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A stabilized form of finite element formulation known as the Galerkin least-squares (GLS) 
method is implemented here for solving the two-dimensional incompressible non-
Newtonian fluid model of blood flow in a diseased artery. The modelling for this type of 
flow is based on the conservation of mass and momentum equations, coupled with the 
generalised Newtonian liquid (GNL) constitutive equation characterized by the 
generalised power law (GPL) model. The flow of blood in this present study are assumed 
as steady, laminar and fully developed. The finite element algorithms considered herein 
are first solved for the Newtonian fluid in a straight artery with a bell shaped stenosis for 
validation purposes. As the efficiency and validity of the proposed algorithms are 
obtained through comparison with the findings from existing literature and COMSOL 
Multiphysics 5.2 software. Then, the algorithms are being implemented to the 
generalised power law fluid model of blood flow in a bifurcated artery with overlapping 
stenosis located at the parent's arterial lumen. The numerical results illustrate the arising 
of distinct sizes of vortex shedding downstream of the stenotic region for each 
generalised power law index. 
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1. Introduction 
 

Finite element method (FEM) has been demonstrated as one of the most effective numerical 
methods for modelling the flow of blood which could be performed either in idealized or patient-
specific models. This method also provides a faster rate of convergence for even large scale of 
transient simulations. Since that, Raptis et al., [1] utilised the Galerkin weighted residual (GWR) 
method in generalised curvilinear coordinates to obtain the numerical solution for the non-linear 
system of governing equations which describes the blood flow in an aneurysmal geometry under the 
presence of a magnetic field. 

However, as the classical Galerkin finite element formulation is employed to solve for a highly 
viscous incompressible fluid flow problem, the numerical instabilities like locking and spurious 
oscillations has emerged [2]. Due to the difficulties to impose the incompressibility constraint on the 
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flow field that may suffer from a spurious oscillation came from a standard Galerkin formulation, 
researchers then suggested a variety of stabilized FEM to solve these issues. In a stabilized finite 
element method, an additional term is added to the classical Galerkin formulation to enhance the 
accuracy of the Galerkin approach [3]. This added variational term is mesh-dependent, stable and 
consistent [3]. 

There are few stabilized finite element formulations to be implemented as alternatives to the 
basic Galerkin method in order to overcome the potential numerical instabilities. Among them are 
penalty FEM [4], Galerkin-least squares [5] and streamline upwind Petrov-Galerkin [3]. Heinrich et 
al., [4] reviewed the penalty finite element method which is applied to Stokes and Navier-Stokes 
equations that can deal with incompressibility constraint and reducing number of the degrees of 
freedom by implicitly eliminating pressure as an unknown. Abdullah et al., [6] with the helps of 
stabilization parameter which is added to the magnetic source term of the momentum equations are 
able to solve the numerical instability which arised in their solutions in a form of chaotic velocity 
vector. On the other hand, Skála et al., [7], Machado et al., [5] and Zinani et al., [8], all employed 
Galerkin least-squares approach that was good deals with two major sources of problems in classical 
Galerkin formulation. The first one is the requirement to satisfy the inf-sup condition of 
Ladyzhenskaya-Babuska-Brezzi (LBB) condition to employ the combinations for the finite element 
interpolations for velocity and pressure fields [2,3]. Second is due to the inherent instability arising 
from the approximation of highly advective dominated flows by central difference schemes which 
may leads to spurious node-to-node oscillations [2,5,8]. 

Extensive studies previously and recently on different kind of models considered to represent the 
rheological behaviour of blood such as the generalised power law model [9-11], Carreau-Yasuda 
model [12], Casson model [13], power law model [14] as well as power law and Carreau models [15] 
to imitate the complex non-Newtonian characteristics of blood are presented. It is kind of impossible 
to capture a single constitutive relation that can predict all kinds of non-Newtonian behaviours of the 
fluid flowing in various situations, since the relation connecting the shear stress and the shear rate is 
non-linear [9,16]. For instance, the non-Newtonian behaviour of blood is more prominent at the 
region of low shear rates where the red blood cells are found clumped together into large particles 
(rouleaux) [17], causing the viscosity of blood to increase which usually forms in a region of smaller 
branches and capillaries [18]. The assumption as the non-Newtonian fluid exists also in the diseased 
conditions and in the pulsatile flow cases where the blood is dominated by cyclic low shear rates [17]. 

The most general model for non-Newtonian models was claimed by Ikbal et al., [9] to be the 
generalised power law model due to its combination property of a Newtonian model at low shear 
rates, the power law model at high shear rates and the Casson model as a special case. Achaba et al., 
[16] also approved the same fact as Ikbal et al., [9] by considering a generalised power law model to 
constitute the non-Newtonian characteristics of blood since this model includes some classical 
models as a combination and generalization. It contains Newtonian behaviour at high shear rates and 
behaves as Casson and Carreau models as the special cases which are designed specifically to account 
for various haemodynamic factors which may affect the streaming blood [16]. For that reason, 
analysis by Achaba et al., [16] concluded that generalised power law describes the blood viscosity at 
low shear rates better than the Cross and Newtonian models where the flow was found to be less 
distracted through the stenotic artery. 

As far from the author's knowledge, there is no study from the previous literature on the GLS 
approximations of non-Newtonian cases solving for generalised power law model. Hence, different 
rheological model and arterial bifurcation are considered as the new contributions of this present 
study. The main focus of this current work is on the mathematical formulation that is involved in 
Galerkin least-squares method for solving the generalised Newtonian flow which is characterised as 
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a generalised power law model considering the shear-thickening as well as shear-thinning nature of 
blood. The streaming blood which is flowing through a bifurcated channel with overlapping stenosis 
is assumed to be steady, incompressible, laminar and fully developed. With the insight provided from 
previous GLS papers by Machado et al., [5] and Zinani et al., [8], we decided to implement this 
method to analyse the proposed problem considered herein considering that this method was well 
known with the benefits of overcoming the inherent instability arising from the approximation of 
highly advective dominated flows. In GLS, we also do not need to fulfil the compatibility combinations 
for velocity and pressure subspaces as stated in LBB condition. Therefore, the computational domain 
considered in this current work is discretized by using the continuous piecewise linear finite element 
spaces for all variables. 
 
2. Governing Equations and Boundary Equations 
 

We consider the steady-state, incompressible, fully developed, and laminar flow of blood which 
are constructed by incorporating the mass and momentum conservations as follow, 

 

0                                 in ,

      in ,  

u

u u fp  

 = 

 − + = 
           (1) 

 

where u  is the velocity component,   is the density of blood,   is the stress tensor, p  is the pressure 

or volumetric stress, f  is the dimensional body force vector and   represent the domain. As 
mentioned before, in this study, we consider the generalised power law model which is a form of 
generalised Newtonian fluid which allow viscosity to vary with shear rate to represent the rheological 
behaviour of blood flow. According to Zinani et al., [8] and Masud et al., [18], by definition of the 
Generalised Newtonian Liquid (GNL) model, the stress tensor is the sum of volumetric stress and 
viscous stress components given as the constitutive equation that takes the form 
 

2 ( ) ,I Dp  = − +              (2) 

 
where I  is the unit tensor, ( )   is the viscosity function and D  is the strain rate tensor which may 

be defined as 
 

( )( )1
.

2
D u u

T

=  +               (3) 

 
( )   is dependent on the scalar   that indicates the magnitude of the strain rate tensor given as 

 

( ) ( )2 : .u uD D =              (4) 

 
GNL model allows the variation of viscosity with the shear rate. Thus, this model is useful in 

modelling the shearing flow and observing the effects of shear dominated flow under the natures of 
shear-thinning as well as shear-thickening [8]. The viscosity function, ( )   employed to Eq. (2) to 

model the shear dominated flows according to the generalised power law model can be written as 
 

( 1)/2

2( ) ( ) ,
n

m I 
−

= −              (5) 
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where m  is the fluid consistency parameter, 

2I  is the second invariant of the strain rate tensor and 

n  is the power law index. In the case where the viscosity function ( )   in Eq. (5) is represented by a 

constant value of ,  Eq. (2) then reduces become a Newtonian viscosity model. In this study, we 

consider three cases of fluid's viscosities. The first one is the shear-thinning fluid indicated by the 
viscosity which is decreasing with an increase in shear rate represents by 1.n   Then, we also consider 
the Newtonian fluid where 1.n =  Lastly, if 1,n   then we obtained the shear-thickening fluid where 

the viscosity is increasing with an increase in shear rate. For two dimensional flow, the explicit form 
of 

2I  is given as 

 
2 2 2

2 2 2 .
u v u v

I
x y y x

        
= + + +     

        
           (6) 

  
Hence, the complete system of governing equations for the generalised power law fluid, plus the 

boundary conditions of prescribed velocity and forces in a domain 2R  are given by 
 

( )

( )

0                                              in ,

2 ( )       in ,

                                                on , 

2 ( )                        on ,  

u

u u D f

u u

I D n t

gg

hh

p

p

   

 

  = 

 −  + = 

= 

− + = 

          (7) 

 

where   is the boundary of the domain ,  while g  and h  denotes part of the boundary ,  where 

Dirichlet and Neumann conditions are respectively imposed. u g  is the prescribed boundary 

velocities, n  is the unit outward normal vector and th
 is vector of the prescribed boundary tractions. 

Pressure point constraint are also employed as ( , ) 0p x y =  0.06m,  0.017349mx y= =  and 

0.056175m,  0.0239595m.x y= = −  

Before proceeding to finite element implementation towards the system of governing equations 
as stated in Eq. (7), the proposed model has to be simplified first to non-dimensionalise all the units 
involved to reduce the complexity of the numerical formulation. These following non-dimensional 
terms are introduced for parameter rescaling as follows 
 

2
,  ,  ,  ,  ,  

r r r

x y u v p
x y u v p

h h u u u
= = = = =           (8) 

 

where, the characteristic length, h  refer to the length of the inlet. While, the reference velocity, ru  
represents the average mean inflow velocity. Thus, by the non-dimensionalisation procedure the 
non-dimensional parameter of Reynolds number is attained as 

2
Re .

n

n

r

h

mu


−

=               (9) 

 
By the substitution of all the non-dimensional parameters specified in Eq. (8), Eq. (7) is 

transformed to its non-dimensional form given as 
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( 1)/2

2

( 1)/2

2

0                                              in ,

1
( )   in ,

Re

                                                on ,

1
( ( ) )            on .

Re

u

u u D f

u u

I D n t

n

g g

n

h h

I p

p I

−

−

 = 

 −   + = 

= 

− + = 

                    (10) 

 
The governing equations above are solved on two domains. The first one is a straight channel 

with bell shaped stenosis which was studied previously by Xenos et al., [19] conducted as a test 
domain to verify the source code that is developed according to the GLS algorithms. For validation 
purposes of the first domain, the generalised power law index, n  is taken as 1 to characterise the 
constant viscosity of   for the Newtonian property of blood. As the efficiency and validity of the 

developed algorithms that is applied to the first domain has been achieved, then, we will implement 
the same algorithms to the second domain which is a bifurcated channel with constriction portrayed 
as an overlapping shaped. The domains involve in this particular study are shown in Figure 1 with the 
details on each domains can be clearly obtained from [20-22]. 
 

 
(a) Straight rectangular channel with bell shaped stenosis 

 
(b) Bifurcated channel with overlapping shaped stenosis 

Fig. 1. Computational domains 

 
The boundary conditions for the first domain can be obtained in details from previous literature 

by Xenos et al., [19]. Meanwhile, the boundary conditions that are imposed to the second geometry 
are 
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1

3
1-  and 0,  on ,

2 1/ 2

( ) 0,                          on ,

0 and 0,                         on . 

I n

n

n

inlet

outlet

wall

y
u v

p

u v



+ 
  = =    

 

− + = 

= = 

                     (11) 

 
The boundary condition specified in Eq. (11) is appropriate for generalised Newtonian fluid flow 

characterised by generalised power law model considering the shear-thinning, Newtonian and shear-
thickening effects of blood. 
 
3. Stabilized Finite Element Formulation 
 

In this section, we present the stabilized finite element formulation of Galerkin least-squares 
method for the mathematical model presented in Eq. (10). Like in a common approach for the 
classical Galerkin finite element solution of a non-linear problem, in GLS the mesh-dependent term 
is added to the discretized boundary value problem to enhance the accuracy of the classical Galerkin 
approach [23]. Then, the Newton-Raphson method is applied to the non-linear algebraic system of 
equations to linearize the system. Meanwhile, the Gaussian quadrature technique is adopted to 
compute the numerical integrals presence in the systems. 
 
3.1 Galerkin Least-Squares Formulation 
 

To approximate the velocity and pressure components based on the usual fluid dynamics 
concept, the finite element subspaces for velocity and pressure fields over a finite element partition 

hC  of the problem domain   are defined as follow 

 

 
 

( ) ( ) 

2
1 2

0 K

2
1 2

K

0 2 2

0 K

( ) ( ) ,  ,

( ) ( ) , ,   on ,

( ) ,  .

V N N

V N N N u

h | k K h

g

h | k K K h g g

h | l K K h

H | R K C

H | R C =

Q p C L | q R C

 =      

 =        

=        

                  (12) 

 
The parameters 

kR  and 
lR  in Eq. (12) represent the polynomial spaces of degrees k  and l , 

respectively defined over a finite element partition 
hC  of the problem domain   consisting of 

triangular element 
1P  parametrized by a characteristic mesh size .Kh  Based on the approximation 

functions define in Eq. (12), Galerkin least-squares formulation for boundary value problem 
introduced in Eq. (10) can be stated as to find ( , )uh hp  in the same vector space for all ( , )N q  which 

are also in the same vector space such that 
 

( , ; , ) ( , ),  ( , ) ( ),u N N N Vh h h hB p q F q q Q=  ∀                     (13) 

 
where 
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( )

( 1)/2
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( 1)/2

2

( 1)/2

2
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( , ; , ) ( ) ( ) ( )
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        ( ) ( )
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1
(Re ) ( ) ( )
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( , )

u N u u N D u D N N

u u D u

u

u N D N
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K Ch K

n

h h

n

K

n

K

B p q d I d p d
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q d d

q I

F q
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−

  

−

 − 

=    +   −   

   
 + −    

   +    + 
   
   + −   
    

=

  
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( 1)/2

2

1
(Re ) ( ) ) ,

Re

N t N

f u N D(N
K Ch K

h

n

K K

d d

q I d


 

−

 

  +  

    
+    + −      

     

 

 

                (14) 

 
with the terms involved in Eq. (14) are counted elementwise with the positive parameter (Re )K  

behaves as a stabilization parameter throughout this study defined according to [5,8,24] as follow 
 

2

2

1/2
2

2

2
1

(Re ) (Re ),  where
2

Re ,
4 ( )

,

Re ,0 Re 1
(Re ) ,

1,Re 1

u

u

u

K
K K

K K

K

i

i

K K

K

K

h

m h

u

 



 



=

=

=

 
=  
 


= 





<

                    (15) 

 

 

2

2 2

0, 0

(Re ) (Re ),
2

min 1/ 3,2 ,  ,  .

u

N N N V

K
K K

K K K K hK

h

m C h C

 =

=     

  

 
The terms 

Kh  acts as the element size and ( )   defined in Eq. (2), (7) and (15) represent the 

viscosity function for generalised power law model. The discretization of Eq. (13)-(15) are performed 
by substituting the trial functions ,  and ,u Np q  in terms of their finite element shape and weighting 

functions for linear triangular elements within an element , 1,2,3,...,i ee i N=  that can be elucidated as 

 

,

,

u u N ui i

i i

e e

j j

e e

j jp p q p

= =

= =
                       (16) 

 
where 1,2,3j =  corresponding to three corner nodes per element .ie  By transforming Eq. (14) into 

its residual form, R(U)  that can be written as 

 

   ( ) ( ) 0,R U K U U F= − =                       (17) 
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where U  is vector for the degrees of freedom of  and ,uh hp  ( )K U  stands for the stiffness matrices 

and  F  denotes the force vector. To deal with the non-linearity presented in Eq. (14), the Newton-

Raphson method is implemented where the solutions are found converged at 10-4. The convergence 

criteria   of maximum residual, 
IR  norm is approximated as 

 

2

1

.
N

I

I

R
=

                          (18) 

 
Hence, according to the Newton-Raphson method the solutions for the degrees of freedom are found 
as 

1 1( ) ( ),U U J U R U
b b b b+ −= −                       (19) 

 
where / ,J R U=    that is also known as the Jacobian matrix and b  is the iteration. Meanwhile, to 

approximate the integrals in Eq. (10), the Gaussian quadrature techniques are applied using six 
quadrature points throughout this study. 

Based on the GLS formulations explained before, to sum up, these are the following algorithms 
that are applied in the developed source code by using the Matlab software 

i. The domain geometry is constructed as in Figure 1. The finite element meshes are then 
generated from a “mesh2d” function developed by Darren Engwirda. 

ii. The nodes and their edges are generated. The numbering for the variables defined at each 

node of the element are then employed for the global degree of freedoms  , , .u v p  

iii. The boundary conditions, convergence tolerance   and all related parameters value are 

prescribed. The initial guess for  , ,u v p  is generated from the Stokes solution where n  is 

made equal to 1. 
iv. The element matrix is evaluated for each finite element where parameter n  is set according 

to the rheological behaviour of fluid it supposedly present with the integrals computed using 
a Gaussian quadrature rule with the stabilization GLS terms calculated from Eq. (15). 

v. The element matrices are then being assembled forming a global matrix and is solved 
subjected to the boundary conditions imposed as stated in Eq. (11). 

vi. The residual R(U)  in Eq. (17) is approximated. 

vii. The convergence tolerance   define in Eq. (18) is evaluated to check for the convergence of 
the solution. If this condition is fulfilled, then the iteration will stop and the solutions are 
obtained at the previous step. 

viii. If the previous condition is not satisfied, then the Jacobian matrix J  is evaluated. 

ix. The solutions are corrected as 1
U U U

b b b+ =  with U  appear to be 1( ) ( ).U J U R U
b b −= −  

 

As the solution of  , ,u v p  is acquired in the last iteration where the limit stated in step (vii) above 

has reached, then the iteration will stop. 
 
4. Numerical Results and Discussions 
 

An unstructured triangular mesh is used for all calculations in this study. For both geometries, 
continuous piecewise linear finite element basis functions are used for  and .u p  To verify that the 

source code developed is working properly according to the GLS algorithms, firstly, we need to 
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validate the source code that is developed using the Matlab software with the result that was 
obtained from the previous literature. After the verification has been achieved, then we will proceed 
the computation with the second domain of interest. 
 
4.1 Straight Rectangular Channel With a Bell Shaped Stenosis - Test Domain 
 

For the validation purpose, implementation into the Newtonian ( 1)n =  blood flow in a straight 

rectangular channel as studied by Xenos et al., [19] is carried out in this study. From the mesh 
dependency test, we found that by using an unstructured triangular mesh of 21060 elements 
containing 10841 nodes, we are able to obtain a satisfactory solution and capable in capturing a good 
formation of vortex downstream of the stenotic region. The results are computed using 

-3 -1 -1Re 400, 1050kgm  and 0.0035kgm s = = =  which are found converged with 410 . −=  

The results for the maximum velocity and its location as well as the pressure drop at the centre 
of the stenosis are validated with the results obtained from Xenos et al., [19] and Comsol multiphysics 
5.2 software as tabulated in Table 1. 
 

Table 1 
Results for maximum u -velocity and its location and pressure drop 
Results from u -velocity and its location p  at 0x =  

Present study 1.5993 at (0.286,0) 0.7928 
Xenos et al., [19] 1.5360 0.8000 
Comsol multiphysics 5.2 1.5789 at (0.2697,-0.0002) - 

 
Comparison of results that are made with the previous literature and COMSOL multiphysics 

software shows a small distinct of maximum u - velocity and its location. Meanwhile, the pressure 
drop evaluated from this current study shows an excellent agreement with the previous work. 
Overall, it can be concluded that the solutions are obtained in a satisfactory agreement between the 
previous work, COMSOL multiphysics, as well as the one computed from the source code, thus shows 
that the source code developed is working properly in a satisfactory manner. 
 
4.2 Bifurcated Channel with an Overlapping Shaped Stenosis 
 

The numerical simulation in this study is performed by considering the following parameters 
based on the data taken from [21] and [22]: 0.0075m,a =  

0 0.015m,l =   0.005m,d =  
max 0.06m,x =  

1 0.025m,x =  0.0002m,q =  -31050kgm , =  -1 -10.0035kgm s , =  30 , =  
1 0.51 ,r a=  2 ,h a=  and 0.f =  

Blood is assumed to behave as a generalised power law fluid model by considering the shear-
thinning, Newtonian and shear-thickening natures of blood represented by generalised power law 
index of 1, 1n n =  and 1,n   respectively. 

Mesh test was conducted onto the domain of interest with several number of meshes as 
illustrated in Figure 2 to verify that the results computed is independence of the number of mesh 
parameters. The results involving this type of computational domain are meshed using unstructured 
linear triangular elements by using the Reynolds number of Re 300.=  The mesh dependency test 
perform here is carried out using the generalised power law index of 1n =  which behaves as a 
Newtonian fluid. 
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Fig. 2. The dimensionless axial velocity, u  at the second throat of stenosis, 1x =  
for mesh 1 = 7787, mesh 2 = 10352, mesh 3 = 1 to , mesh 4= 17090 and mesh 5 
= 28196 

 
Based on the results plotted in Figure 2, the total number of elements between 11000-13000 are 

used to mesh the domain with the total number of 6000-8000 nodes that generated the degree of 
freedoms around 19000-23000, thus producing the global Jacobian and stiffness matrix of sizes 
19000×19000 to 23000×23000. By the characteristics of mesh afore mentioned, Figure 3 illustrates 
the selected meshing used to mesh the stenosed bifurcated channel in this present study that is 
refined more at the stenotic region containing 12649 triangular elements. 
 

 
Fig. 3. The discretized bifurcated artery with 
refined mesh along the area of stenosis 

 
Further, in Figure 4 and 5 the axial velocity profiles that are obtained at the second throat of an 

overlapping stenosis ( 1)x =  which is located at the mother artery and downstream of the stenotic 

region somewhere in the lower daughter branch ( 3.0118)x =  are respectively presented in these next 

figures. Based on Figure 4, the curves attaining a parabolic shape profiles with the velocity gradients 
that are gradually sloping as the generalised power law index, n  is increased from 0.639 to 1.2. This 
might be due to the changes in apparent viscosity of fluids according to different generalised power 
law index, n  that caused the shear-thinning fluid to flow faster and produce a largest flow reversal 
indicated by the negative valued velocities than its other counterparts.  

Meanwhile, from Figure 5 it is also obviously seen from this current figure that the shear-thinning 
fluid forming the greatest flow reversal in comparison to Newtonian and shear thickening fluids. 
Apparently, the graphs for this three different fluids characterisation are skewed to the right because 
they are just passing through a region with a negative flow at the outer side of the arterial wall. 
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Fig. 4. Axial velocity profile at 1x =  for different 𝑛 

 

 
Fig. 5. Axial velocity profile at 3.0118x =  for different 𝑛 

 
The streamlines pattern for three different fluids characterisation are depicted as in Figure 6. It is 

discovered that the eddies formed by shear-thinning fluid downstream of an overlapping stenosis 
region near the upper and lower outer arterial wall are the largest. While for Newtonian case, the 
eddies formed is smaller than the one produced by shear-thinning fluid. Since shear-thickening fluid 
is the most viscous fluid over here, hence this fluid forms the smallest eddies in comparison with 
Newtonian and shear-thinning fluids. Among these three fluids, shear-thinning fluid moves faster and 
possesses a higher momentum. Thus, it is difficult for the same fluid layer to remain attached to 
suddenly changing geometry thus exhibits a more predominant vortex along the outer arterial wall. 
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(a) 0.639n =  

 
(b) 1n =  

 
(c) 1.2n =  

Fig. 6. Pattern of streamlines for different generalised 
power law index representing the fluids 

characterisation ( Re 300=  and 0.4m a = ) 

 
5. Summary and Conclusion 
 

We have presented the stabilized finite element approach which is known as the Galerkin least-
squares method to approximate the shear dominated flow characterised by the generalised power 
law index. As through the implementation of the classical Galerkin technique, we are failed to achieve 
the convergence of solution due to the arising of numerical instabilities as the flows are convection 
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dominated. Hence, in GLS, an additional stabilization parameter is added to the classical Galerkin 
formulation to enhance the accuracy of the computed solutions. By representing the generalised 
power law index, n  according to various nature of blood which are 0.639n =  for shear-thinning fluid, 

1n =  for Newtonian fluid and 1.2n =  for shear-thickening fluid, the effects of different fluids 
characterisation that flowing through a bifurcated artery to the blood flow behaviours are examined 
in this papers. Comparisons that were made with reported findings in the literature and the one 
obtained from Comsol Multiphysics software show a satisfactory agreement between one another, 
thus convinced the applicability of the developed GLS algorithms in approximating the shear 
dominated flows in this study. Based on the numerical results obtained in the preceding section, it is 
obvious that the largest eddies are produced by the shear-thinning fluid 0.639,n =  followed by 

Newtonian fluid 1,n =  and the smallest eddies are created by the shear-thickening fluid 1.2n =  

corresponding to the changes in apparent viscosity as the generalised power law index is increasing. 
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