

Journal of Advanced Research in Fluid Mechanics and Thermal Sciences

Journal homepage: www.akademiabaru.com/arfmts.html ISSN: 2289-7879

Fitting of Weibull Distribution Method to Analysis Wind Energy Potential at Kuala Terengganu, Malaysia

Zainab Saberi^{1,*}, Ahmad Fudholi¹, Kamaruzzaman Sopian¹

¹ Solar Research Energy Institute, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia

ARTICLE INFO	ABSTRACT
Article history: Received 15 May 2019 Received in revised form 3 February 2020 Accepted 5 February 2020 Available online 26 February 2020	Malaysia faces many challenges in the development of wind energy as it is located in areas with slower wind speeds. Malaysia is located on the equator line where land and sea breezes can affect the wind regime. The wind does not blow uniformly and fluctuates by month and area. Therefore, the objective of this study is to determine the potential of the latest wind power in Kuala Terengganu, Malaysia which is located at latitude 5° 23' N and longitude 103° 06' E. by using Weibull Distribution method. The wind data used in this study was obtained from the Malaysian Meteorological Department. The daily wind speed pattern for the year 2017 can be seen that it has a corresponding pattern where it shows high wind speed at the beginning and end of the year. The wind speed frequency is also variable for the winds of the Northeast Monsoon and is almost constant during the south monsoon of the Southwest Monsoon and the Transition Monsoon. Overall, the potential for wind power in Kuala Terengganu is not too large. The annual average for 2017 is 2.01 m/s only. Wind power is high during the Northeast Wind Monsoon season.
<i>Keywords:</i> Wind speed; Weibull Distribution; wind	
power; wind speed frequency and wind energy	Copyright © 2020 PENERBIT AKADEMIA BARU - All rights reserved

1. Introduction

Recently, due to the huge advantages towards the conservation of health and environment, numerous researches regarding renewable energy are being actively carried out in Malaysia. The academician and researchers get full support and encouragement from Government of Malaysia to develop alternative renewable sources which are greener and environmental-friendly [1]. Wind energy is one of the most prevalent and popular among renewable energy alternatives [2].

Wind energy is an important renewable energy source as it is clean and existing on earth as well as cost-effective for some applications such as power generation. Wind is one of the most common sources of research and finds that it has produced tremendous technology and performance worldwide [3]. It has been proved by Ong [4] where 150 kW of the wind turbine was built in the

^{*} Corresponding author.

E-mail address: P97458@siswa.ukm.edu.my (Zainab Saberi)

Terumbu Layang-Layang in 2005 and has shown some good achievement. Wind energy is part of green technology that generates electricity from wind kinetic energy.

Wind energy is generated using a wind turbine where turbine blades play an important role in wind turbines. The wind will rotate the fan blade on the wind turbine which will cause the wind turbines to rotate and subsequently produce electricity. The energy generated by the wind depends on the speed of the wind. The faster the wind blows, the more energy it produces.

The use of wind energy as a source of energy is growing worldwide as the use of other energy sources such as fuel, nuclear and coal contributes to environmental pollution and global warming. In addition, the use of wind power has an advantage to those living in rural areas and remote islands where it is far from the national grid electric [5].

Wind power gained importance after a rapid increase in world energy production through the burning of fossil fuels that have led to heat trapped "greenhouse gas" accumulated in the troposphere. In this regard, there is growing concern that human activity now will affect earth climate in the future [6]. Figure 1 shows solar energy and wind are the two most rapidly growing renewable energy sources in the world. Solar photovoltaics (PV) grew by a whopping 32% in 2017, followed by wind energy, which grew by 10% [7].

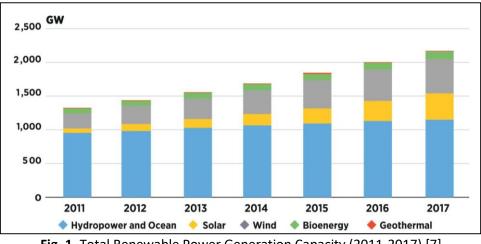


Fig. 1. Total Renewable Power Generation Capacity (2011-2017) [7]

Figure 2 shows the annual capacity of installed wind power which increases from 2001 to 2016 worldwide [8]. In 2001, only 6, 500 MW wind power generation capacity was installed. However, this amount increased to 54, 600 MW in 2016 which was eight times higher than capacity in the last 15 years. In 2016, the world's wind capacity reached 486 GW, which increased by 54 GW over the previous year and distribution by the top 10 countries is shown in Figure 3.

Malaysia faces many challenges in the development of wind energy as it is located in areas with slower wind speeds. Malaysia is located on the equator line where land and sea breezes can affect the wind regime. The wind does not blow uniformly and changing by month and area. Therefore, studies on the characteristics and features of wind speed have dominated wind research in Malaysia [9].

Peninsular Malaysia has four seasons that can be categorized according to the monsoon season, Northeast Monsoon (November-March), Southwest Monsoon (May-September) and two Monsoon Transitional Season (April and October). In the eastern part of Malaysia, Sabah and Sarawak experienced heavy rains that occurred between November and February. Rain falls differently on the east and west coast due to the change of monsoon winds.

The southern and eastern parts of Peninsular Malaysia show higher potential than other parts of the peninsula in terms of wind velocity [10]. It may be due to the monsoon season affecting the area exposed to the South China Sea.

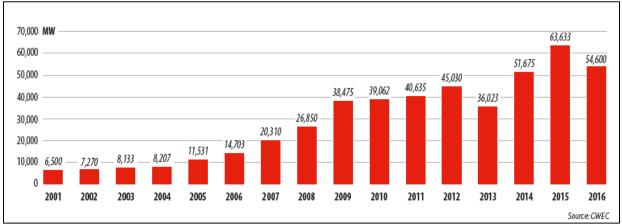
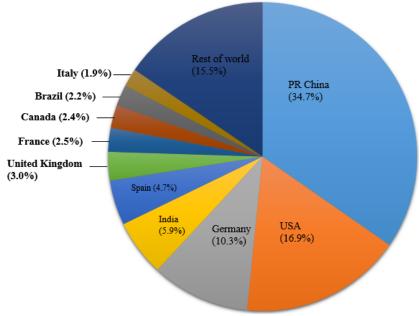



Fig. 2. Global annual installed wind capacity 2001-2016 [8]

Fig. 3. Distribution of wind power capacity generated by the top 10 countries in the year 2016

This study finds out the latest potential of wind power in Kuala Terengganu, Malaysia for the period 2017. Kuala Terengganu is the largest city and is the capital of Terengganu, Malaysia. Kuala Terengganu is located in front of the South China Sea [11] at latitude 5°23'N and longitude 103°06' E.

Figure 4 shows the location of the station on the map. Wind data is observed and collected to analyze the potential of wind power in Kuala Terengganu and is obtained from the Malaysian Meteorological Department. The observed and collected wind data is the wind direction and wind velocity data for the year 2017 where the height of the sea level is 5.2 meters.

This study uses the Weibull distribution as it shows a good consideration to estimate the density of wind power in Malaysia [12]. Additionally, the 2-parameter for the Weibull distribution function is

accepted as the best distribution worldwide. It is because the Weibull distribution function has excellence in wind source evaluation because it has great flexibility and simplicity [13].

Fig. 4. Location of the station in Kuala Terengganu on the map

Due to the demand for energy and especially for electricity growing rapidly due to the country's social and economic development, wind turbines small-scale has been used in this state. This is because Kuala Terengganu is blessed with seasonal solar and wind power supplies. Therefore, most energy needs can be supplied from renewable energy sources.

Furthermore, the only one of Malaysia's electricity supplier, Tenaga Nasional Berhad (TNB), has built two 100 kilowatt-powered wind turbines (kW) at Pulau Perhentian, Terengganu. In addition, the Ministry of Rural and Regional Development has also built eight small units of wind turbines in Sabah and Sarawak for local communities [14].

In Malaysia, some efforts have been made regarding the use of wind power. Wind sources vary by time, season, elevation on land surface and soil type. The ideal position in a windy location is where it is far from a major obstacle and increases the performance of the wind turbine. Therefore, the potential for wind power generation in Malaysia depends on the availability of wind sources in a location.

2. Methodology

2.1 Data

The data used in this study were obtained from the Malaysian Meteorological Department (MMD). It is data collected through observations taken daily (daily data). The raw data provided consists of wind direction and wind speed data. The period for this data is for the year 2017 for an

area in Kuala Terengganu, Malaysia where the height from sea level is 5.2 meters. The unit of measure for wind speed is meter per second (m/s) and for wind direction is degree.

2.2. Calculation Methodology

2.2.1 Frequency distribution of wind speed

Each area has a wind speed distribution profile with different types of wind. Wind speed distribution plots the frequency for each wind speed. Typically, it is shown in the wind speed distribution curve. For example, an area may have a wind speed of 6.7 m/s, 4% and another area that find out wind speed also totaled 6.7 m/s, but only 3% at that time. The distribution curve shows the percentage for a particular area at each wind speed.

2.2.2 Average wind speed

Manipulation of wind speed data observed daily has been done to obtain average wind speed for every month and year. The graph for this average wind speed is plotted for an area of Kuala Terengganu. It can give an early description of the potential of wind power in the East Coast of Malaysia.

2.2.3 Weibull distribution parameter estimation

This distribution is often used to adapt wind speed data. It can be explained by the Probability Density Function for Weibull Distribution which has 2 parameters, the scale parameter c (c > 1) and the form parameter k (k > 0) as shown below [15].

$$f(v) = \begin{cases} \frac{k}{c} \left(\frac{v}{c}\right)^{k-1} e^{-\left(\frac{v}{c}\right)^{k}} & v \ge 0\\ 0 & v < 0 \end{cases}$$
(1)

From Eq. (1), the cumulative distribution functions can be derived as follows:

F (v) = 1-
$$e^{-\left(\frac{v}{c}\right)^{k}}$$
 (2)

where k = shape parameter c = scale parameter

The least squared method has been used in this study to estimate the value of the parameter because this method is easy to understand, and the probability function is uncomplicated [16]. Since this distribution is matched to wind speed data, the probability of zero wind speed is not calculated in the Weibull distribution in estimating the parameters k and c because it is considered as:

$$f(0) = 0$$
 (3)

2.2.4 Least square method

Wind speed data is compiled by following several specific intervals as shown in Table 1.

Table 1					
The wind speed distribution interval according					
to the observation data					
Interval	$f_i = f(v_i)$	Pi			
0.0-0.8	f ₁	f ₁			
0.9-1.7	f 2	f 1 + f 2			
1.8-2.6	f ₃	$f_1 + f_2 + f_3$			
2.7-3.5	f 4	f ₁ +f ₂ ++f ₄			
3.6-4.4	f 5	$f_1 + f_2 + + f_5$			
4.5-5.3	f ₆	$f_1 + f_2 + + f_6$			
5.4-6.2	f 7	f ₁ +f ₂ ++f ₇			

From Eq. (2), F(v) is the cumulative distribution functions, while from Table 1, P_i is the cumulative frequency value of the wind speed. Since this wind speed data is distributed with the Weibull Distribution, then

(4)
(4

$$P_{i} = 1 - e^{-\left(\frac{v}{c}\right)^{k}}$$
(5)

From Eq. (5), Eq. (6) is obtained

In (- In (1-P _i)) = k Inv – k In c	(6)
--	-----

Eq. (7) is an equation of the linear form

where

y = ln (- ln (1-P_i)) x = ln v b = -k ln c

Weibull parameters k and c can be obtained by plotting a graph between:

In (- In (1-P_i)) against In v

The values of parameters a and b can be obtained from the graph where the value a = k, where k is the gradient value of the graph. Whereas the value of c can be calculated from the value of y-intercept. Referring to Eq. (6) and (7), then

a = k	(8)

2.2.5 Estimation average wind power density

Wind power density is given by

$$P = 1/2 \rho v^{3} ; \rho = 1.16 \text{ kg} / \text{m}^{3}$$
(11)

where

P = Wind power density (W/m²) ρ = Air density (kg/m³) v = Wind speed (m/s)

Therefore, the average power density can be calculated using the parameters k and c from Eq. (8) and (10).

$$(v^{3}) m = \frac{\Gamma(1 + \frac{3}{k})}{\Gamma^{3}(1 + \frac{1}{k})} \quad (v_{m})^{3}$$
(12)

where

= Average wind speed (m/s) V m = Gamma function Г

The following v is obtained for the mean wind speed

$$v_{m} = c \Gamma(1 + 1 / k)$$
 (13)

From Eq. (12) and (13), the average wind power density for the Weibull function becomes [17]

$$P_{w} = 1/2 \rho c^{3} \Gamma [1+3 / k]$$
(14)

2.2.6 Wind direction analysis

There are two parameters to be considered in this study which are parameters θ and r. Two equations required in the analysis of wind directions are given by Eq. (15) and (16).

$$\theta = \arctan\left(\frac{\sum \sin \theta_{i}}{\sum \cos \theta_{i}}\right)$$
(15)

$$r^{2} = \left(\frac{\sum \sin \theta_{i}}{N}\right)^{2} + \left(\frac{\sum \cos \theta_{i}}{N}\right)^{2}$$
(16)

where

 θ i = value of wind direction observation

 θ = Average wind direction

N = Number of observations

r = Consistency of direction

The parameter value θ is the average value of wind direction obtained within a given period. The data collected for wind speed direction is the angle value in degrees. θi values are the observed angle values for each day. The parameter value of r shows the consistency of wind direction. The value of r lies between the values 0 and 1 [16]. If the value is equal to 1, then it indicates the direction of the wind is consistent. However, if the value is approaching zero, it shows the direction of the wind is always variable.

3. Results

3.1 Frequency Distribution of Wind Speed

In general, for the year 2017, the most frequent wind speed is at 0.9-1.7 m/s and 1.8 - 2.6 m/s. Both intervals contain more than 85% of the wind speed over the year that is 40.8% and 45.8% respectively while a strong hurricane with a wind speed of about 5.4 m/s, was very rare with less than 1 % over the year 2017.

The results of the analysis show that during wind blows Northeast Monsoon, wind speed frequency is more likely to scatter in high wind speed at 1.8-2.6 m/s especially in the month November, December, January and February. Meanwhile, the current wind blowing of Southwest Monsoon, wind speed is more likely to be the wind at speed of 0.9-1.7 m/s and 1.8-2.6 m/s which are slightly slower than wind speed during the Northeast Monsoon wind as shown in Figure 5.

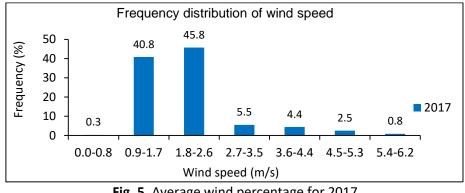


Fig. 5. Average wind percentage for 2017

3.2 Average Wind Speed

Average wind speed is an important element in this study. High average wind speed can provide a high expectation of wind power potential. From the analysis, it was found that wind speed in Kuala Terengganu showed a high average wind speed at the beginning of the year and decreased in midyear and increased again at the end of the year as shown in Figure 6. Highest wind speed is achieved at month October, December, January and February. The average annual wind speed does not indicate high wind speed at 2.1 m/s for 2017.

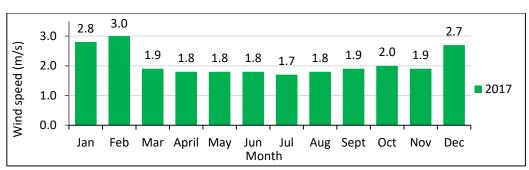


Fig. 6. Average monthly wind speed graph for 2017

3.3 Estimation Average Wind Power Density

The average annual wind power density will give an overview of wind power throughout the year with the potential to generate energy. Using the value of the shape parameters, k and scale parameters, c obtained using the estimation of the Weibull Distribution parameter, the average wind power density per month can be estimated. Figure 7 shows a monthly potential wind power graph for 2017. In general, the average wind power density is greater than 8 W/m². In 2017, the average approximation of wind power density is 43.42 W/m2. This is because there are many estimates of wind power estimates that cannot be calculated. There was some countless wind power in a given month in 2017 because it had a small wind speed variation during the month and caused insufficient data to run regression analysis to obtain the value of parameter c and parameter k (month of March until November). In addition, it cannot be calculated because the value of parameter c and the parameter k obtained is so small.

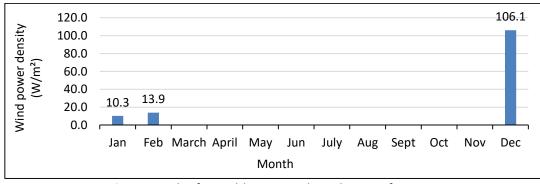


Fig. 7. Graph of monthly potential wind power for 2017

3.4 Analysis of Wind Directions

The average value of wind direction and direction consistency value was calculated and shown in Table 2. Based on Table 2, the annual value of the parameter r is so low for the year 2017. This shows that the wind direction in Kuala Terengganu in 2017 is irregular. In 2017, it shows a relatively consistent and stable wind direction in July, August and September.

	Table 2					
	Average	wind	speed	direction	and	
parameter values						
	Month	θ		r		
	Jan	278		0.03226		
	Feb	58		0.03571		
	March	62		0.03226		
	April	87		0.03333		
	May	338		0.03226		
	Jun	341		0.03333		
	July	28		0.03226		
	August	21		0.03226		
	September	28		0.03333		
	October	319	1	0.03226		
	November	319)	0.03333		
	December	83		0.03226		
	Annual	164		0.03290		

4. Conclusions

The daily wind speed pattern for the year 2017 can be seen that it has a corresponding pattern where it shows high wind speed at the beginning and end of the year. The wind speed frequency is also variable for the winds of the Northeast Monsoon and is almost constant during the south monsoon of the Southwest Monsoon and the Monsoon Transition. The equations obtained from the Weibull Distribution are helpful in determining the potential for wind power in Kuala Terengganu. Overall, the potential of wind power in Kuala Terengganu is not too large. The annual average for the year 2017 is 2.1 m/s. There are several factors that affect wind speed such as monsoon wind, location and speed measuring device. Wind power is high during the Northeast Wind Monsoon season. Energy from the wind can be produced better for the exposed area with the Northeast monsoon wind. Meanwhile, the power of electricity maybe inadequate during the Southwest Monsoon season, but if photovoltaic panels are used for hybrid electric power generation, it is possible to obtain good economic benefits.

Acknowledgement

The authors would like to Malaysian Meteorological Department for providing wind speed data. Also, thanks to UKM for its funding (DPP-2018-002) and (GUP-2018-038).

References

- [1] Dandan, Muhammad Arif, Syahrullail Samion, Mohamad Nor Musa, and Fazila M. Zawawi. "Evaluation of Lift and Drag Force of Outward Dimple Cylinder Using Wind Tunnel." *CFD Letters* 11, no. 3 (2019): 145-153.
- [2] Pichitkul, Auraluck, and Lakshmi N. Sankar. "Aerodynamic Design and Modeling of Large-Scale Offshore Wind Turbines." *CFD Letters* 11, no. 10 (2019): 1-14.
- [3] Sanusi, Nortazi, Azami Zaharim, and Sohif Mat. "Wind energy potential: A case study of Mersing, Malaysia." *ARPN Journal of Engineering and Applied Sciences* 11, no.12 (2016): 7712–7716.
- [4] Ong, H. C., T. M. I. Mahlia, and H. H. Masjuki. "A review on energy scenario and sustainable energy in Malaysia." *Renewable and Sustainable Energy Reviews* 15, no. 1 (2011): 639-647.
- [5] Borhanazad, H., S. Mekhilef, R. Saidur, and G. Boroumandjazi. "Potential application of renewable energy for rural electrification in Malaysia." *Renewable energy* 59 (2013): 210-219.
- [6] Muzathik, A. M., W. B. W. Nik, M. Z. Ibrahim, and K. B. Samo. "Wind Energy at Kuala Terengganu, Malaysia." In International Annual Symposium on Sustainability Science and Management, pp. 297-303. 2009.
- [7] International Renewable Energy (IRENA 2018).
- [8] Global Wind Energy Council (GWEC). 2016.

- [9] Islam, M. R., Rahman Saidur, and N. A. Rahim. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function." *Energy* 36, no. 2 (2011): 985-992.
- [10] Zaharim, Azami, Siti Khadijah Najid, Ahmad Mahir Razali, and Kamaruzzaman Sopian. "Analyzing Malaysian wind speed data using statistical distribution." In *Proceedings of the 4th IASME/WSEAS International conference on energy and environment, Cambridge, UK*, vol. 2426, p. 360370. 2009.
- [11] Albani, A., and M. Z. Ibrahim. "Preliminary development of prototype of Savonius wind turbine for application in low wind speed in Kuala Terengganu, Malaysia." *International Journal of Scientific and Technology Research* 2, no. 3 (2013): 102-108.
- [12] Albani, Aliashim, and Mohd Zamri Ibrahim. "Statistical analysis of wind power density based on the Weibull and Rayleigh models of selected site in Malaysia." *Pakistan Journal of Statistics and Operation Research* 9, no. 4 (2013): 393-406.
- [13] Islam, M. R., R. Saidur, N. A. Rahim, and K. H. Solangi. "Assessment and Analysis of Wind Energy Potential At Mersing, Malaysia." In 3rd International Conference on Science & Technology: Applications in Industry & Education, Universiti Teknologi MARA, Pulau Pinang, Malaysia.
- [14] Schabenberger, Oliver, and Carol A. Gotway. *Statistical methods for spatial data analysis*. Chapman and Hall/CRC, 2017.
- [15] Razali, A. M., M. S. Sapuan, K. Ibrahim, A. R. Ismail, A. Zaharim, and K. Sopian. "Fitting of Weibull distribution to study wind energy potential in Kuala Terengganu, Malaysia." In *Proceedings of the 14th WSEAS International Conference on Applied mathematics*, pp. 284-287. World Scientific and Engineering Academy and Society (WSEAS), 2009.
- [16] Sopian, Kamaruzzaman, MY Hj Othman, and A. Wirsat. "The wind energy potential of Malaysia." *Renewable Energy* 6, no. 8 (1995): 1005-1016.
- [17] Celik, Ali Naci. "A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey." *Renewable energy* 29, no. 4 (2004): 593-604.