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This research presents the R438A refrigerant that non-flammable refrigerant and 
develop for retrofit to R404A. The hydrofluorocarbons/hydrocarbon (HFCs/HCs) R463A 
(GWP=2,265) was zeotropic mixture of R125 (45%), R134a (44.2%), R32 (8.5%), R600 
(1.7%) and R600a (0.6%). The R463A refrigerants is no frame propagation class A1 and 
lower toxicity and used polyol ester oil (POE). The results will investigation and analysis 
of the environmentally friendly refrigerant for R22 replacement. All refrigerant 
properties in this research were based on results from the REFPROP and CYCLE_D-HX 
software of NIST under CAN/ANSI/AHRI540. The results of this work show that HCs 
R170, R290, R600, R600a, R601, R601a, R1150 and R1270 can be mixed in HFCs R417A, 
R417B, R422A, R422B, R422C, R422D, R424A, R437A, R438A and R453A and able to be 
further developed in the future. All refrigerants are non-flammable refrigerants, non-
toxic and zero ODP. The R438A mixed with HCs R600 (1.7%) and R601a (0.6%) and is 
the refrigerant cooling coefficient of performance close to that of R22 refrigerant. In 
conclusion, it can be used as an environmentally friendly and energy efficiency 
replacement for R22. The result of R438A normal boiling was lower than R404A 4% that 
high cooling capacity and zero ODP.  All refrigerants are also refrigerants that are 
matched with the 4th generation refrigerants with the use of natural refrigerants. 
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1. Introduction 
   

Energy use in Thailand’s business sector is ranked second among overall energy users in the 
country, and is thus being targeted for energy-saving options [1]. The number of convenience stores 
in Thailand numbered to more than 20,000 locations in 2019, and this continuously increases on an 
annual basis [2]. The majority are open 24 hours per day, so the retail sector is the fourth largest 
consumer of energy in the business sector, consuming more energy than residences do [3]. The 
components that contribute to energy consumption of convenience stores in Thailand, ranked from 
highest to lowest, are refrigeration systems, air-conditioning systems, electrical equipment, and 
lighting [4,5]. However, proportions of energy use in convenience stores in Taiwan were previously 
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ranked as shown in Figure 1 below [6]. The best options for reducing energy consumption in 
convenience stores in Thailand are high energy efficiency and an efficient energy-management 
system. A good example of energy savings in refrigeration systems is shown in Figure 2 below [7]. 
Energy savings in refrigeration systems can be achieved through decreased power consumption of 
the compressor, as this is the component that utilizes the most energy. 

 

 
Fig. 1. Proportions of energy use in Taiwanese 
convenience stores [6] 

 

 
Fig. 2. Examples of energy savings in refrigeration systems [7] 

 
Refrigerant trends in Thailand have shown improvements through increased energy efficiency 

and decreased global warming potential (GWP), as shown in Figure 3 [8,9], which is related to the 
hydrofluorocarbon (HFCs) phase-down schedule, as shown in Figure 4 [10]. First- and second-
generation refrigerants are composed of natural refrigerants and hydrocarbons (HCs), both of which 
do not impact the environment, have low GWP, and have zero ozone-depletion potential (ODP) [11–
13]. R744 operates under high pressure and is highly toxic and flammable [14–16]. Following the 
second generation, third-generation refrigerants are composed of chlorofluorocarbons (CFCs) [17–
19] and hydrochlorofluorocarbons (HCFCs) [20–22], which are easy to use, can operate under low 
pressure, and are non-toxic. However, they have high GWP and ODP, contributing to ozone depletion 
and global warming. Therefore, in the development of refrigerants, significantly decreased ODP and 
GWP are highly desirable. Moreover, third-generation refrigerants (i.e., CFCs and HCFCs) were 
further developed into hydrofluorocarbon (HFCs) refrigerants that possessed low GWP and zero ODP 
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[23–25]. Fourth-generation refrigerants are mainly hydrofluoroolefins (HFOs) with low GWP and low 
capacity [26–28]. These refrigerants are generally a mixture of HFCs [29–31], HFOs [32–34], and HCs 
[35–37]. Natural refrigerants are low-GWP, zero ODP, high-capacity, low-pressure, and non-toxic 
[38–40]. 

 

 
Fig. 3. Evolution of refrigerants [8,9] 

  

 
Fig. 4. Hydrofluorocarbon (HFCs) phase-down 
schedule (Co2e %) [10] 
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Fig. 5. Top refrigerants in the food industry [9] 

 
Refrigerants need to be low-GWP, zero -ODP, high-capacity, low-pressure, and non-toxic, and 

should, thus, be mixed with HCs and HFOs; however, current refrigerants are still highly flammable 
and have low capacity. An alternative is to incorporate other HFCs. R32 is low-GWP, zero ODP, high-
capacity, and non-toxic, but operates under high pressure and is flammable; in contrast to R134A, 
which possesses highly similar properties but can operate under low pressure and has low capacity. 
Current refrigeration systems use R22 [41], as well as R417A [42], R417B [43], R422A [44], R422B 
[45], R422C [46], R422D [47], R424A [48], R433A [49], R437A [50], R438A [51], and R453A [52], all of 
which were developed as alternatives to R22 and which are mixed with HCs and HFCs, as shown in 
Table 1–4. The lowest normal boiling points (of R422A and R422C) are -46.80 °C and -46.20 °C, 
respectively, lower than that of R22 by 12.82% and 11.69%. This is due to the presence of 
hydrofluorocarbon (HFCs) R125 in their composition (85.1% and 82.0%, respectively), consistent with 
those of R410A and R507, which have boiling points of -51.6 °C and -46.74 °C, respectively, and are 
considered attractive as alternative refrigerants to R134A and R404A, due to their HFCs R125 content 
of 50%. The boiling point of R125 is -48.1 °C, with a high GWP value (3,450); leading to R422A and 
R422C having the high GWP values of 3,143 and 3,185, respectively. R422A and R422C also have 
hydrocarbon (HCs) R601a in their composition (3%). The boiling point and GWP of R601a are 0 and -
11.73 °C, respectively, the effect of which is reducing the GWP and increasing the boiling point of 
refrigerant mixtures it is contained in. The lower GWP, compared with R22 f R453A and R437A (1,765 
and 1,805, respectively) is due to hydrofluorocarbon (HFCs) R134a (53.8% and 78.5%) in their 
composition and hydrofluorocarbon (HFCs) R32 (20%) in the composition of R453A; this is consistent 
with R407A, R407H, and R407F, which combine R134a and R32 with R744 in contents of 6% and 3%, 
respectively, in their compositions. The boiling point and GWP naturally change when adjusting the 
composition of the refrigerant. The refrigerant effect and heat rejection of R453A were found to be 
higher than those of R22, due to the presence of hydrofluorocarbon (HFCs) R32 (20%). R453A also 
has the hydrocarbon (HCs) R600 (0.6%) in its composition. The lowest refrigerant work was found for 
R422A, which possesses HCs R600a (3%) in its composition. 
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Table 1 
Properties of R22, R417A, and R417B 
Condition LT MT HT LT MT HT LT MT HT 

Refrigerant R22  R417A  R417B  
Composition R22 R125/R134a/R600 R125/134a/600  
Mass percentage 100 46.6/60/3.4 79/18.3/2.7 
Boiling point (°C) -40.80 -39.10 -45.20 
Critical Pressure (kPa) 4,990 4,036 3,737 
Critical Temperature (°C) 96 87 74 
ODP 0.055 0 0 
GWP 1,600 1,950 3,027 
Class  A1 A1 A1 
Lubricant type MO MO/AB/POE MO/POE 

 
Table 2 
Properties of R422A, R422B, and R422C 
Condition LT MT HT LT MT HT LT MT HT 

Refrigerant R422A  R422B  R422C  
Composition R125/R134a/R600a R125/R134a/R600a R125/R134a/R600a 
Mass percentage 85.1/11.5/3.4 55/42/3 82/15/3 
Boiling point (°C) -46.80 -41.59 -46.20 
Critical Pressure (kPa) 3,665 3,857 3,696 
Critical Temperature (°C) 72 82 72 
ODP 0 0 0 
GWP 2,530 2,526 3,085 
Class  A1 A1 A0 
Lubricant type MO/AB/POE MO/POE MO/POE 

 
Table 3 
Properties of R422D, R424A, and R437A 
Condition LT MT HT LT MT HT LT MT HT 

Refrigerant R422D  R424A  R437A  
Composition R125/R134a/R600a R125/R134a/R600/R600a/R601a R125/134A/R600/R601 
Mass percentage 62.1/31.5/3.4 50.5/47/1/0.9/0.9 19.5/78.5/1.4/0.6 

Boiling point (°C) -43.50 -38.70 -32.65 
Critical Pressure (kPa) 3,795 4,040 4,003 
Critical Temperature (°C) 80 89 95 

ODP 0 0 0 
GWP 2,330 2,440 1,805 
Class  A1 A1 A1 
Lubricant type MO/AB/POE MO/AB/POE MO/POE 

 
Table 4 
Properties of R438A and R453A 
Condition LT MT HT LT MT HT 

Refrigerant R438A  R453A  
Composition R125/134A/R32/R600/R601a R125/R32/R134A/R227ea/R600/R601A 
Mass percentage 45/44.2/8.5/1.7/0.6 20/20/53.8/5/0.6/0.6 
Boiling point (°C) -42.61 -42.20 
Critical Pressure (kPa) 4,179 4,530 

Critical Temperature (°C) 84 88 
ODP 0 0 
GWP 2,265 1,765 
Class  A0 A1 
Lubricant type MO/POE MO/POE 
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The mixed-refrigerant design should be comparable to natural refrigerants, in terms of having a 
strong refrigerant effect and high heat rejection, but certain hydrocarbon refrigerant types (e.g., 
R290 and R1270) are commonly selected for their refrigerant effect and high heat rejection. 
However, the high refrigerant work and high operating pressure of such refrigerants affect the power 
consumption of the compressor. Considering systems that operate with R134A [53], R450A [54], 
R456A [40], R513A [55], and R515A [40] are all refrigerants that have been developed as an 
alternative to R134A, which are mixed with HCs, HFCs, and HFOs and operated under low pressure, 
achieving similar results to R453A operating under high pressure with 20% hydrofluorocarbon (HFCs) 
R32 content in its composition, as shown in Table 5. The fourth-generation refrigerant R22A was the 
basis for this research, which is currently the most-used ranked 2nd refrigerant, as shown in Figure 
5.  

 
Table 5 
Properties of R134A, R450A, R456A, R513A, and R515A 

Refrigerant R134A  R450A  R456A  R513A  R515A  

Composition R134A R134A/ 
R12354ze(E) 

R134a/R32/R1234ze 
(E) 

R134A/ 
R1234yf 

R227ea/ 
R1234ze 

Mass percentage 100 42/58 45/6/49 44/56 12/88 
Boiling point (°C) –26.07 –23.5 –30.75 –28.3 –18.75 
Critical pressure (kPa) 4060 3814 4175 3700 3555 
Critical temperature (°C) 101.06 105.87 102.65 97.7 108.65 
ODP 0 0 0 0 0 
GWP 1430 547 687 570 387 
Class  A1 A1 A1 A1 A1 
Lubricant type POE POE POE POE POE 

 
R404A is an azeotropic blend of 143a/125/134a with zero ODP, which is non-flammable, non-

toxic, and operates under low pressure, with a GWP of 3922 [56]. R407A [57], R407F [58], R407H 
[59], R410A [60], R442A [52], R448A [61], R449A [62], R452A [63], R453A [64], and R463A [65] are all 
refrigerants developed to be retrofitted to replace R404A, as shown in Table 6–9.  

 
Table 6 
Properties of R404A, R407A, and R407F 
Refrigerant R404A  R407A  R407F  

Composition R125/R143/R134A R125/R32/R134A R125/R32/R134A 

Mass percentage 44/52/4 40/20/40 30/30/40 

Boiling point (°C) at 1 kPa –46.6 –45.28 –46.33 

Critical pressure (kPa) 3728 4494 4754 

Critical temperature (°C) 72.1 82 82.6 

ODP 0 0 0 

GWP 3943 2107 1825 

Class  A1 A1 A1 

Lubricant type POE POE POE 
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Table 7 
Properties of R407H, R410A, and R422A 
Refrigerant R407H R410A  R442A  

Composition R125/R32/R134A R125/R32 R125/R32/R1234A 
/R227ea/R152A 

Mass percentage 15/32.5/52.5 50/50 31/31/30/5/3 
Boiling point (°C) –44.6 –51.6 –46.5 

Critical pressure (kPa) 4856 4811 4760 
Critical temperature (°C) 86.53 70.81 82.4 
ODP 0 0 0 

GWP 1400 1900 1888 
Class  A1 A1 A1 
Lubricant type POE POE POE 

 
Table 8 
Properties of R448A, R449A, and R452A 
Refrigerant R448A  R449A  R452A  

Composition R125/R32/R134A/ 
R1234yf/R12354ze(E) 

R125/R32/R134A/R1234yf R125/R32/R1234yf 

Mass percentage 26/26/20/21/7 24.7/24.3/25.7/25.3 59/11/30 
Boiling point (°C) –40.1 –45.95 –47.2 

Critical pressure (kPa) 4675 4662 4014 
Critical temperature (°C) 83.66 83.85 75.05 
ODP 0 0 0 

GWP 1273 1282 1945 
Class  A1 A1 A1 
Lubricant type POE POE POE 

 
Table 9 
Properties of R453A and R463A 
Refrigerant R453A  R463A  

Composition R125/R32/R134A/R227ea/ 
R600/R601A 

R125/R32/R134A/R1234yf/R744 

Mass percentage 20/20/53.8/5/0.6/0.6 30/36/14/14/6 
Boiling point (°C) –42.2 –60.13 
Critical pressure (kPa) 4530 5283 

Critical temperature (°C) 87.9 73.15 
ODP 0 0 
GWP 1765 1377 
Class  A1 A1 

Lubricant type POE POE 

 
The lowest normal boiling point of R463A is –60.13 °C, which is lower than that of R404A by 23%. 

This is due to hydrofluorocarbon (HFCs) R32 (36%) and carbon dioxide (CO2) R744 (7%) being in its 
composition, consistent with R445A [64] and R455A [65]. R445A and R455A both have low boiling 
points (–49.15 °C and –52.0 °C, respectively) and are attractive as alternative refrigerants with lower 
GWP than R134A and R404A, due to the CO2 R744 content of 6% and 3%, respectively, in their 
compositions. R448A and R449A displayed the lowest GWP values of 1273 and 1282, respectively, 
due to the HFOs R1234yf and R1234ze in their compositions. The GWP of R463A has been found to 
be 1377, with a lower boiling point than that of R404A by 23%; even though the ratio of R1234yf in 
R463A is less than that in both R448A and R449A. However, the GWP of R463A has been found to be 
slightly higher than those of R448A and R449A. The cost of R463A is also lower than R448A and 
R449A. Hydrofluorocarbons can also be combined with carbon dioxide (CO2), which has a lower GWP 
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and boiling point. The lower boiling point and GWP are consistent with the evolution of the fourth-
generation refrigerants that contain a mixture of HFCs, HFOs, HCs, and natural refrigerants, which 
are required to produce a low-GWP, zero ODP, high-capacity, low-operating pressure, and non-toxic 
refrigerant. The refrigerant effect and heat rejection of R463A have been found to be higher than 
those of R404A, due to the presence of hydrofluorocarbon (HFCs) R32 (36%) and carbon dioxide (CO2) 
R744 (7%) in its composition, consistent with R424A and R453A, which are composed of 
hydrocarbons (HCs) at contents of 1.8% and 1.2%, respectively. The mixed-refrigerant design should 
be comparable to natural refrigerants, in terms of having a strong refrigerant effect and high heat 
rejection. Refrigerants operated under low pressure display low refrigerant work value; in this case, 
the lowest refrigerant work is observed in R452A. This refrigerant possesses HFOs R1234yf and 
R1234ze (E) in its composition. The highest refrigerant work value is observed for R463A, which 
contains hydrofluorocarbon (HFCs) R32 (36%) and carbon dioxide (CO2) R744 (7%), and operates at 
the highest evaporator pressure. This means that a refrigerant system which is operated at low 
pressure should use a mix of refrigerants that can operate under low pressure, such as R1234yf, 
R1234ze, and R134A. R450A [49], R456A [50], R513A [51], and R515A [50], which are mixed with 
hydrofluoroolefins (HFOs) and can operate under low pressure, have achieved similar results. R453A 
had the highest COPc, as R453A does not have the highest refrigerant effect and heat rejection, nor 
the lowest boiling point, but can be operated under low pressure, which has an impact on low 
refrigerant work. The COPc level of R463A was recorded at 1.34, which is 10% higher than that of 
R404A under low-temperature conditions only. The promising results for COPc obtained by R407F, 
R448A, and R449A are due to the refrigerants being operated under low pressure, which has an 
impact on low refrigerant work. The same effect has been observed for R453A; however, these four 
refrigerants do not have a low normal boiling point or high Cp liquid/vapor or liquid/vapor 
conductivity. This shows that a mixed-refrigerant design should consider all parameters, such as the 
GWP, boiling point, Cp liquid/vapor and liquid/vapor conductivity, refrigerant effect, heat rejection, 
refrigerant work, evaporator pressure, high pressure, and COPc. 

Due to the costs shown in Figure 6 [43], refrigerants should be mixed with HFOs. The figure shows 
that the HFOs had the highest refrigerant cost, but does not include HCs refrigerant costs compared 
with HFO refrigerant costs, and is presented for comparative purposes in this research (as it is 
generally composed of HCs). 

The class properties of hydrocarbon refrigerants are shown in Figure 7 below. Some zero ODP 
and near-zero GWP Class A3 refrigerants, as shown in Table 10 and 11, are R170 [66], R290 [67], R600 
[68], R600a [69] and Table 2 for R601 [70], R601a [71], R1150 [72], and R1270 [73]. The lowest boiling 
points were found to be -88.70 °C and -103.8 °C, respectively, for R170 and R1270; however, their 
critical temperatures were found to be 32.17 °C and 9.5 °C. This means that these cannot be operated 
as refrigerants in accordance with the CAN/ANSI/AHRI540 Air-Conditioning, Heating, and 
Refrigeration Institute (AHRI) standards considered in this research [74-76]. R290 and R1270 were 
found to have boiling points near that of with R22 (-42.1 °C and -47.7 °C, respectively), but operate 
at high condenser pressures, which affect the evaporator pressure, condenser pressure, and cooling 
coefficient of performance. Therefore, in this research, we used R1270 for the base line for new 
refrigerant mixes, as R1270 has a low boiling point and high refrigerant effect. 
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Fig. 6. Cost of refrigerants 

 

 
Fig. 7. Class properties of hydrocarbon refrigerants 
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Table 10  
Properties of R170, R290, R600, and R600a 

Condition LT M
T 

H
T 

LT MT HT LT MT HT LT MT HT 

Refrigerant R170  R290  R600  R600a  
Formula C2H6 C3H8 C4H10 C4H10 
Chemical name Ethane Propane Butane Isobutane 
Boiling point (°C) -88.7 -42.1 -0.5 -11.73 
Critical Pressure 
(kPa) 

4872 4251 3796 3629 

Critical 
Temperature (°C) 

32.17 96.74 151.98 134.66 

ODP 0 0 0 0 
GWP 3 3 3 3 
Class  A3 A3 A3 A3 
Lubricant type MO/POE MO/POE MO/POE MO/POE 
Qevap (kJ/kg) N/

A 
N/
A 

N/
A 

388.96 240.37 223.89 235.7
2 

261.9
9 

255.8
8 

207.0
3 

231.
52 

223.
97 

Qcond (kJ/kg) N/
A 

N/
A 

N/
A 

221.85 349.48 314.59 400.2
1 

371.4
9 

348.2
9 

358.3
9 

332.
01 

308.
46 

Work (kJ/kg) N/
A 

N/
A 

N/
A 

221.85 109.11 90.70 164.5
0 

109.5
1 

92.41 151.3
5 

100.
49 

84.4
9 

COPc   N/
A 

N/
A 

N/
A 

1.33 2.20 2.47 1.43 2.39 2.77 1.37 2.30 2.65 

Evaporator 
Pressure (kPa) 

N/
A 

N/
A 

N/
A 

157.70 385.90 623.90 26.20 80.20 145.6
0 

43.30 123.
50 

216.
00 

Condenser 
Pressure (kPa) 

N/
A 

N/
A 

N/
A 

1653.1
0 

1803.1
0 

2269.4
0 

484.3
0 

535.4
0 

705.0
0 

670.6
0 

736.
80 

955.
00 

 
Table 11 
Properties of R601, R601a, R1150, and R1270 

Condition LT MT HT LT MT HT LT MT HT LT MT HT 

Refrigerant R601  R601a  R1150  R1270  
Formula C5H12 C5H12 C2H4 C3H6 
Chemical name Pentane Isopentane Ethylene Propylene 
Boiling point (°C) 36.1 27.7 -103.8 -47.7 
Critical Pressure 
(kPa) 3370 3378 5042 4660 
Critical 
Temperature (°C) 196.55 187.2 9.5 92.4 
ODP 0 0 0 0 
GWP 4 4 3 2 
Class  A3 A3 A3 A3 
Lubricant type MO/POE MO/POE MO/POE MO/POE 

Qevap (kJ/kg) 
239.3
0 

267.2
2 

264.1
3 

221.1
8 

248.0
5 

244.6
5 

N/
A 

N/
A 

N/
A 232.45 247.13 228.13 

Qcond (kJ/kg) 
402.1
6 

376.3
1 

356.7
2 

374.8
1 

350.9
9 

331.9
5 

N/
A 

N/
A 

N/
A 404.89 358.77 320.62 

Work (kJ/kg) 
162.8
6 

109.0
9 92.59 

153.6
3 

102.9
4 87.30 

N/
A 

N/
A 

N/
A 172.44 111.64 92.48 

COPc   1.47 2.45 2.85 1.44 2.41 2.80 
N/
A 

N/
A 

N/
A 1.35 2.21 2.47 

Evaporator 
Pressure (kPa) 4.70 18.10 37.00 7.20 25.90 51.20 

N/
A 

N/
A 

N/
A 199.70 478.10 764.40 

Condenser 
Pressure (kPa) 

155.8
0 

175.1
0 

242.2
0 

201.7
0 

225.4
0 

307.0
0 

N/
A 

N/
A 

N/
A 

1964.9
0 

2143.8
0 

2686.7
0 
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2. Materials and Methods  
 

For the properties of refrigerants and the refrigeration simulation system, we used the REFPROP 
database and CYCLE_D-HX software from the National Institute of Standards and Technology [78-80], 
respectively, as shown in Figure 9 below. The properties of all refrigerants, conformed to the use of 
REFPROP and the CYCLE_D-HX software, as stipulated by the National Institute of Standards and 
Technology (NIST) [78-80], in accordance with the CAN/ANSI/AHRI540 Air-Conditioning, Heating, and 
Refrigeration Institute (AHRI) standards, as shown in Table 12 [74-76].  

 
Table 12  
Standard testing for refrigeration systems [74-76] 
Temperature Point Air Conditioning and Heat Pump Refrigeration 

Heating Cooling Low Medium High 

Suction dew point (°C) –15.0 10.0 –31.5 –6.5 7.0 
Discharge dew point (°C) 35.0 46.0 40.5 43.5 54.5 
Suction return gas temperature (°C) –4.0 21.0 4.5 18.5 18.5 
Superheat (K) 11.0 11.0 11.0 11.0 11.0 
Subcooling (K) 0.0 0.0 0.0 0.0 0.0 

 
Both software programs can pre-define mixtures and create new refrigerant mixtures. REFPROP 

can display results related to refrigerant properties under various conditions, and the CYCLE_D-HX 
software can also display results related to refrigerant cycles under various conditions. The results 
illustrated the relationships of all parameters, such as GWP, boiling point, refrigerant effect, heat 
rejection, refrigerant work, evaporator pressure, high pressure, and cooling coefficient of 
performance (COPc), Results illustrated the relationship of all parameters for R22 [41], R417A [42], 
R417B [43], R422A [44], R422B [45], R422C [46], R422D [47], R424A [48], R433A [49], R437A [50], 
R438A [51], and R453A [52], such as GWP, boiling point, refrigerant effect, heat rejection, refrigerant 
work, evaporator pressure, high pressure, and cooling coefficient of performance (COPc), as shown 
in Table 13–16 [81-84]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 95, Issue 1 (2022) 164-187 

 

175 
 

  Table 13     
  Properties of R22, R417A and R417B 

Condition LT MT HT LT MT HT LT MT HT 

Refrigerant R22 R417A  R417B  
Composition R22 R125/R134a/R600 R125/134a/600  
Mass percentage 100 46.6/60/3.4 79/18.3/2.7 
Boiling point (°C) -40.80 -39.10 -45.20 
Critical Pressure 
(kPa) 

4,990 4,036 3,737 

Critical 
Temperature (°C) 

96 87 74 

ODP 0.055 0 0 
GWP 1,600 1,950 3,027 
Class  A1 A1 A1 
Lubricant type MO MO/AB/POE MO/POE 
Qevap (kJ/kg) 138.71 144.16 134.47 92.27 101.79 92.37 71.27 79.91 59.79 
Qcond (kJ/kg) 235.21 205.79 185.35 170.66 152.59 134.11 139.29 123.85 97.99 
Work (kJ/kg) 96.50 61.63 50.88 78.39 50.79 41.74 68.02 43.93 38.21 
COPc   1.44 2.34 2.64 1.18 2.00 2.21 1.05 1.82 1.57 
Evaporator 
Pressure (kPa) 

155.00 402.80 671.70 115.50 324.70 559.10 160.50 429.50 714.90 

Condenser 
Pressure (kPa) 

1,831.9
0 

2,017.6
0 

2,572.7
0 

1,720.6
0 

1,889.9
0 

2,424.6
0 

2,114.9
0 

2,312.6
0 

3,209.4
0 

Evaporator Temp 
glide (°C) 

0.00 0.00 0.00 -2.00 -2.10 -1.80 -1.50 -1.50 -1.00 

Condenser Temp 
glide (°C) 

0.00 0.00 0.00 2.60 2.50 2.10 1.60 1.50 0.90 

 
Table 14    
Properties of R422A, R422B and R422C 
Condition LT MT HT LT MT HT LT MT HT 

Refrigerant R422A  R422B  R422C  
Composition R125/R134a/R600a R125/R134a/R600a R125/R134a/R600a 
Mass percentage 85.1/11.5/3.4 55/42/3 82/15/3 
Boiling point (°C) -46.80 -41.59 -46.20 
Critical Pressure 
(kPa) 

3,665 3,857 3,696 

Critical Temperature 
(°C) 

72 82 72 

ODP 0 0 0 
GWP 2,530 2,526 3,085 
Class  A1 A1 A0 
Lubricant type MO/AB/POE MO/POE MO/POE 
Qevap (kJ/kg) 65.84 88.62 N/A 86.33 95.54 85.69 68.21 76.65 N/A 
Qcond (kJ/kg) 131.32 135.61 N/A 162.26 144.62 125.93 134.89 119.66 N/A 
Work (kJ/kg) 65.48 46.99 N/A 75.92 49.09 40.23 66.68 43.00 N/A 
COPc   1.01 -2.10 N/A 1.14 1.95 2.13 1.02 1.78 N/A 
Evaporator Pressure 
(kPa) 

178.40 385.30 N/A 125.80 351.00 601.20 170.30 451.30 N/A 

Condenser Pressure 
(kPa) 

2,233.5
0 

2,149.1
0 

N/A 1,835.8
0 

2,014.30 2,575.90 2,184.9
0 

2,387.3
0 

N/A 

Evaporator Temp 
glide (°C) 

-1.10 -2.10 N/A -2.30 -2.30 -1.90 -1.40 -1.30 N/A 

Condenser Temp 
glide (°C) 

1.00 2.00 N/A 2.50 2.40 1.90 1.20 1.10 N/A 
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  Table 15    
  Properties of R422D, R424A and R437A 

Condition LT MT HT LT MT HT LT MT HT 

Refrigerant R422D  R424A  R437A  
Composition R125/R134a/R600a R125/R134a/R600/R600a/R60

1a 
R125/134A/R600/R601 

Mass percentage 62.1/31.5/3.4 50.5/47/1/0.9/0.9 19.5/78.5/1.4/0.6 
Boiling point (°C) -43.50 -38.70 -32.65 
Critical Pressure (kPa) 3,795 4,040 4,003 
Critical Temperature (°C) 80 89 95 
ODP 0 0 0 
GWP 2,330 2,440 1,805 
Class  A1 A1 A1 
Lubricant type MO/AB/POE MO/AB/POE MO/POE 
Qevap (kJ/kg) 79.66 88.62 N/

A 
90.78 99.74 90.03 109.16 119.17 110.77 

Qcond (kJ/kg) 152.44 135.61 N/
A 

167.43 149.68 131.16 194.69 174.79 156.70 

Work (kJ/kg) 72.79 46.99 N/
A 

77.09 49.95 41.13 85.53 55.62 45.93 

COPc   1.09 1.89 N/
A 

1.17 2.00 2.19 1.28 2.14 2.41 

Evaporator Pressure 
(kPa) 

140.50 385.30 N/
A 

117.00 329.10 566.50 87.60 254.80 448.00 

Condenser Pressure 
(kPa) 

1,961.7
0 

2,149.1
0 

N/
A 

1,743.6
0 

1,915.1
0 

2,465.8
0 

1,422.1
0 

1,568.3
0 

2,031.6
0 

Evaporator Temp glide 
(°C) 

-2.10 -2.10 N/
A 

-2.20 -2.40 -2.00 -1.80 -2.00 -1.90 

Condenser Temp glide 
(°C) 

2.10 2.00 N/
A 

2.90 2.80 2.30 2.60 2.50 2.20 

 
Table 16 
Properties of R438A and R453A 
Condition LT MT HT LT MT HT 

Refrigerant R438A  R453A  
Composition R125/134A/R32/R600/R601a R125/R32/R134A/R227ea/R600/R601A 
Mass percentage 45/44.2/8.5/1.7/0.6 20/20/53.8/5/0.6/0.6 
Boiling point (°C) -42.61 -42.20 
Critical Pressure (kPa) 4,179 4,530 
Critical Temperature (°C) 84 88 
ODP 0 0 
GWP 2,265 1,765 
Class  A1 A1 
Lubricant type MO/POE MO/POE 
Qevap (kJ/kg) 103.36 112.02 101.50 184.91 178.36 165.49 
Qcond (kJ/kg) 188.79 167.29 146.94 312.00 255.92 228.96 
Work (kJ/kg) 85.43 55.28 45.44 127.56 77.56 63.47 
COPc   1.21 2.03 2.23 1.45 2.30 2.61 
Evaporator Pressure (kPa) 128.70 359.00 616.00 121.00 342.10 595.70 
Condenser Pressure (kPa) 1,901.30 2,089.90 2,675.80 1,808.70 2,002.50 2,584.30 
Evaporator Temp glide (°C) -2.80 -3.00 -2.70 -5.20 -5.10 -4.70 
Condenser Temp glide (°C) 3.90 3.70 3.10 5.00 4.80 4.20 
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3. Results and Discussion 
 

The results of the boiling point in Figure 8, shown in Figure 8 below, indicate that the lowest 
normal boiling point of R422A and R422C were -46.80 °C and R422C were -46.80 and -46.20, 
respectively, which was lower than that of R22 by 12.82% and 11.69%. This was due to 
hydrofluorocarbons (HFCs) R125 (85.1% and 82.0%) in its composition, which were consistent with 
those of R410A and R507. R410A and R507 displayed low boiling points of -51.6 and -46.74 °C, 
respectively, and are attractive as an alternative refrigerant to R134A and R404A, due to HFCs R125 
contents of 50%, respectively, The Boiling point of R125 was -48.1 °C, witch high GWP values at 3,450 
that effect to GWP of R422A and R422C displayed the highest GWP values at 3,143 and 3,185, 
respectively, The R422A and R422C have hydrocarbon (HCs) R601a (3%) in its composition. The 
boiling point and GWP of R601a was 0 and -11.73°C and, respectively, that effect to reduce GWP and 
add more boiling point. The Lower GWP compare with R22 in Figure 9 that R453A and R437A were 
1,765 and 1,805, respectively, this was due to hydrofluorocarbons (HFCs) R134a (53.8% and 78.5%) 
in its composition and hydrofluorocarbons (HFCs) R32 (20%) in its composition for R453A, which 
consistent with the R407A, R407H and R407F that combine with R134a and R32 in R744 contents of 
6% and 3%, respectively, in their compositions. The Boiling point and GWP will Inverse by adjusting 
the composition of the refrigerant that low-high GWP and boiling point. For refrigerant The R438A 
does not have the lowest GWP, it has a lower boiling point than R22. 4%, which can be substituted 
for R22 as it is a refrigerant with zero ODP. 

 

 
X axis is boiling point (°C) 

Y axis is global warming potential 

Fig. 8. GWP and Normal boiling point of all refrigerants 

 
The result of the refrigerant effect in Figure 9 shows that R453A has the highest refrigerant effect, 

at 184.91, 178.36, and 165.49 kJ/kg for low, medium, and high conditions, respectively. This is 
24.99%, 19.17% and 18.74 higher for low medium and high conditions, respectively, compared to 
R22.  
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X axis is evaporator temperature (Tev) 

Y axis is refrigerant effect Qevap (kJkg) 

Fig. 9. Refrigerant effects of all refrigerants 
 

The result of heat rejection, shown in Figure 10, indicates that the maximal heat-rejection values 
for R453A were 312.00, 255.92, and 228.96 kJ/kg for the low, medium, and high conditions, 
respectively, which were 24.61% ,19.59% and 19.05% higher for the low, medium and high 
conditions, respectively, compared to those of R22. The refrigerant effect and heat rejection of 
R453A were found to be higher than those of R22 due to the presence of 20% hydrofluorocarbons 
(HFCs) R32. The R453A combined with hydrocarbons (HCs) R600 (0.6%) due to the high Qevap (kJ/kg) 
and high Qcond (kJ/kg) at 235.72 , 261.99 and 255.88 kJ/kg for low, medium, and high conditions, 
respectively for Qevap and  400.21 , 371.49 and 348.29 for low medium and high conditions, 
respectively for Qcond, and combined with R601a due to the high Qevap (kJ/kg) and high Qcond 
(kJ/kg)  at 221.18 , 248.05 and 244.65 kJ/kg for low, medium, and high conditions, respectively for 
Qevap and  374.81 , 350.99 and 331.95 kJ/kg for low medium and high conditions, respectively for 
Qcond. The mixed-refrigerant design should be comparable to natural refrigerants in terms of having 
a strong refrigerant effect and high heat rejection but for select hydrocarbons refrigerant type, such 
as R290 and R1270 refrigerant effect and high heat rejection. The Qevap for R290 were 221.85, 
240.37 and 223.89 kJ/kg for low, medium, and high conditions, respectively and The Qcond for R290 
were 338.96, 349.48 and 314.59 kJ/kg for low, medium, and high conditions, respectively. The Qevap 
for R1270 were 232.45, 247.13 and 228.13 kJ/kg for low, medium, and high conditions, respectively 
and The Qcond for R1270 were 404.89, 358.77 and 320.62 kJ/kg for low, medium, and high 
conditions, respectively. But. The R290 and R1270 high refrigerant work and high operating pressure 
that will affect to power   consumptions of compressor. 
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X axis is evaporator temperature (Tev) 

Y axis is heat rejection Qcond (kJkg 

Fig. 10. Heat rejection of all refrigerants 

 
The results of the refrigerant work, shown in Figure 11, demonstrate a relationship between 

evaporator pressure, shown in Figure 12, and condenser pressure, shown in Figure 13. Refrigerants 
operated under low pressure display low refrigerant work value; in this case, the lowest refrigerant 
work of R422A was found to be 65.48 and 46.99 kJ/kg for low and medium conditions, respectively. 
This refrigerant possesses HCs from R600a (3%) in its composition. R422A also demonstrated the low 
evaporator pressure at 178.40 and 385.30 kPa for low and medium conditions, respectively, and 
operated at the low evaporator pressure of 2,233.50 and 2,149.10 kPa for low and medium 
conditions, respectively. The R453. The highest refrigerant work values for R453A were 127.56, 77.56, 
and 63.47 kJ/kg, which contained operated at the high evaporator pressure of 121.00, 342.10, and 
595.70 kPa for low, medium and high conditions, respectively, and operated at the highest 
evaporator pressure of 1808.70, 2002.50, and 2584.30 kPa for low, medium and high conditions, 
respectively. This means that a refrigerant system that is operated at low pressure should be mixed 
with refrigerants that can operate under low pressure, such as R1234yf, R1234ze, and R134A. R450A, 
R456A, R513A and R515A, which were mixed with hydrofluoroolefins (HFOs) and operated under low 
pressure, achieving similar results to R453A operating under high pressure with 20% 
hydrofluorocarbons (HFCs) R32 contents in its composition. Same as R438A, it has a lower refrigerant 
work than R22 due to low evaporator pressure and condenser pressure. 
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X axis is evaporator temperature (Tev) 

Y axis is refrigerant work (kJkg) 

Fig. 11. Refrigerant work of all refrigerants 

 

 
X axis is evaporator temperature (Tev) 

Y axis is evaporator pressure (kPa) 

Fig. 12. Evaporator pressure of all refrigerants 
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X axis is evaporator temperature (Tev) 

Y axis is condensing pressure (kPa) 

Fig. 13. Condenser pressure of all refrigerants 

 
The COPc results in Figure 14 show that R453A had the highest COPc at 1.45, 2.3, and 2.607 for 

low, medium and high conditions, respectively, as R453A did not have the highest refrigerant effect 
and heat rejection, nor the lowest boiling point, but could be operated under low pressure, which 
has an impact on low refrigerant work. In this case, that show the hydrocarbon refrigerant mixture 
in hydrofluorocarbon blend as an alternative Refrigerant to R22 and COPc was nearly. This was due 
to hydrofluorocarbons (HCs) R600 (0.6%) and R601a (0.6%) that operated under low pressure, which 
has an impact on low refrigerant work and having a strong refrigerant effect and high heat rejection 
that affect COPc of R453A was nearly to R22. Hydrofluorocarbons can also be combined with 
hydrofluorocarbons (HCs), which has a lower GWP, boiling point and high COPc. The lower GWP, 
boiling point and high COPc are consistent with the evolution of the fourth-generation refrigerants 
that contain a mixture of HFCs, HFOs, HCs, and natural refrigerants, which are required to produce a 
low-GWP, zero-ODP, high-capacity, low-operating-pressure, and nontoxic refrigerant. This shows 
that a mixed-refrigerant design should consider all parameters, such as the GWP, boiling point, Cp 
liquid/vapor and liquid/vapor conductivity, refrigerant effect, heat rejection, refrigerant work, 
evaporator pressure, high pressure, and COPc. Although R438A does not have the highest COPc, it 
still has a higher and closer COPc than R22. 
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Fig. 14. Cooling coefficient of performance (COPc) for all refrigerants 

 
4. Conclusions 
  

The results for hydrocarbon refrigerant mixture in hydrofluorocarbon blend as an Alternative 
Refrigerant to R22 using REFPROP and CYCLE_D-HX software, and following the CAN/ANSI/AHRI540 
AHRI standards, indicate that COPc of R438A zero ODP, 2,265 GWP nearby R22 0.055 ODP, 1600 
GWP. This means that the mixed-refrigerant design should consider all of the parameters, such as 
the GWP, boiling point, Cp liquid/vapor and liquid/vapor conductivity, refrigerant effect, heat 
rejection, refrigerant work, evaporator pressure, high pressure, and COPc. R438A is another alternate 
refrigerant option that is composed of 2.3% hydrocarbon (HCs), and is consistent with the evolution 
of the fourth-generation refrigerants that contain a mixture of HFCs, HFOs, HCs, and natural 
refrigerants, which are required to produce a low-GWP, zero-ODP, high-capacity, low-operating-
pressure, and nontoxic refrigerant. In the future, researchers should incorporate HCs at contents 
above 3.4% (R422A and R422D) in order to use natural refrigerants that are low-cost. The problems 
of high evaporator pressure and high condenser pressure that impact high refrigerant work can be 
solved by adjusting the composition of the refrigerant or mix using a refrigerant that operates at low 
pressure, thereby improving the COPc of the refrigerant. 
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