and introducing vorticity Q, we get

ow ow ow 1..0°w o’w
—+4d +V =p(1+= +(—), 1
R S L RGO R o) (1)
where,
ov ol
= (=+2), 2
@ (a>”< 5A) (2)

By using similarty transformation [18,19]

0=[2(1“f*m)]f'<n), B
o:ﬁf(n), (4)
«9=%, 5)
n:ﬁ. (6)

Substituting Eq. (8)-(11) in Eq. (2) and Eq. (3) , we obtain a nonlinear ordinary differential equations
for Casson fluid flow as
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(1+ %) Y =St () +3F () + £/ () () = £ () £ (7)) = O,

0"(m) +RS(f(m)0' (1) —n6'(m)+ RE.(1+ %)((f "(m)* +45°(f'(n°)) =0, (7)

The boundary conditions of Eq. (4) are reduced to
f(0)=0, f"(0)=0, f(1)=1, f'(1)=0, (8)
6'(0)=0, 6(1)=1, (9)

where S denotes the non-dimensioned squeeze number. P. is Prandtl number, E_ is Eckert number
and ¢ is the dimensionless length. Which are defined as
al? uC,

S:_, Pr:
2v k

1 oX
- R G
p (_a)

(o %)
I
> | =

It should be noted that squeezing numberS describes the movement of the plates S>0
corresponding to the plates moving apart, while S <0 corresponds to collapsing movement of the
plates. Also E_ =0 corresponds to the case when viscous dissipation effects are neglected. Physical

guantities of interest are skin friction coefficient and Nusselt number defined as

|2 B 1..,
m ReXCf = (1+ E) f (1), (10)
(1-at)Nu =-0'(n), (11)
where,
2
1 G
Cf = U(1+E)T, (12)
Rex = ALVZVUZ, (13)
vX(1-at)
T
—Ik(gy)yzhm
Nu=—— | (14)
KT,
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3. The Basic Steps of The New Analytical Technique

This section describes how to obtain a new analytical technique to calculate the coefficients of
the power series solution resulting from solving nonlinear ordinary differential equations resulting in
using transforms (8)-(11) to find analytical-approximate solution.These coefficients are important
bases to construct the solution formula, therefore they can be computed recursively by
differentiation ways. To illustrate the computation of these coefficients and the derivation of the new
analytical technique, we summarized the new outlook detailed in the following steps.

Step (1): Consider the non-linear ordinary differential equation as follows.

£ = H(E @), '), £7(),eees T2 (), (20)

where His a function of 1 and the derivatives of f (1), f(7) is an unknown function and 7
denotes spatial independent variable. Integrating Eq. (20) n times with respect to 77 on [0,7] yield

f() = f(0)+ ')+ f"(O)’7 A+ £ (0) (’7 ) (15)
where,
GLF (1= H(f (), '(n), £ (), T2 (), L = ][ () (16)

Step (2): Assume that

Grf (=3 9l 17)

— d n-1
rewriting the Eq. (23)

GLf (m)]= GLf, ]+ G'Tf (M]+ G o (7)]+ G, ()] + G, ()] + .., (18)

substituting Eq. (24) in Eq. (21), we obtain

f(p)=f,+f,+f,+f,+f,+.. (19)
where,
(n-1)
fo = £(0)+ /(O + f"(O)’7 SRR O, TSRS LAL)!
f,= LG fy = L‘lG”[ fo()], 1, = LG ()], (20)

Step (3): We focus on computing the derivatives of G with respect to 7 which is the crucial part of
the proposed method. Let start calculating G[ f (7)],G'[f (#)].G"[f ()], G"'[f (m)].-...
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GLf (in)]=H (T @), T'Gr), £ (). (), £ (p),ees £0 (), (21)

G[f(m)]= %77(’7)] =G 1, +G(f,) +.. 4G () ( f,)", (22)

G"[f(m]= M =Gy (fﬂ)2 +Gq . ( fﬂ)' f,+Ggq..f,(f,)"
+t Gy (F, )(f )P 4G, +G (f).f, +G(f) 2+ +
ff(n_l) (f)(f, "V 4G, () +Gf,f.(f,])".f,7+Gf,f,.(f,])'(fn)”—kGf,f,,.(f,])”2
G (£, (F) D4 GE (£, +..4G oy e (£)000, 4G (.
(F) () 4ot Gy ()T 4Gy ()2, (23)

G"Lf (7 )]—M Gy (£, +G (£,)2(F,) +..+G _y.(f,)%
(f,)"Y +G, .2(f,7).f,m +Gyr (1) (F,)2 4G (1) 2(F,) +.. 4Gy
L)) 4G [(F, ) F, +(F,)F 1+ Gy (F,) (£)2 +Gp(F,)
(£ et G oy (£, (F)L(E) D +G o[£, (F,) + £,.(F,,)T+...
Gy (F)E) 4Gy (F)AEYAE) " 44 G oy oy ()
(£ 4Gy [(F,)-(F)2 +(£,)(F,)P1+Gy.1,,.(£,)+ Gy £, (F,)
£.4G oy £ ()P 4G 4G (F,) (1) +Gy (F,)2(F,) +...+
G,y (£, (F)-(F) P +G  [(£,,)F, +(F,). 1, 1+Gy (£,)2F, +Gyyy
(244G (F)2(E) D +G 0 2(F,).(F, )+ 4Gy
() 8,46 o (B 20 404G oy iy oy (F)
+G oy 2(F) V6, P 4Gy (£,)00 4Gy (F,) 00,

tot Gf (n-1) f (n-1) '( fr]r])(nil)'( fr])(nil) + Gf(n—l) '( fr]r]r])(nil)' (24)

We see that the calculations become more complicated in the second and third derivatives
because of the numerous calculations. Consequently, the systematic structure on calculation is
extremely important. Fortunately, due to the assumption that the operator G and the solution f
are analytic functions, then the mixed derivatives are equivalent. We note that the function
derivatives of f unknown, so we suggest the following hypothesis

f = fl = LﬁlG[fO (77)]1 fm] = fZ = LﬁlGl[ fO (77)]7 f]]m] = f3 = LﬁlG”[ fO (77)]’

n

f =, =U1G"[f,(n)], f  =f =LG"[f,1n)].. (25)

nnnn nnnn
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Therefore, Eq. (27)-(30) are evaluated by
GLfo(m1=H(f, (1), fs(), ), £ (), (26)

G'Tf,(m]= Gf0 A+ Gfo, () + Gfo,, (f)"+..+ Gfo(n_l) ( f1)(nil)a (27)

" —_ 2 ' "

G [fo(ﬁ)]—Gfofo-(fl) +Gf0f0,-(f1) f1+Gf0fO”-f1(f1) +"'+Gf0f0(n—1)'(f1)
(£)"+Gy 1,46, ¢ ()G, ¢ (£)7+.+G, oy (R (R
i " ' " "2
+G; (f,) +Gf0”f0.(f1) 'fl+Gfo~fo"(f1)(f1) +Gf0”f0”.(fl) +...++Gf0”f0(n_1)

(B4, (1) +6 oy e (R)TVH4G (o (£)D.(F)
0 0

et G gy (BT 4t Gy (F), (28)
0 0 0

G hMI=G, ¢ ¢ () +G, ¢ ¢ () (R)+.tC ¢ (1)
(004G, ¢ 2(1)6,+6, ¢ ¢ (L) +G, ¢ ¢ (R (R)+.4C, ¢ (s
(YRR 4G, ¢ (L) +(R).R1+G, ¢ ¢ (1) (L +C ¢ ¢ (L)
(AR 4Gy (B) (AR 4G, ¢ [E(6)+ £+
#G,fwg (A48, g (YA G oo (F)
()% 4 Gfo 0 TOF).(F) D +(£)(f,)" "]+ Gfo f: f,.(f,)+ GfO f, f,.(f,)
+..+Gf0f0(n_1).fz.(fl)(“‘l’ +Gy .1y +Gf0’ fo1to.(fl)'(fl)z +Gf0’ f fo.( f)%(f,)+...+
G, ¢ oo (V)™ G, ¢ 1)+ ().R1+G, ¢ ¢ (1)26,+G ¢
(8, (020248, ¢ 2(0)(E) 4Gy g
()48 gy g (RN #b Gy o (1)
#6000 2R )P 4G (G046 oy (6) (L)

+G oy o )0 (F)Y +G o £, (29)

oy

Step (4): Substituting Eq. (32)-(35) in Eqg. (25) we will get the required analytical-approximate solution
for the Eq. (20).
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4. The Application of the New Analytical Technique To Heat Transfer Analysis Unsteady Squeezing
Flow of a Casson Fluid Between Parallel Plates

The new algorithm described in the previous section can be used as a powerful solver to the

nonlinear differential Eq. (12)-(14) and to find new analytical-approximate solution. From Step (1)
we have

f(7)=1(0)+ (0 + 1”'(0)77 + f’”(O)n +1" b /5 (ot ""(7) +31'(n)

+ 1) £ () = £ ) ()], o

6(17) = 6(0)+6'(0)p + L, [P.S(f ()" (17) — 16’ (1)) + P,E, (1+ %)

((F"(m)* +45°(f'(n*))], (30)
rewrite the Eq. (36) as follows

f(n)= A1+A277+A3 +A Z + LG, [f ()],

0(7) =B, +B+L 162[9(77)], (31)
where,

A=1(0), A=1(0), A=170), A=1"(0),
B, =0(0), B,=60),

G[f]= ﬂsﬂ (7t () +38'(7) + £'(n) £ (1) = £ (1) £ (7)),
G,[0]= R.S(f (m0' (1) —n0'(m)+ PE(1+ E)((f "(m)* +45°(1'(n%)),

and 'O =[[[[ @’ ©O=[]@n" (32)

From the boundary conditions Eq. ( 37) becomes

f(1)= An+ A, ’; + LG ()],
() = B, + LG, [A(n)], (33)

2

From Step (2) we have f, =1+ As% f, =G [f,)], f,=LG,[f,()]....
fo =B, 6 =LG6,m] 6,=L5G[6,)].. (34)

and the analytical-approximate solutions are

f)=f,+f,+f,+f,+..,

227



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences
Volume 64, Issue 2 (2019) 219-243

0n)=6,+6,+6,+6;,+.., (35)

From Step (3) yields

G,[f(n]=

ﬂsﬂ (7t "' () +31' () + £'(n) £ (1) = £ (1) £ (7)),

G,[0(m]=P.S(f(m&'(n)—n6'(m)+PF Ec(1+%)((f "(m)* +45°(1'()°), (36)

G;[f(n)]—dGl”n(”)]- b+ Gy (£) 4 Gy (1) + Gy,

- dG o
G,[007)]= % =Gyy.f, +Gyp(£,) 4 Gy 1) 4Gy (6, (37)

G, [f(n)]= M Glﬁ.(f,?)z+2.G1ﬁ'.fn(f,?)'+2.Glﬁ,,.f,7(f,7)”

+2G, 4., ( fn)”' +Gyp(£,)+2G . (F,)(f,) +2G . (£,)(£)"
+Gypp f,,)”z +2G; g (£,)(£,)" + Gy ( fn)wz +Gy;. £, + Gy (1)
+Glf”'( fr]i])”—'_Glf (qu)”,i

G10= S 6, (1, 2,08, 421, (1)

+2Gy001,(6,) +Gyyyn(£,)2 4280 (£, (F,)"+ 26,1 (1,6,
Gy (£)) 242G, 1(£,)'(6,) + G (6,)? 4 Gy £, + Gy (£,
+Gypo () +Gyy (6, (38)

G If (7)]= M Gugy (F,)° +3 G0 (1, )2.(F, Y +3 Gy (1, )2(F, )"

+3G, 0 (f,) .(fﬂ)'"+3-Gm~(f,,>(f,,)‘~’-+4-Glﬁf~-(f,,).(f,])'.(f,,)"

F 4G, ()6 )(F )" 443Gy (£ )(F )2 +4Gy o (£,).(F, )" (F17)”
+3G; () f,;)mz +Gyr-(F,)° +3 Gy () °(F,) + Gy (£,) ()"
#4600 ()5 (£ +3Gppn(F)(F) 2+ 4G, g (£ ) .(F) (£,
+8G, o (£,) 8 (E)) 4G (Y (F, ) F )43 () F,) 2
+3G, (£, )" (5, +3G, g (£, )"(F,)" +Gypn(F, )",

G100 = % = Gy (£,)° +3 G, (£,)2.(f,) 3G, (£, ()"
+3G 4, (£,)2.(0,) +3G (£, )(1, )+ 4Gy (F,).(F, ) (1)

+4G 1y (,).(1,)-(0,Y ++3G o (F,)(F,)2 + 4G 1y (£,)-(T, )0,

+3G, (f, Y(F,)+3G (£, )(f ) +3G, ;0 (f, Y(F,) +3G,,(f, )(F )"
+Gy(f, Y +3G, 10 (F, )" (F,)+3G, 14 (F, ) (F,) +3G,p(F, )'(£)"

nn
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+3'GZf"H"( qu)”'(gq), + GZf”'( f?]?]?])” +3'G29'f '(91717),'( fq) +3'GZHT"(97]77)"( f;])’
+ S'GZBT ”'(9777]),'( fq)” + 3'620'9' '(6 ),'(977), + GZH' '(9171]17),’ (39)

nm

We note that the derivatives of f with respect to 7 that are given in (31) can be computed by Eq.
(42)-(45) as

G/[f,(n)]= %(w. oy (1) + 3.5 (1) + Ty (7). For (07) = To01)- £ (1),
G, L6 (1)]1= P.S (o (10 (1)~ 16y (1)) + PE, (1+ %)«fon () +45% (£ (1)?), (40)

GuLfy ()] =Gy, F,+ Gy (1) +Gyy (£)"+Gy (£)",
G [0(M)]= Gy, £y 4Gy (£) 4Gy (£ 4Gy (6 (41)

GulfoMI=G, ¢ (1)} +26, ¢ f(f)+2G ¢ H(1)'+2G ¢ f(f)"

2 i " ’ " "2
+6, ¢ ()?+26, ¢ (LY(E)'+2G ¢ (LY(E)"+G ¢ (f)*+2G
() (R)"+G, ¢ (£)?+G, .5, 4Gy (£ +G, (£)'+Gyy  (£)",

oo
G, [0,M1=GC,, ¢ (1)’ +2G, ¢ A(1)+2G, ¢ H(1)'+2G, 4 ()

2 ’ " ’ ’ "2
+G, ¢ (1)°426, ¢ (E)(1)'+2G, 4 (1)(B)+G, ¢ ()"+2G, »

(£)'(0)+G,, 5 (0)*+Gyy £,+Gy (£,) 4G,y (1) +Gyy (6))), (42)
0o’

GulfoI=G, ¢ ¢ (143G, ¢ ¢ (W(R)+36, ¢ ¢ ()°(f)"

3G, ¢ ¢ (BA(R)"+3G, ¢ ¢ (£)(1)*+4G, ¢ ¢ (£).(R)(F)"

+4G, ¢ ¢ (E)(R)(R)"+43G, ¢ ¢ (E)(R)?+4G ¢ ¢ (f)(L)"(1D)"
+6, ¢ ¢ (0)°43G, ¢ ¢ ()2(R)"+3G, ¢ ¢ ()*(L)'+G, ¢ ¢ (1)
+3G, ¢ 643G, ¢ L(E)+3G, ¢ H(L)'+3G, ¢ F(1)"+Gy .1,
+3G, ¢ (L)()+3G, ¢ (LY(R)+3G, ¢ (LY(E)'+3G, ¢ (L)()"
+Gyy, () +3G, ¢ (L)(f)+3G, ¢ (5)(H)+3G, ¢ (£)(1)"
3G, ¢ (B)(1)"+G, ()'+3G, ¢ (5)"(1)+3G, ¢ (£)"(t)
+3G, ¢ (RY"(E)'+3G, ¢ (B)"(R)"+Gy (£)"

G"[6,(M]=G,, ¢ ¢ (1)'+3G, ¢ ¢ (R)(E)+3G, ¢ ¢ (F)(L)"

+3G, ¢ 5 (6436, ¢ ¢ (1)(H)?+4G, ¢ ¢ (L)(L)(1)"
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+4G, ¢ o (R)(E)(6Y 443G, ¢ ¢ (T)E)*+4G, ¢ o (T)(L)"(6)
2 '3 2 " 2 ’

#3G, o ¢ (RO +G, ¢ ¢ (R)743G, ¢ ¢ (L)A1)'+G,, ¢ 4 (£)%(8)

' " ! "2 ! v !
4G, ¢ ¢ (R)A(0)'+3G,, ¢ ¢ (T)(1)7+4G,, ¢ 4 () (1) (6)
+3G, ¢ 56436,  L()+36, ¢ L()'+3G, 4 £(0)+G, 1
+3G, ¢+ (L)(£)+36, ¢ (L)(1)+3G, ¢ (LY(1)'+3G, , ()(H)"
+G, .(f;))'+3G (,)".(f)+3G (,)".(f) +3G (5,)".(F)”

o o fo o for o for
3G, ¢ (BY(R)" Gy (£)'+3G, ¢ (£)'(1)+3G, ¢ (BY.(f)
+3G,, ¢ (6)(1)'+3G, ¢ (6).(1)"+Cy (6. (43)
00" o

Now, we need to extract the first derivatives of G as follows

G, =- 2 fo(m), G f =G f =G f =0, G f =—ﬁ,
0 1+ o 1o oty g T BIRNG 1+ p
Gyt f, =Gt f, TGt f, TGt f, T Cur £, f, = Cugfyfy - Cug fo fy, T O
G, =ﬁ:(3+fo'(,7)),(; ¢ =G ¢ =G =0, G _ :ﬁ,
* 1+ p o T o Ty Ly Tom Yolor 1+
Gt 8, = Cu 1, TGt f, T Cu £ f, T G £y, Curg fy By - Cug £, O
6, =t 6 . =6 . =6, =06 , =
Yo 14 B 11y T 11y Ty 110 Fon I B
Gyt f, TGt 8, = Gt f, = Cu £ f, =G £ f, T G bty T Cur £y £y T O
G, _Pn_ B f,(n), G -G -G =0,G =_£,
Yor 94 B 1+p 11y fy T 11g T 11 Ty 1+ B
Gt f, = Cuigfy fy = Curgfy fy = Cutgfyfy ~ Catg oy~ Chigy oy~ O (44)

f =G to For =0, sz(ﬂo,

o 2fg

Gy, = RS6, (), GZfofo = =FRS,

21,

Gt f, = Cor i f, = Con £ f, T Cor £ty = Can £ fy T Co fyfy T Cag fofy, DO

— 2 1 ' — — — — 2 1
Guyy =B5°RE(+DI(.G,, ¢ =G, ¢ =G, o =0. G, { =8IPE(+2),
Gt f, = Cor oy~ Coig fufy = Car £ty = Con £, = Con8,6, = Carg £ f, = O
_ 1ien _ _ _ _ 1
Guyy =2PE(+ D), G, ¢ =G, ¢ =G, ¢ =0G, ¢ =2RE(l+ )
Gy f, = Cor £, f, = Cor £ f, T Cor £ f, TG £ f, T Ca,0,8, = Car £, f, = O
ng =RS(T ) -n), G oy To = P’S’Gzeo, for = Gzeo, fy = 0’6290,90' = Geo, f, o =0,
ooty = Coptyty = Coptrty = oty = oyt =9 (45)
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from Eq. (31) by using Eq. (46)-(49), we obtain

f, = A277+ A477 6, = B, (46)
1 L B \sp2,
—30(1 ,B) An° 2520(1 ﬁ) An’,
= VS A2 2_i i 2 2y 4
6, = 2R E (1+ ﬁ)c? A - RE+ ﬂ)(4A2A45 +A)n
1 1 2p2,.6
~P EC(1+E)5 An®, (47)

_ 1 p = 1 B 2i 2_i 2 9
fz_T( ﬁ)S(4A A4A2)77 3024(1 ﬂ)3(15A4 15A4A2)77

1
_ ( IB )2 SZAjnll
24948001+ 5

— 1 3 l 2 2_1 2 i 202y 4
= (GAESHY ﬁ)Pr5 3 P ES ﬂ)Pr5 n (48)

From Step (4) substituting Eq. (52)-(54) in Eq. (25), we get the analytical-approximate solution

F) = A+ A"+ (Lysaa +— 2 (Loyshi+

3o 1+ 7252014 3
B 4 1 (B yegatp2_ 1 po
ga0 5 S A AR o PP S A A A

1
( IB )2 2Aj7711+
24948001+ 3

— 1 c2p2 2 1 1 _ 2 p2
(1) = Bl+2PrEc(1+E)5 An +(EPrEc(1+E)( ARAGT=A)+

%ASECS(H %) P?5° —% AZE.S(1+ %) P25 )" + (49)

5. The Analysis of Convergence

Here, the analysis of convergence for the analytical-approximate solution (55) that was resulted from
the application of new power series of algorithm for solving the problem has been extensively
studied.

Definition 5.1: Suppose that H is Banach space, R is the real numbers and G[F, D] = (G,[F], G,[D])

is a nonlinear operators defined by G[F,D]:H? — R®. Then the sequence of the solutions
generated from a new analytical can be written as
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F.i=GIF] F,=>f, n=0123,.

k=0

Do:=G,ID,], D, =36, n=0123,.. n=01723,.

k=0

(50)

Definition 5.2: Suppose that G[F,D] satisfies Lipschitz condition such that for O },,y, <1,
71,7, € R, we have

| GIRI-GIF..] [<Oh| R -F. |,

(51)
” G,[D,]-G,[D,_] ”!72” D,-D, ”’
Now, we assume that G[F,, D,] = G(n) for simplify with y =y, +y,, 0} <1 yield,
| G()-G(n-1)] |Ey| (F,,D,)~(F, 4 D) | (52)

The sufficient condition for the convergent of the series of analytical-approximate solutions F,, D
is given in the following theorems.

Theorem 5.1 The series of the analytical-approximate solution {S, = (F,,D,)}, generated from new
algorithm converge if the following condition satisfied

| S,=S, |20, as m—oo, for 0}<1, (53)
Proof. From the above definition, the next equation can be written as
” Sn - Sm ” = ” (Fn’ Dn) _(Fm’ Dm) ”

| Q-2 |
|| (fO+L1id G[f(n)] PIRE SLMLAC0)

n® v dn®
- d‘k)G f, _ d(k’G 6,

_(f0+|_1é% g, +L kz_(‘; i [(k)(ﬂ)]) "

= | L-le[ka,Zp] L‘lG[ka,ZH] I (54)
k=0 k=0 k=0 k=0

L2 GI3 A $1-6I2 . 31 |

L_l||| G[ n-17 —l] G[ m-1? —1] ”
= 7/||(n1' nl) ( -1 ml) ”
= 7/” Sn—l_ m-1 ”’

since G[F, D] satisfies Lipschitz condition. Let n=m+1, then
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” I:m+1 - Fm ”7/1” I:m - I:m—l ”’

(55)

” Dm+l_Dm ”7/2” Dm_Dm—l ”7

hence,
” Fo = Foa ”71” Fos—Fnz ||---71m71|| F-FK ”' (56)
” D,-D,. ”72” Dyy—Dns ”7/;“71” D, - D, ”!

from Eq. (62) we get

| R-F & »| R-FK || D,-D; <[ D,-D, |,

| R-F & »]| R-F || D;-D, [Erz] D.-D, |,

| Fo~F | 71 R-F, 1] B.-D, <DV D,-D, | )

| Fos=Fo [ F=F ||| Dns=Dne [<727%| D= Dy |,
” Fo = Fos ”571"171” F-F ”” Dy, =Dy ”7?4” D, - Dy ”

By using triangle inequality, we find that

| Sa=Sn = [ Sa=Ssa=S1z—=Sna=Sn ||
O S0 =Sos [+] Sos=Suc]l +-t] Snea =S ||
O| (F..D)-(F,1.,D,y) |+] (F,1Dyt) = (F 2. Dyy) |
+ | (ot D) = (R By) |
Ol Fo=Fos [+] Do =Doy [+ [Fra=Foo] +] Doy
D, |+.-+[ Fua=Fy |+] Dpia=Dy |
O+ 4+ | B-F [+ +7 2+ 4] Hi—Hy |
O™ +7" +..+7"1 R-F |+] D.-Dy, |).
O™+ +...+7"1(| (F.D)—(F,Dy) |,
= M 4+ S-S |
Dljiy” S =S ”
as M — o0, we have || S,-S, ||—>0, then S, is a Cauchy sequence in Banach space H®.

Theorem 5.2 Let G =(G,,G,) be a nonlinear operator satisfies Lipschitz condition from H? to H?.
If the series of analytical-approximate solution {S.} converges, then it is converged to the solution

of the problem (12)-(14).
Proof.
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| GIS,1-GIS] ||
= | (GIR1G,[H,]) - (G[F] G,[H,)) |
= | GIR]-(GIF]G,[H,]-G,[H,] |
| GIR1-(GIR] |+] G,[H,1-G,[H.] |
O<nl F=F [+7] H.-H, |
(ri+7,)|| (R, D)= (F,Dy) |
O<7] S,-S, |

Therefore, from the Banach fixed-point theorem, there is a unique solution of the problem (12)-(14).
we will prove that {S }; convergesto S.

G[S] = G[Zsk] = IimnaooG[ZSk] = IimneooG[Sn] = “mnawsnﬂ = S’
k=0 k=0

In practice, the theorems 5.1. and 5.2 suggest to compute the value of y,,7,, as described in the
following definition

Definition 5.3 For k =1,2,3,...

. ” Fea—F ”:” fi ” ” f, ||;t0,
n= I R-R| 1]
0 | 7 |=o0
” D, — Dy ” :” Ot ” ” o) ||;t0
BEVID-D | e " | (58)
0, | & =0,

Now, the definition (5.3) can be applied to heat transfer analysis unsteady squeezing flow of a Casson
fluid between parallel plates to find convergence, then to obtain for examples as below: if we choose
then obtain S=0.5,P. =E,=0.1,P. =0.1,0=0.2,5=0.3

| F,-F |,& | R-F |,=»=0.00831259066<1,
| F-F, |,B )| F-F, |,= »*=0.0000291%86591<1,
| F.-F L& #*| F-F |,=7°=0.000000132994049<1,

| D,-D, |, 7| D,-D, |,= »=0.00323654163<1,
| D,—-D, |,d<y*| D,-D, |,= »*=0.0000310879718<1,
| D,-D, |,0<#%| D,-D, |,= 7°=0.000000803778328<1,
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| R,-FR | & 7| R-F |, =7=0.0082992D881<1,
| F=F, | & 7% F-F, |, = 7=00000271%44457<1,
| F,-F |.& #°| R-F |, = »*=0.00008511439187<1,

| D,-D,|,,& 7| D,-D, |,, = »=0.00003355398388<1,
| D,-D, |, <Or* D,~D, |, = 7*=0.0000322708681<1,
| D,-D, |,& »°| D,-D, |, = »°=0.000000176586797<1,

Also, if we get S=-0.5,P. =E =0.1,P. =0.1,6=0.2,5=0.3
| F,-F |,E 7] F-F |,=7=000819738426<1,

| F-F, |,0<7% R-F |,= »*=0.0000281481756<1,

| F,-F, |,& #°] F-F, |,= »°=0.000000192452234<1,

| D,—D, |,& 7| D,-D, |,= 7 =0.00293488481<1,
| D3-D, |,& #°| D,-D, |,= »*=0.0000310491667<1,
| D,-D; [,[& 7°| D,-D, |,= *=0.0000806B25784<1,

| /-F |, | R-F |, =»=0.00818142469<1,
| F,=F, | & 7R -F, | = 7%=0.0000256647652<1,
| F-F |.E #°| F-F |, = »®=0.0000013@147437<1,

| D,-D, |, & »| D,-D, |, = »=0.00003018247<1,
| D;-D, |.,& »* D,-D, |, = »*=0.0000319B817638<1,
| D,-D, | & # D,-D, |, = »°=0.0000829B52364<1,

6. Results and Discussion

The solution of physical problem is effectively obtained in the section(4) using a new analytical
technique. This part is dedicated to explore the effects of various values of non-dimensional physical
parameters under dimensionless velocity and dimensionless temperature. Especially, this section
highlights the behavior of squeeze number S, Casson fluid parameter g , Prandtl number P., Eckert
number E_ and & on the curves of axial velocity f (77), radial velocity f'(r7) and temperature profile
A(n) . For this purpose, graphics in Figure 2 to Figure 7 are plotted with disussion. Figure 2 depicts

the influence of increasing values for squeeze number S on axial velocity, radial velocity and
temperature profile. This Figure shows no significant change on f (7) by increasing squeeze number

S. f'(n) is decreasing with the increase of number S until it touches the neighbourhood point of
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n[=10.4 and after this, it becomes reverse for increasing values of the squeeze number S. This
means, there is an increase in the curve of f’(n) when 0.4<#[<]1. Furthermore, the decrease is

obvious in temperature profile for increasing values of squeeze number S . The Temperature profile
reaches to high level when 7 =0 with a thickness boundary layer while the opposite situation
happens when 7 =1, that is thiner boundary layer. On the other hand, the radial velocity increases
near the power plate and enhances near the upper plate. It can also be obesraved that for fixed
values of physical parameters the axial velocity increases while the radial velocity monotonically and
temperature profile decrease. The behaviors of velocity and temperature profiles for two different
cases with increasing values of Casson fluid parameter f. Figure 3 shows increasing Casson fluid
parameter that leads to increase axial velocity f (17) and the behavior of radial velocity f'(;7) near
the upper plat is increasing and is slowed down in 0.4<py[<1l. This figure signifies that the
temperture profile is gradually decreasing when the values of the Casson fluid parameter g
increased in the case the plates are moving apart coming together(S <0) . As for the second case,
where the plates are moving apart S >0 are shown in Figure 4 as increasing Casson fluid parameter
lead to decrease axial velocity f (7). This figure reveals that the radial velocity f'(r) decreased
when the Casson fluid parameter £ is increased, this happen when 7[<]0.4 and occur opposite
situation when 0.4 < y[<]1 . Moreover, the decreasing behavior of the temperature is achieved by
increasing Casson fluid parameter £ . The effect of the Prandtl number P,, Eckert number E; and
O on the non-dimensionl temparaure profile is displayed in Figure 5 to Figure 7. It is evident from
the figures that the temparure profile is gradually increasing when the Prandtl number P,, Eckert
number E; and O are increased.

Physically the squeeze number S describes the movement of the plates (S > 0 corresponds to the
plates moving apart, while S < 0 corresponds to the plates moving together). It can be easily seen
that the value of velocity f(n) near the lower plate surface decreases regularly with the increase in
the value of §, and as we move away from lower plate surface, this value increases . In addition
increasing value of squeeze number S decreases the temperature (n). By studying the effects of the
squeeze, Prandtl and Eckert numbers on the temperature (). We can note that the decrease in
temperature values is observed with the increasing of S values, since any increase in S can be related
to the increase in the distance between the plates, the increase in the plate movement and the
decrease in the kinematic viscosity. The values of Pr are lesser than one that characterizes liquid
materials with high thermal diffusion and low viscosity while the values of Pr are greater than one
that represents high viscosity liquids, so it is observed that the increase in the values of Pr leads to
increase temperature value. Eckert number Ec expresses the relationship between a flow kinetic
energy and the thermal boundary layer thickness, so we note that the increase in E. leads to an
increase in (n). Eckert number Ec is the coefficient of dissipation of viscosity and joule heat and thus
an increase in heat dissipation is due to the friction force and joule heating process. The dispersed
heat increases as a result of friction and the joule heating is added to the fluid and hence its
temperature. To check the convergence of the solution obtained by new analytical techinge, Table
1 shows it can be observed that only 3 iterations of the analytical solution are enough for a
convergent solution in situation S > 0. In Table 2 that can be made 4 iterations only of the analytical
solution when S <0. Table 3 to Table 8 show a comparison of all solutions are shown. Table 3 to
Table 6 compare the resulting solutions with solutions for HAM [7] and numerical solutions. These
tables observed that the solution agrees well with each other. Table 7 and Table 8 shows compare
the resulting solutions with numerical solutions. These tables observed that the solution agree well
with each other. Numerical values for Nusselt number are presented in Table 9. Observations show
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that magnitude of Nusselt is decreasing function for increasing values of S and . On the other
hand, the magnitude of Nusselt number is observed as an increasing function for increasing values

of P,E, and &.

084

0.64

7

o= o

AR

ww;mn

Fig.2. f(n), f'(n),6(n) forthevalue Pr = Ec = 0.5, =0.1,6 = 0.1 when the Squeezing

number S is varied

'.. ..... =05

8(n) Y E:1 ’

29 5 —p=13
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Fig.3. f(n), f'(n),0(n) forthevalue Pr =Ec=0.5,06 =0.1,S = -2 when £ is varied

0 02 04 06 08 1
] n n

Fig. 4. f(n), f'(n),6(n) for the value Pr=Ec=0.5,6=0.1,S=1 when S is

varied
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(b)
Fig. 5. The behavior of the temperature profile () when E, =0.3,4=0.1,6 =0.1 and

(a)S<0, (b)S>0

(b)
Fig. 6. The behavior of the temperature profile 6(r7) when P, =0.4,5=0.1,0=0.1
and (a)S <0, (b)S>0

..... 5=0.1
8=0.2
— 03
—— 04
ED D.IE DI4 Dfﬁ DTE i 0 D.‘E DI4 Dfﬁ DTE f
n n
(a) (b)

Fig. 7. The behavior of the temperature profile &(77) when P. =0.3,E, =0.3,4=0.1
and (a)S >0, (b)S<0
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Table 1

$S=05P =E ,=01,P =01,6=0.2,5=0.3

Approximation A2 A4 B1

1term 1.4897020 -2.8741555 1.0355278
2 term 1.4895422 -2.8727139 1.0338137
3 term 1.4895418 -2.8727104 1.0372680
4 term 1.4895418 -2.8727104 1.0372680
5term 1.4895418 -2.8727104 1.0372680
6 term 1.4895418 -2.8727104 1.0372680
7 term 1.4895418 -2.8727104 1.0372680
8term 1.4895418 -2.8727104 1.0372680

Table 2

S=-05P =E, =0.1,P =0.1,6=02,4=03

Approximation

A

A4

B,

1term
2 term
3 term
4 term
5term
6 term
7 term

1.511163104
1.510982550
1.510982924
1.510982932
1.510982932
1.510982932
1.510982932

3.136660164
3.134993427
3.134996751
3.134996808
3.134996808
3.134996808
3.134996808

1.041274725
1.043239377
1.039333714
1.039336384
1.039336384
1.039336384
1.039336384

Table 3

Comparison between new scheme and (R—K4)

scheme for the analytical solutions f'(17) when
S=1,P.=E,=05,=05,6=0.2

7] Present results HAM [7] (R-K4)
0.0 1.471094 1.471088 1.471094
0.1 1.457822 1.457816 1.457822
0.2 1.417831 1.417826 1.417831
0.3 1.350591 1.358507 1.350591
0.4 1.255222 1.255219 1.255222
0.5 1.130495 1.130494 1.130495
0.6 0.974839 0.974841 0.974839
0.7 0.786347 0.786351 0.786347
0.8 0.562787 0.562793 0.562787
0.9 0.301615 0.301621 0.301615
1.0 1.000000 1.000000 1.000000
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Table 4
Comparison between new scheme and (R —K4) scheme for the
analytical solutions when
S=1,P=E . =05,=05,6=0.2
n Present results HAM [7] (R-K4)
0.0 1.611826 1.608405 1.611826
0.1 1.610488 1.607067 1.610488
0.2 1.605995 1.602574 1.605995
0.3 1.596884 1.593464 1.596884
0.4 1.580624 1.577207 1.580624
0.5 1.553467 1.550065 1.553467
0.6 1.510220 1.506874 1.510220
0.7 1.443918 1.440742 1.443918
0.8 1.345375 1.342629 1.345375
0.9 1.202583 1.200787 1.202583
1.0 0.000000 0.000000 0.000000
Table 5
Comparison between new scheme and (R —K4) scheme for the
analytical solutions f'(n) when
S=-1,P=E,=05,=05,6=0.2
n Present results HAM [7] (R-K4)
0.0 1.533303 1.533312 1.533303
0.1 1.516216 1.516264 1.516216
0.2 1.464734 1.465347 1.464734
0.3 1.378172 1.381234 1.378172
0.4 1.255405 1.265029 1.255405
0.5 1.118232 1.118232 1.118232
0.6 0.942707 0.942704 0.942707
0.7 0.740622 0.740614 0.740622
0.8 0.514391 0.514381 0.514391
0.9 0.266614 0.266604 0.266614
1.0 0.000000 0.000000 0.000000
Table 6
Comparison between new scheme and (R —K4) scheme for the
analytical solutions when
S=-1,P=E,=05,=05,6=0.2
n Presentresults  HAM [7] (R-K4)
0.0 1.737069 1.729214 1.737069
0.1 1.737069 1.727735 1.737069
0.2 1.731825 1.722486 1.731825
0.3 1.720341 1.711061 1.720340
0.4 1.698339 1.689567 1.698339
0.5 1.662089 1.652786 1.662089
0.6 1.603619 1.594420 1.603619
0.7 1.516245 1.507393 1.516245
0.8 1.392097 1.384217 1.392096
0.9 1.222867 1.217417 1.222867
1.0 1.000000 1.000000 1.000000
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Table 7

Comparison between new scheme and (R—K4) scheme for the analytical

solutions f (1), f'(n), €(r7) when S=0.5,P. =E, =0.1,=0.3,6=0.2

m o f(n) (R-K4) f'(n) (R-K4) 6() (R-K4)
0.00 0.000000 0.000000 1.489542 1.489542 1.037263 1.037263
0.05 0.074417 0.074417 1.485951 1.485951 1.037243 1.037243
0.10 0.148475 0.148475 1.475173 1.475173 1.037183 1.037183
0.15 0.221815 0.221815 1.457196 1.457196 1.037076 1.037076
0.20 0.294074 0.294074 1.431999 1.431999 1.036911 1.036911
0.25 0.364894 0.364894 1.399554 1.399554 1.036675 1.036675
0.30 0.433909 0.433909 1.359824 1.359824 1.036348 1.036348
0.35 0.500754 0.500754 1.312763 1.312763 1.035907 1.035907
0.40 0.565062 0.565062 1.258319 1.258319 1.035324 1.035324
0.45 0.626462 0.626462 1.196431 1.196431 1.034567 1.034567
0.50 0.684579 0.684579 1.127032 1.127032 1.033599 1.033599
0.55 0.739038 0.739038 1.050044 1.050044 1.032377 1.032377
0.60 0.789456 0.789456 0.965388 0.965388 1.030852 1.030852
0.65 0.835448 0.835448 0.872973 0.872973 1.028972 1.028972
0.70 0.876623 0.876623 0.772702 0.772702 1.026677 1.026677
0.75 0.912585 0.912585 0.664474 0.664474 1.023900 1.023900
0.80 0.942936 0.942936 0.548180 0.548180 1.020570 1.020570
0.85 0.967267 0.967267 0.423707 0.423707 1.016606 1.016606
0.90 0.985168 0.985168 0.290936 0.290936 1.011922 1.011922
0.95 0.996221 0.996220 0.149743 0.149743 1.006421 1.006421
1.00 1.000000 1.000000 0.000000 0.000000 1.000000 1.000000

Table 8

Comparison between new scheme and (R—K4) scheme for the analytical

solutions f(7), f'(n), 6(n7) when S=-05,P. =E_ =0.1,=0.3,0=0.2

(R )) (R-K4) f'(n) (R-K4) 6@  (R-K4)
0.00 0.000000 0.000000 1.510983 1.510983 1.039336 1.039336
0.05 0.075484 0.075484 0.149743 0.149743 1.006421 1.006421
0.10 0.150575 0.150575 1.495313 1.495313 1.039253 1.039253
0.15 0.224885 0.224885 1.475744 1.475744 1.039142 1.039142
0.20  0.298020 0.298020 1.448379 1.448379 1.038967 1.038967
0.25 0.369593 0.369593 1.413249 1.413249 1.038713 1.038713
0.30 0.439216 0.439216 1.370394 1.370394 1.038359 1.038359
0.35 0.506505 0.506505 1.319862 1.319862 1.037877 1.037877
0.40 0.571075 0.571075 1.261710 1.261710 1.037236 1.037236
0.45 0.632550 0.632550 1.196004 1.196004 1.036401 1.036401
0.50 0.690551 0.690551 1.122816 1.122816 1.035331 1.035331
0.55 0.744708 0.744708 1.042226 1.042226 1.033981 1.033981
0.60 0.794652 0.794652 0.954318 0.954318 1.032305 1.032304
0.65 0.840011 0.840011 0.859189 0.859189 1.030247 1.030247
0.70 0.880452 0.880452 0.756936 0.756936 0.027753 0.027753
0.75 0.915596 0.915596 0.647663 0.647663 1.024761 1.024761
0.80 0.945103 0.945103 0.531482 0.531482 1.021209 1.021209
0.85 0.968631 0.968631 0.408506 0.408506 1.017029 1.017029
0.90 0.985842 0.985842 0.278852 0.278852 1.012150 1.012150
0.95 0.996407 0.996407 0.142643 0.142643 1.006499 1.006499
1.00 1.0000000 1.000000 0.000000 0.000000 1.000000 1.000000
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Table 9
Comparison between new scheme and HAMfor Numerical values for
Nusselt number 6'(1).

S p |:)r E, o Present results HAM[7]

-1.5 0.1 0.4 0.2 0.1 -2.748707 -2.735159
-0.5 0.1 0.4 0.2 0.1 -2.700024 -2.698735
0.5 0.1 0.4 0.2 0.1 -2.667891 -2.666799
1.5 0.1 0.4 0.2 0.1 -2.647043 -2.638843
0.5 0.3 0.4 0.2 0.1 -1.037015 -1.050966
0.5 0.5 0.4 0.2 0.1 -0.730584 -0.727899
0.5 0.1 0.1 0.2 0.1 -0.669832 -0.669604
0.5 0.1 0.3 0.2 0.1 -2.003768 -2.002994
0.5 0.1 0.5 0.2 0.1 -3.330131 -3.328686
0.5 0.1 0.4 0.1 0.1 -1.333945 -1.333399
0.5 0.1 0.4 0.2 0.1 -2.667891 -2.666799
0.5 0.1 0.4 0.3 0.1 -4.001836 -4.000199
0.5 0.1 0.4 0.2 0.2 -2.792068 -2.790951
0.5 0.1 0.4 0.2 0.3 -2.999028 -2.997870

7. Conclusion

In this paper, Casson fluid, i.e., heat transfer analysis for the squeezing flow of a non-Newtonian
fluid between parallel circular plates is presented. New analytical technique to obtain analytical
approximate solution of the physics problem is discussed . The solution obtained by new analytical
technique is an infinite power series for appropriate initial approximation. The construction of this
technique has a good convergent series and the convergence of the results is explicitly shown. The
analysis of the converge confirms that the new analytical technique is an efficient technique as
compared with Range- Kutta algorithm with help Shooting algorithm. Graphical results and tables
were presented to investigate the influence of physical parameters on the velocity and temperature
distributions. Important results illustrating the behavior of the velocity and temperature
distributions curves on the physical parameters obtained from the drawings are listed below

i.  The velocity distribution increases with the increase of S while the temperature distribution
decreases with the increase of S.

ii.  The velocity distribution increases with the increase of Casson fluid number £ and the
temperature distribution decreases with the increase of Casson fluid number .

iii.  The temperature distribution increases with the increase of Prandtl number P, and Eckert

number E_.

iv.  Results obtained by new analytical technique are in excellent agreement with numerical
solution obtained.
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