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To improve the safety of nuclear power plants, a modern NPP such as Advance Pressurize 
Water Reactor (APWR) is equipped with a safety feature called PCCS (Passive 
Containment Cooling System), where naturally circulating air cools the outer surface of 
the containment which is used to remove decay heat released inside the containment 
vessel. The decay heat from the reactor core will be transferred out through the 
conduction mechanism and the natural convection mechanism on the outer surface of 
the containment vessel. Then, the hot air that forms in the gap between the containment 
and its baffles will rose through the chimney located at the top of the concrete building 
and cold air will enter through the inlet to create a natural circulation cycle. To obtain the 
effectiveness of the use of baffles, as a comparison, it is necessary to analyze the natural 
convection heat transfer on the outer surface of a containment vessel that is not 
equipped with a baffle. In this research, CFD analysis of natural convection on the outer 
surface of the containment of APWR reactor model has been done. Based on the model 
developed, the analysis was done to get temperature and convection heat transfer 
coefficient in the air flow on the containment surface. Heat flux in the containment 
surface varied from 500 W/m2 to 2.000 W/m2 with an increase of 500 W/m2 intervals. 
Based on the analysis results, the correlation equations are also proposed in this paper, 
namely the correlation of natural convection heat transfer for laminar regime on a vertical 
cylindrical with the heat flux constant in the form Nuq = a(Raq)b. 
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1. Introduction 
 

A modern nuclear power plants such as the Advance Pressurize Water Reactor (APWR) or 
generation III+ reactor is equipped with a passive safety system that do not rely on equipment, in 
addition to the active safety systems [1]. One of the passive safety systems available on nuclear 
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power plant reactor such as the AP-1000 reactor is the passive containment cooling system (PCCS), 
where naturally circulating air cools the outer surface of the containment which is used to remove 
decay heat released inside the containment vessel [2-13]. In the PCCS, as shown in Figure 1, the decay 
heat from the reactor core will be transferred to the outside of the containment vessel by the 
conduction mechanism through the containment wall and the natural convection mechanism on the 
outer surface of the containment vessel [10]. Then, the hot air that forms in the gap between the 
containment vessel and its baffles will rose through the chimney located at the top of the concrete 
building and cold air will enter through the inlet to create a natural circulation cycle. The existence 
of the baffle on the outer side of the containment will improve the air circulation. If the rate of heat 
on the containment walls are still increasing, and cooling air by natural convection heat transfer is no 
longer effective, the wall temperature will increase further. In these conditions cooling the 
containment wall will be assisted by water sprayed from the top of the containment. 
 

 
Fig. 1. Passive Containment Cooling System on AP-1000 reactor 
[10] 

 
In previous studies, preliminary research related to natural convection heat transfer between the 

containment and its baffle has been carried out, both numerically and experimentally [14,15]. To 
obtain the effectiveness of the use of baffles, as a comparison, it is necessary to analyze the natural 
convection heat transfer on the outer surface of a containment vessel that is not equipped with a 
baffle. One method that can be used in this analysis is computational fluid dynamics [16-26]. Heat, 
mass, and momentum balance equations are solved with the help of numerical analysis [18,23]. CFD 
is a powerful technique for study of the complex flow and compared to the experiment, results from 
CFD can be often obtained in a shorter time and at a lower cost [19,22]. In this research, CFD analysis 
of natural convection on the outer surface of the containment of AP-1000 reactor model has been 
done. Based on the model developed, the analysis was done to get temperature distribution and 
convection heat transfer coefficient in the air flow on the containment surface. 
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2. Methodology 
2.1 Numerical Methods 
 

The size and geometry of the vertical cylinder and an ellipsoidal that used in the current study 
specifically replicates the size of the containment of AP1000. The containment model was made from 
stainless steel with dimension of 1/40 of the original AP1000’s containment. A sketch of the 
containment model that used in this study and the position of the surface temperature measurement 
are shown in Figure 2. The simulation study of this research analyzes the heat transfer in the surface 
of containment by using a CFD software package (FLUENT). The computational domain covered by 
the CFD analysis consists of volume between the reactor building and the containment vessel model 
that filled with the air. 
 

  
(a) (b) 

Fig. 2. (a) Sketch of the containment model and (b) the location of 
the surface measured temperature 

 
2.2 Boundary and Initial Condition 
 

The heat fluxes on the vertical cylinder and ellipsoidal surface are assumed to be constant and 
uniform, and the surface of the reactor building components is assumed to be adiabatic. Several 
other important assumptions are considered in this study, they are 

i. The simulation has reached its steady operating condition. 
ii. Since the top of containment model is opened to the atmosphere, therefore the pressure at 

the inlet surface is constant at 1 bar, while pressures at other locations are their hydrostatic 
pressures. 

iii. The air inlet enters the test section at room temperature of 300 K. 
iv. The initial velocity of air is 0 m/s. 
v. The gravity is 9.8 m/s2. 

vi. Physical properties of air follow its temperature and obtained from Kreith et al., [27] and 
Holman [28]. 

 
2.3 Governing Equations 
 

Governing equations that are utilized in the theoretical study follow the governing equations that 
are implemented in the CFD. Basically, the equations consist of continuity equation, momentum 
equation and energy equations [29,30]. These equations can be expressed as following [23]: 
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Continuity Equation: The continuity equation, or equation for conservation of mass, can be written 
in the tensor notation as follows: 
 
𝛻(ρ v


) = 0              (1) 

 
where, ρ is air mass density and v


 is velocity vector. 

 
Momentum Equation: Conservation of momentum is described by the following equation: 
 

𝛻(𝜌 v


v


) = - 𝛻𝑝 +  𝛻. 


 + 𝜌 g


           (2) 

 

where, p is the static pressure, 


 is the stress tensor (described below), and 𝜌 g


 is thegravitational 

body force. The stress tensor can be expressed as following: 
 




= - 𝜇((𝛻 v


+ 𝛻 Tv ) - 
3

2
𝛻. v


I)            (3) 

 
where, 𝜇 is the molecular viscosity, I is the unit tensor, and the second term on the right hand side 
Eq. (3) represents the effect of volume dilation. 
 
Energy Equation: The energy conservation equation can be expressed in the following form: 
 

𝛻. ( v


𝜌(ℎ +  2
1 2v )) = 𝛻. ( eff 𝛻 T)           (4) 

 

where, eff  is the effective thermal conductivity, i.e. the fluid thermal conductivity combined with 

the turbulence thermal conductivity, t , defined according to the turbulence model being used, and 

T is temperature of the air. 
 
2.4 Parameter of Natural Convective Heat Transfer 
 

The empirical equation for the correlation of natural convection heat transfer, in the form of a 
Nusselt number (Nuq) as a function of the modified Rayleigh number (Raq) is given in Eq. (5), with x 
is position measured from the upstream end of the vertical cylinder, while a, b, and c are constants 
that would be empirically determined from the simulation data [23,31-33]. 
 

( )bqq RaaNu =              (5) 

 
The Nusselt number is defined by the following equation, 
 

)(

"

−
=

TTk

xq
Nu

s

q              (6) 
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The modified Rayleigh number in Eq. (5) is defined by the following equation, 
 




2

4"

k

xqCg
Ra

p

q =
             (7) 

 
where g is gravity, ρ is density, β is coefficient of expansion, Cp is heat capacity, k is thermal 
conductivity, and υ is kinematic viscosity of the air near the cylinder surface. All physical and transport 
properties (ρ, β, Cp, and υ) are evaluated at the film temperature. For the laminar flow and the 
constant heat flux condition, the value of the modified Grashof number < 1011 [28,34-39]. 

By knowing the geometry of the containment model, all input variables and all measured 
temperatures, Ts and T∞, modified Nusselt and Rayleigh numbers for all measurement location can 
be calculated. The relationship between Nusselt number and Rayleigh number can be determined by 
linear regression analysis. 
 
2.5 Numerical Procedure 
 

Initially, the air outside of the containment model is at rest. The wall and air are at the same 
uniform temperature, T = 300 K. At time t = 0, heat is supplied to the outside surface of containment 
model by means of heat flux imposed along the surface of containment model. It initiates a heat 
transfer process from the containment surface to the air outside. Heat flux in the containment 
surface varied from 500 W/m2 to 2.000 W/m2 with an increase of 500 W/m2 intervals. 

In the current calculations, the flow and heat transfer are considered three-dimensional. Code 
CFD-3D, a general-purpose program for simulating laminar and turbulent flows and heat transfer, is 
used. The schematic of the geometry and the refined mesh is shown in Figure 3 and there are 
1,286,300 non-uniformly spaced meshes in the containment model. 
 

 
 

(a) (b) 

Fig. 3. The schematic of containment model geometry and 
refine mesh 

 
3. Results 
 

In the discussion of numerical simulation results, emphasis is placed on the temperature fields 
around the containment model to clarify the heat transfer mechanism. In the present study, the 
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numerical calculations also focused on calculating the surface temperature of the containment model 
and the air temperature for different heat flux on the surface of the containment model. 
 
3.1 Temperature Distribution 
 

By performing simulations using CFD, it is possible to obtain the surface temperature of the 
vertical cylinder and the air temperature in the space between the container and its cover. Figure 4 
shows the temperature contours of the containment model for a heat flux of 2000 W/m2. The color 
bar in this figure shows temperature values in K. Air receives heat from vertical cylinders as it flows 
upward, so the higher it goes, the higher its temperature. Therefore, the surface temperature of the 
vertical cylinders must also be higher at higher elevations. 
 

 
Fig. 4. Temperature contour in the containment vessel model 

 
Figure 5 shows the influences of heat flux on the surface temperature of containment model. For 

the elevation range (z) > 0.415, the gradient of the surface temperature of containment increased. 
The result is important to be studied further because it is possible that the transition flow has 
occurred in the surface of the containment model. 
 

 
Fig. 5. The influences of heat flux on the surface temperature of 
containment model 
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Figure 6 and Figure 7 show the thermal boundary layer growth near the vertical cylinders. The 
thermal boundary layer is thicker at higher elevations, therefore it can also be expected that heat 
transfer coefficient tends to be smaller at higher elevations. 
 

 
Fig. 6. Distribution of air temperature at z = 10.0 cm 

 

 
Fig. 7. Distribution of air temperature at z = 73.0 cm 

 
3.2 Heat Transfer Coefficient 
 

Figure 8 shows the heat transfer coefficient (h) on the laminar flow regime with a modified 
Grashof number range of 2 x 108 ≤ Gr* ≤ 8 x 1010 or an increment range of 0 ≤ z ≤ 0.415. The difference 
in heat transfer coefficients at various positions is still large. Thus, for laminar flow, the heat transfer 
coefficient used to determine the correlation is the local heat transfer coefficient. Since the 
temperature difference continues to increase with increasing altitude, the heat transfer coefficient 
also continues to decrease with increasing altitude, as shown in Figure 8. For the elevation range (z) 
> 0.415, it is predicted that the transition flow has occurred in the surface of the model. 
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Fig. 8. Heat transfer coefficient for laminar and transition flow with 
variation of heat flux 

 
3.3 Development of Natural Convective Heat Transfer Correlation 
 

Local heat transfer coefficient on the surface of containment model can be calculated by using 
Eq. (8). 
 
qc = hc A (Tsurface – T∞)             (8) 
 

Heat flux values are given as one of the simulation inputs, surface and free-stream condition 
temperature values at any observed height can be obtained from the CFD package. Therefore, the 
local heat transfer coefficient can be calculated. After calculating the local heat transfer coefficients 
at several elevations, the average value of the heat transfer coefficients can be numerically calculated 
according to the following equation: 
 







=

i

i

s

s

A

hA

dA

hdA
h              (9) 

 
By using Eq. (5), Eq. (6), Eq. (7), Eq. (8) and Eq. (9), the relationship between Rayleigh number and 

Nusselt number can be plotted as in Figure 9. 
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Fig. 9. A new correlation curve for natural convection in vertical cylinder 

 
Based on the data shown in Figure 9, the correlation equation obtained from the current study 

can be written as 
 
Log (Nu) = 0.224 Log (Raq) – 0.212 
 
Nu = 0.613 (Raq)0.224                       (10) 
 
for the Rayleigh number range 1.2 x 108 ≤ Raq ≤ 5.6 x 1010 or 1.7 x 108 ≤ Grq ≤ 8 x 1010. 

Figure 9 shows the new natural convection correlation curves for laminar flow regimes in a 
vertical cylinder using Log Nu and Log Raq data. The amount of error obtained is less than 10% with 
the resulting equation: Nu = 0.613 (Raq)0.224. 
 
4. Conclusions 
 

Based on the results obtained from the current simulation study, it can be concluded the 
following important are: temperature distribution around the axial and radial direction of the 
containment model show that the implementation of the containment model in the current study 
can simulate the containment vessel that exist in real nuclear power plant. The current study shows 
that the air flow simulated in this study is in laminar flow regime and a new natural convective heat 
transfer correlation for the laminar flow regime in the form of Nu = 0.613 (Raq)0.224, for the Rayleigh 
number range 1.2 x 108 ≤ Raq ≤ 5.6 x 1010 has been obtained from the present study. 
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