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In this paper, the effect of physical parameters on the velocity and temperature 
distributions for heat transfer of unsteady two-dimensional squeezing flow of a Casson 
fluid between parallel circular plates is studied. Thrive similarity transforms is used to 
reduce the equations of problem into highly nonlinear ordinary differential equations. 
The resulting equations are solved by a new analytical technique and obtained new 
analytical approximate solution. This new analytical technique essentially depends on 

the coefficients of powers series that result from integration nthorder of a differential 

equation. Fourth order Runge-Kutta method is also using to obtain numerical solution. 
The influence of involved physical parameters on the velocity and temperature 
distributions is discussed with the help of tables and graphics. Also, as novel idea in 
this work, some theorems to prove the convergence of a new analytical technique 
theoretically, and the verifications of these theorems computationally are introduced. 
The results of new analytical approximate technique are verified an excellent 
agreement by comparing it with Runge-Kutta method and homotopy perturbation 
method (HPM). 
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1. Introduction 
  

Heat transfer occurs in many physical situation. Moving objects are heated not only because of 
some external sources but their movement against other surfaces may also produce hypothermia of 
great importance. Mechanical systems consisting of fast moving pistons or parts can be sustained by 
proper understanding of heat transfer occurring in these systems. For proper operation of these 
machines lubricants are used to reduce friction between the parts. Rheology is a branch of physics in 
which we study how material is distorted or flowing response to applied forces or pressures. The 
properties of the substances that control the specific way in which these deformations or flow 
behaviors  are called rheological requirements. The rheological properties of these lubricants under 
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the thermal conditions for assembling highly efficient mechanical heat transfer analysis are very 
important. The squeezing flow between circular plates moves orthogonal in many practical 
situations. Special applications have in polymer processing, modeling of synthetics transportation 
inside living bodies, hydro-mechanical machinery and compression injection processes. Many 
researches have considered these flows and contributed to  their effort to make  these typesof flow 
better. Stefan's [1] pioneering efforts have opened new doors for researchers, and many studies have 
been carried out following him. As an example, Homotopy perturbation solution for two dimensional 
MHD squeezing flow between parallel plates has been determined by Siddiqui et al., [2]. Domairry 
and Aziz [3] investigated the same problem for the flow between parallel disks. Jafari et al., [4] 
studied analytically the heat and mass transfer in a viscous fluid which squeeze between parallel 
plates by using homotopy perturbation method. Syad et al., [5] proposed and applied for semi-
analytic solution of heat transfer analysis for the squeezing flow of a Casson fluid between parallel 
circular plates by using differential transform method. Mustafa et al., [6] tested heat and mass 
transfer for squeezing flow between parallel plates using homotopy analysis method (HAM). Khan et 
al., [7] showed that heat transfer analysis for unsteady squeezing flow of a Casson fluid between 
parallel plates by using homotopy perturbation method (HPM). Rashidi et al., [8] used a homotopy 
simulation of nanofluid dynamics from a nonlinearly stretching isothermal permeable sheet with 
transpiration. The homotopy analysis of transient magneto-bio-fluid dynamics of micropolar squeeze 
-film in a porous medium was studied by Anwar et al., [9]. Rashidi and Erfani [10] an analytical method 
for solving steady MHD convective and slip flow due to a rotating disk with viscous dissipation and 
ohmic heating. Recently, Al-saif and Harfash [11] used similarity transformation to transform the 
problem of unsteady squeezing flow between parallel plates into ordinary differential equations and 
then solved it to obtain analytical approximate solutions by perturbation-iteration algorithm. All 
above contributions for authors focus on analytical approximate methods. These methods are 
alternative to numerical method and are useful for finding analytical approximate solutions of highly 
non-linear differential equations. This encouraged us to adopted the new analytical method that is 
proposed in [12, 13] to solve the squeezing flow between two parallel plats and give good results 
with less computational workload compared with other methods. Moreover, to the best of our 
simple knowledge, a comparative study on heat transfer unsteady two-dimensional squeezing flow 
of a Casson fluid between parallel circular plates using a new analytical technique has not been 
implemented in literature.  Therefore,  in this paper, a comparative study and analytical 
investigations are presented using new proposed technique that is to consider modified  integral 
method and presented in our previous works [12, 13],  depending on its structure on power series 
coefficients that are resulting from integration processes. The new analytical technique has been 
successfully applied to find analytical approximate solution. Also, the effect of physical parameters 
on the velocity and temperature distributions for heat transfer of unsteady two-dimensional 
squeezing flow of a Casson fluid between parallel circular plates is discussed and established. From 
current work, one can see that the obtained analytical approximate solution shows excellent 
compatibility with numerical solution obtained by Runge-Kutta fourth order and other methods in 
literatures. The organization of this paper is as follows: The governing equations are derived in 
section (2). Details of derivation of the new analytical technique have been written as steps in the 
section(3). The performance of the new analytical technique for the squeezing flow is applied in 
section (4). In section (5)  the convergence analysis is presented. Results and discussions are given in 
section (6). Finally, the conclusions are indicated in section (7). 
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2. Mathematical Formulation 
 

The governing equations for the heat transfer in an  the unsteady two-dimensioned  
incompressible flow of a Casson fluid between two parallel plates can be expressed : 
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Boundary conditions for the flow problem are  
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In the above equation û  and v̂  are the velocity components in x̂  and ŷ  -direction respectively, p̂  

is the pressure, T  is the temperature,   is the kinematic viscosity of the fluid,   is density of the 

fluid, pC  is the specific heat and k  is thermal conductivity of the fluid and 
y

B
p




2
=  is the Casson 

fluid parameter.  Where  B  is  the dynamic viscosity of the non-Newtonian fluid, yp  is yield  a stress 

of fluid and   is the product of  the component of deformation rate with itself , i-e. ijijee= , where 

eij  is the ( i, j) the component of the deformation rate. Rheological equation of Casson fluid is defined 

as under [14-17].  
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The effects of viscosity dissipation are maintained for the study of heat generation due to the 

friction caused by shear flow. The viscosity of the fluid is taken as constant, and it does not depend 

on temperature. Distance )(=)(1= 1/2 thtly    apart, where l  is the initial position (at 0=t ). 

Further, 0>  corresponds to squeezing motion of both plats until they touch each other at 


1
=t , 
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for 0<  the plates leave each other and dilate. The flow geometry and the coordinate system are 
shown in Figure 1. 
  

 
Fig. 1. Schematic diagram for the flow problem 

 
We can simplify this system of equation by eliminating pressure terms from Eq. (2)-(4). After cross 
differentiation and introducing vorticity  , we get  
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where,  
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By using similarty transformation [18,19]  
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Substituting Eq. (8)-(11) in Eq. (2) and Eq. (3) , we obtain a nonlinear ordinary differential equations 
for Casson fluid flow as  
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The boundary conditions of Eq. (4) are reduced to 
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 where S  denotes the non-dimensioned squeeze number. 
rP  is Prandtl number, cE  is Eckert number 
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is the dimensionless length. Which are defined as 
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It should be noted  that squeezing number S  describes the movement of the plates 0>S  
corresponding to the plates moving apart, while 0<S  corresponds to collapsing movement of the 

plates. Also 0=cE  corresponds to the case when viscous dissipation effects are neglected.  Physical 

quantities of interest are skin friction coefficient and Nusselt number defined as  
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3. The Basic Steps of The New Analytical Technique 
 

This section describes how to obtain a new analytical technique to calculate the coefficients of 
the power series solution resulting from solving nonlinear ordinary differential equations resulting in 
using transforms (8)-(11) to find analytical-approximate solution.These coefficients are important 
bases to construct the solution formula, therefore they can be computed recursively by 
differentiation ways. To illustrate the computation of these coefficients and the derivation of the new 
analytical technique, we summarized the  new outlook detailed  in the following steps. 

 
Step (1): Consider the non-linear  ordinary differential equation as follows. 
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Step (2): Assume that  
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rewriting the Eq. (23) 
 

...,)]([)]([)]([)]([)]([=)]([ 00000   fGfGfGfGfGfG  (18) 

 
substituting Eq. (24) in Eq. (21), we obtain  
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Step (3): We focus on computing the derivatives of G  with respect to   which is the crucial part of 

the proposed method. Let start calculating )]([)],([)],([  fGfGfG  , )],....([ fG    
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We see that the calculations become more complicated in the second and third derivatives 

because of the numerous calculations. Consequently, the systematic structure on calculation is 
extremely important. Fortunately, due to the assumption that the operator G  and the solution f  

are analytic functions, then the mixed derivatives are equivalent. We note that the  function 
derivatives of f  unknown, so we suggest the following hypothesis  
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Therefore, Eq. (27)-(30) are evaluated by  
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Step (4): Substituting Eq. (32)-(35) in Eq. (25)  we will get the required analytical-approximate solution 
for the Eq. (20). 
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4. The Application of the New Analytical Technique To Heat Transfer Analysis Unsteady Squeezing 
Flow of a Casson Fluid Between Parallel Plates 

 
The new algorithm described in the previous section can be used as a powerful solver to the 

nonlinear differential Eq. (12)-(14) and to find new  analytical-approximate solution. From Step (1) 
we have 
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rewrite the Eq. (36) as follows  
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From the boundary conditions Eq. ( 37) becomes  
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and the analytical-approximate solutions are  
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Now, we need to extract the first derivatives of G as follows 
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from Eq. (31) by using Eq. (46)-(49), we obtain  
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From Step (4) substituting Eq. (52)-(54) in Eq. (25), we get the analytical-approximate solution 
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5. The Analysis of Convergence  
 
Here, the analysis of convergence for the analytical-approximate solution (55) that was resulted from 
the application of new power series of  algorithm for solving the problem has been extensively 
studied.  
 

Definition 5.1: Suppose that H  is Banach space, R  is the real numbers and ])[],[(=],[ 21 DGFGDFG  

is a nonlinear operators defined by 22:],[ RHDFG  . Then the sequence of the solutions 

generated from a new analytical can be written as  
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Definition 5.2: Suppose that ],[ DFG  satisfies Lipschitz condition such that for 1<,�0 21  ,

R21, , we have  
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Now, we assume that )(=],[ nGDFG nn  for simplify with 21=   , 1<�0   yield,  
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The sufficient condition for the convergent of the series  of  analytical-approximate solutions nF , Dn 

is given in the following theorems. 
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 since ],[ DFG  satisfies Lipschitz condition. Let 1= mn , then  

 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 64, Issue 2 (2019) 219-243 

233 
 

,�

,�

121

111









mmmm

mmmm

DDDD

FFFF




  (55) 

 
 hence,  

,�...��

,�...��

01

1

22121

01

1

12111

DDDDDD

FFFFFF

m

mmmm

m

mmmm
















 (56) 

 
from Eq. (62) we get  
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By using triangle inequality, we find that  
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 as m , we have 0, mn SS  then nS  is a Cauchy sequence in Banach space 3H . 

 

Theorem 5.2 Let ),(= 21 GGG  be a nonlinear operator satisfies Lipschitz condition from 2H  to 2H . 

If the series of  analytical-approximate solution }{ nS  converges, then it is converged to the solution 

of the problem (12)-(14).  
Proof. 
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Therefore, from the Banach fixed-point theorem, there is a unique solution of the problem (12)-(14). 

we will prove that 

0}{ nS  converges to S .  
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In practice, the theorems 5.1. and 5.2 suggest to compute the value of ,, 21   as described in the 

following definition 
 
Definition 5.3  For 1,2,3,...=k   
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Now, the definition (5.3) can be applied to heat transfer analysis unsteady squeezing flow of a Casson 
fluid between parallel plates to find convergence, then to obtain for examples as below: if we choose 

then obtain 0.2=0.1,=0.1,==0.5,= rcr PEPS , 0.3=   
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Also, if we get 0.2=0.1,=0.1,==0.5,= rcr PEPS  , 0.3=   
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6. Results and Discussion 
 

The solution of  physical problem is  effectively obtained in the section(4) using a new analytical 
technique. This part is dedicated to explore the effects of various values of non-dimensional physical 
parameters under dimensionless velocity and dimensionless temperature. Especially,  this section 

highlights the behavior of  squeeze number S , Casson fluid parameter   , Prandtl number rP , Eckert 

number cE  and   on the curves of axial velocity )(f , radial velocity )(f   and temperature profile 

)( . For this purpose, graphics in  Figure 2 to Figure 7 are plotted with disussion.  Figure 2 depicts 

the influence of increasing values for squeeze number S  on axial velocity, radial velocity and 
temperature profile.  This Figure shows no significant change on )(f by increasing squeeze number 

S . )(f   is decreasing with the increase of  number S  until it touches the neighbourhood point of 
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0.4�  and after this, it becomes reverse for increasing values of the squeeze number S . This 

means, there is an increase in the curve of )(f   when 1�<0.4  . Furthermore, the decrease is 

obvious in temperature profile for increasing values of squeeze number S . The Temperature profile 
reaches to high level when 0=  with a thickness boundary layer while the opposite situation 

happens when 1= , that is thiner boundary layer. On the other hand, the radial velocity increases 

near the power plate and enhances near  the upper plate. It can also be obesraved that for fixed 
values of physical parameters the axial velocity increases while the radial velocity monotonically  and 
temperature profile  decrease. The behaviors of velocity and temperature profiles for two different 
cases with increasing values of Casson fluid parameter  . Figure 3 shows increasing Casson fluid 

parameter that leads to increase axial velocity )(f  and the behavior of  radial velocity )(f   near 

the upper plat is increasing and is slowed down  in 1�<0.4  . This figure signifies that the 

temperture profile is gradually decreasing when the values of the Casson fluid parameter    

increased in the case the plates are moving apart coming together( 0<S ) . As for the second  case,  
where the plates are moving apart  0>S  are shown  in Figure 4  as increasing Casson fluid parameter 
lead to decrease axial velocity )(f . This figure reveals that   the radial velocity )(f   decreased 

when the Casson fluid parameter   is increased,  this  happen when 0.4�  and  occur opposite 

situation when 1�<0.4   . Moreover, the decreasing behavior of the temperature is achieved by  

increasing Casson fluid parameter  . The effect of the Prandtl number rP , Eckert number cE  and 

  on  the non-dimensionl temparaure profile is displayed in Figure 5 to Figure 7. It is evident from 

the figures that the temparure profile is gradually increasing  when  the Prandtl number rP , Eckert 

number cE  and  are increased. 

Physically the squeeze number 𝑆 describes the movement of the plates (𝑆 > 0 corresponds to the 
plates moving apart, while 𝑆 < 0 corresponds to the plates moving together). It can be easily seen 
that the value of velocity 𝑓(𝜂) near the lower plate surface decreases regularly with the increase in 
the value of  𝑆, and as we move away from lower plate surface, this value increases . In addition 
increasing value of squeeze number 𝑆 decreases the temperature (𝜂). By studying the effects of the 
squeeze, Prandtl and Eckert numbers on the temperature (𝜂).  We can note that the decrease in 
temperature values is observed with the increasing of 𝑆 values, since any increase in 𝑆 can be related 
to the increase in the distance between the plates, the increase in the plate movement and the 
decrease in the kinematic viscosity. The values of 𝑃𝑟 are lesser than one that characterizes liquid 
materials with high thermal diffusion and low viscosity while the values of 𝑃𝑟 are greater than one 
that represents high viscosity liquids, so it is observed that the increase in the values of 𝑃𝑟 leads to 
increase temperature value. Eckert number 𝐸𝑐 expresses the relationship between a flow kinetic 
energy and the thermal boundary layer thickness, so we note that the increase in 𝐸c leads to an 
increase in (𝜂). Eckert number 𝐸𝑐 is the coefficient of dissipation of viscosity and joule heat and thus 
an increase in heat dissipation is due to the friction force and joule heating process. The dispersed 
heat increases as a result of friction and the joule heating is added to the fluid and hence its 
temperature. To check the convergence of the solution obtained by new analytical techinqe,  Table 
1 shows it can be observed that only 3 iterations of the analytical solution are enough for a 
convergent solution in situation 0>S . In  Table 2 that can be made 4  iterations only of the analytical 
solution when 0<S .  Table 3 to Table 8 show a comparison of all solutions are shown.  Table 3 to 
Table 6 compare the resulting solutions with solutions for HAM [7]  and numerical solutions. These 
tables observed that the solution agrees well with each other. Table 7 and  Table 8 shows compare 
the resulting solutions with numerical solutions. These tables observed that the solution agree well 
with each other. Numerical values for Nusselt number are presented in  Table 9. Observations show 
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that magnitude of Nusselt is decreasing function for increasing values of S  and  . On the other 

hand, the magnitude of Nusselt number is observed as an increasing function for increasing values 

of cr EP ,  and  .    

 

 
     
Fig. 2. )(f , )(f  , )(  for the value 0.1=0.1,=0.5,== EcPr  when the Squeezing 

number S  is varied 

 

 
Fig. 3. )(f , )(f  , )(  for the value 2=0.1,=0.5,== SEcPr   when   is varied 

 

 
Fig. 4. )(f , )(f  , )(  for the value 1=0.1,=0.5,== SEcPr   when   is 

varied 
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(a) (b) 

Fig. 5. The behavior of the temperature profile )(  when 0.1=0.1,=0.3,= cE  and 

0<)( Sa , 0>)( Sb  

 

  
(a) (b) 

Fig. 6. The behavior of the temperature profile )(  when 0.1=0.1,=0.4,= rP  

and 0<)( Sa , 0>)( Sb  

 

  

(a) (b) 

Fig. 7. The behavior of the temperature profile )(  when 0.1=0.3,=0.3,= cr EP  

and 0)( Sa , (b) S< 0 

 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 64, Issue 2 (2019) 219-243 

239 
 

Table 1 

0.2=0.1,=0.1,==0.5,= rcr PEPS , 0.3=  

Approximation 
2A  4A  1B  

1 term 1.4897020 -2.8741555 1.0355278 
2 term 1.4895422 -2.8727139 1.0338137 
3 term 1.4895418 -2.8727104 1.0372680 
4 term 1.4895418 -2.8727104 1.0372680 
5 term 1.4895418 -2.8727104 1.0372680 
6 term 1.4895418 -2.8727104 1.0372680 
7 term 1.4895418 -2.8727104 1.0372680 
8 term 1.4895418 -2.8727104 1.0372680 

 
Table 2 

0.2=0.1,=0.1,==0.5,= rcr PEPS  , 0.3=  

Approximation 
2A  4A  1B  

1 term 1.511163104 3.136660164 1.041274725 
2 term 1.510982550 3.134993427 1.043239377 
3 term 1.510982924 3.134996751 1.039333714 
4 term 1.510982932 3.134996808 1.039336384 
5 term 1.510982932 3.134996808 1.039336384 
6 term 1.510982932 3.134996808 1.039336384 
7 term 1.510982932 3.134996808 1.039336384 

 
Table 3 
Comparison between new scheme and 4)( KR   

scheme for the analytical solutions )(f   when 

0.2=0.5,=0.5,==1,= cr EPS  

     Present results  HAM [7]     4)( KR   

0.0 1.471094 1.471088    1.471094 
0.1 1.457822 1.457816 1.457822 
0.2 1.417831 1.417826 1.417831  
0.3 1.350591 1.358507    1.350591 
0.4 1.255222 1.255219 1.255222  
0.5 1.130495 1.130494 1.130495  
0.6 0.974839 0.974841 0.974839  
0.7 0.786347 0.786351 0.786347  
0.8 0.562787 0.562793 0.562787  
0.9 0.301615 0.301621 0.301615  
1.0 1.000000 1.000000 1.000000  
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Table 4 
Comparison between new scheme and 4)( KR   scheme for the 

analytical solutions )(  when 

0.2=0.5,=0.5,==1,= cr EPS  

     Present results   HAM [7]  4)( KR   

0.0 1.611826 1.608405 1.611826  
0.1 1.610488 1.607067 1.610488 
0.2 1.605995 1.602574    1.605995 
0.3 1.596884 1.593464 1.596884  
0.4 1.580624 1.577207    1.580624 
0.5 1.553467 1.550065    1.553467 
0.6 1.510220 1.506874    1.510220 
0.7 1.443918 1.440742 1.443918  
0.8 1.345375 1.342629 1.345375  
0.9 1.202583 1.200787    1.202583 
1.0 0.000000 0.000000 0.000000  

 
Table 5 
Comparison between new scheme and 4)( KR   scheme for the 

analytical solutions )(f   when 

0.2=0.5,=0.5,==1,= cr EPS   

   Present results  HAM [7] 4)( KR   

0.0 1.533303 1.533312 1.533303 
0.1 1.516216 1.516264 1.516216  
0.2 1.464734 1.465347 1.464734  
0.3 1.378172 1.381234 1.378172  
0.4 1.255405 1.265029 1.255405  
0.5 1.118232 1.118232 1.118232  
0.6 0.942707 0.942704    0.942707 
0.7 0.740622 0.740614 0.740622 
0.8 0.514391 0.514381 0.514391  
0.9 0.266614 0.266604 0.266614  
1.0 0.000000 0.000000    0.000000 

   
Table 6 
Comparison between new scheme and 4)( KR   scheme for the 

analytical solutions )(  when 

0.2=0.5,=0.5,==1,= cr EPS   

      Present results   HAM [7] 4)( KR   

0.0 1.737069 1.729214 1.737069 
0.1 1.737069 1.727735 1.737069  
0.2 1.731825 1.722486 1.731825  
0.3 1.720341 1.711061 1.720340  
0.4 1.698339 1.689567 1.698339  
0.5 1.662089 1.652786 1.662089  
0.6 1.603619 1.594420 1.603619  
0.7 1.516245 1.507393 1.516245  
0.8 1.392097 1.384217   1.392096 
0.9 1.222867 1.217417   1.222867  
1.0 1.000000 1.000000 1.000000  
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Table 7 
Comparison between new scheme and 4)( KR   scheme for the analytical 

solutions )(f , )(f  , )(  when 0.2=0.3,=0.1,==0.5,= cr EPS  

    )(f   4)( KR    )(f    4)( KR     )(   4)( KR   

0.00 0.000000 0.000000 1.489542 1.489542 1.037263 1.037263 
0.05 0.074417 0.074417 1.485951 1.485951 1.037243 1.037243 
0.10  0.148475 0.148475 1.475173 1.475173 1.037183 1.037183 
0.15  0.221815 0.221815 1.457196 1.457196 1.037076 1.037076 
0.20  0.294074 0.294074 1.431999 1.431999 1.036911 1.036911 
0.25  0.364894 0.364894 1.399554 1.399554 1.036675 1.036675 
0.30  0.433909 0.433909 1.359824 1.359824 1.036348 1.036348 
0.35  0.500754 0.500754 1.312763 1.312763 1.035907 1.035907 
0.40  0.565062 0.565062 1.258319 1.258319 1.035324 1.035324 
0.45  0.626462 0.626462 1.196431 1.196431 1.034567 1.034567 
0.50  0.684579 0.684579 1.127032 1.127032 1.033599 1.033599 
0.55  0.739038 0.739038 1.050044 1.050044 1.032377 1.032377 
0.60  0.789456 0.789456 0.965388 0.965388 1.030852 1.030852 
0.65  0.835448 0.835448 0.872973 0.872973 1.028972 1.028972 
0.70  0.876623 0.876623 0.772702 0.772702 1.026677 1.026677 
0.75  0.912585 0.912585 0.664474 0.664474 1.023900 1.023900 
0.80  0.942936 0.942936 0.548180 0.548180 1.020570 1.020570 
0.85  0.967267 0.967267 0.423707 0.423707 1.016606 1.016606 
0.90  0.985168 0.985168 0.290936 0.290936 1.011922 1.011922 
0.95  0.996221 0.996220 0.149743 0.149743 1.006421 1.006421 
1.00  1.000000 1.000000 0.000000 0.000000 1.000000 1.000000 

 
Table 8 
Comparison between new scheme and 4)( KR   scheme for the analytical 

solutions )(f , )(f  , )(  when 0.2=0.3,=0.1,==0.5,= cr EPS   

    )(f   4)( KR    )(f    4)( KR     )(   4)( KR   

 0.00  0.000000 0.000000 1.510983 1.510983 1.039336 1.039336 
0.05 0.075484 0.075484 0.149743 0.149743 1.006421 1.006421 
0.10  0.150575 0.150575 1.495313 1.495313 1.039253 1.039253 
0.15  0.224885 0.224885 1.475744 1.475744 1.039142 1.039142 
0.20  0.298020 0.298020 1.448379 1.448379 1.038967 1.038967 
0.25 0.369593 0.369593 1.413249 1.413249 1.038713 1.038713 
0.30  0.439216 0.439216 1.370394 1.370394 1.038359 1.038359 
0.35  0.506505 0.506505 1.319862 1.319862 1.037877 1.037877 
0.40  0.571075 0.571075 1.261710 1.261710 1.037236 1.037236 
0.45 0.632550 0.632550 1.196004 1.196004 1.036401 1.036401 
0.50  0.690551 0.690551 1.122816 1.122816 1.035331 1.035331 
0.55  0.744708 0.744708 1.042226 1.042226 1.033981 1.033981 
0.60  0.794652 0.794652 0.954318 0.954318 1.032305 1.032304 
0.65  0.840011 0.840011 0.859189 0.859189 1.030247 1.030247 
0.70  0.880452 0.880452 0.756936 0.756936 0.027753 0.027753 
0.75  0.915596 0.915596 0.647663 0.647663 1.024761 1.024761 
0.80  0.945103 0.945103 0.531482 0.531482 1.021209 1.021209 
0.85 0.968631 0.968631 0.408506 0.408506 1.017029 1.017029 
0.90 0.985842 0.985842 0.278852 0.278852 1.012150 1.012150 
0.95 0.996407 0.996407 0.142643 0.142643 1.006499 1.006499 
1.00     1.0000000    1.000000 0.000000 0.000000 1.000000 1.000000 
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Table 9 
Comparison between new scheme and HAMfor Numerical values for 
Nusselt number .(1)    

  S     
rP   cE      Present results  HAM[7]  

   -1.5  0.1 0.4 0.2 0.1 -2.748707 -2.735159 
-0.5 0.1 0.4 0.2 0.1 -2.700024 -2.698735 
0.5 0.1 0.4 0.2 0.1 -2.667891 -2.666799 
1.5 0.1 0.4 0.2 0.1 -2.647043 -2.638843 
0.5 0.3 0.4 0.2 0.1 -1.037015 -1.050966 
0.5 0.5 0.4 0.2 0.1 -0.730584 -0.727899 
0.5 0.1 0.1 0.2 0.1 -0.669832 -0.669604 
0.5 0.1 0.3 0.2 0.1 -2.003768 -2.002994 
0.5 0.1 0.5 0.2 0.1 -3.330131 -3.328686 
0.5 0.1 0.4 0.1 0.1 -1.333945 -1.333399 
0.5 0.1 0.4 0.2 0.1 -2.667891 -2.666799 
0.5 0.1 0.4 0.3 0.1 -4.001836 -4.000199 
0.5 0.1 0.4 0.2 0.2 -2.792068 -2.790951 
0.5 0.1 0.4 0.2 0.3 -2.999028 -2.997870 

 
7. Conclusion 
 

In this paper, Casson fluid, i.e., heat transfer analysis for the squeezing flow of a non-Newtonian 
fluid  between parallel circular plates is presented. New analytical technique to obtain analytical  
approximate solution of the  physics problem is discussed . The solution obtained by new analytical 
technique is an infinite power series for appropriate initial approximation. The construction of this 
technique has a good convergent series and  the convergence of the results is explicitly shown. The 
analysis of the converge confirms that the new analytical technique is an efficient technique as 
compared with Range- Kutta algorithm with help Shooting algorithm. Graphical results and tables 
were  presented to investigate the influence of physical parameters on the  velocity and temperature 
distributions. Important results illustrating the behavior of the velocity  and temperature 
distributions curves on the physical parameters obtained from the drawings are listed below 

i. The velocity distribution increases with the increase of S  while the temperature distribution 
decreases with the increase    of S . 

ii. The velocity distribution increases with the increase of Casson fluid number   and the 

temperature distribution decreases with the increase of Casson fluid number  . 

iii. The temperature distribution increases with the increase of Prandtl number rP  and Eckert 

number cE . 

iv. Results obtained by new analytical technique are in excellent agreement with numerical 
solution obtained.  
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