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The aim of this study is to numerically evaluate the Rayleigh-Benard natural convection 
magnetohydrodynamic (MHD) of a non-Newtonian fluid along a square cavity whose 
viscosity depends on the temperature. The rheological behavior of the fluids under 
consideration is represented using the Ostwald-De-Weale power law. Subsequently, the 
dominant equations are transformed into a non-dimensional form and computed using 
the finite volume method (FVM). The literature was used to validate the model, and 
excellent agreement was achieved by varying the fluid characteristics with Prandtl 
numbers 𝑃𝑟, Hartmann numbers, 𝐻𝑎, Rayleigh numbers, 𝑅𝑎, the behavior index, n, and 
inclination angle, Ѳ. The numerical results are discussed in terms of velocity, mean Nusselt 
number 𝑁𝑢, maximum current function |𝛹𝑚𝑎𝑥|, streamlines, and isotherms. The study 
finds that the onset of convection is delayed with increasing values of n and Ha. 
Additionally, it revealed that the flow intensity and heat transfer decrease as the 
Hartmann number rises for both Newtonian and non-Newtonian fluids. At very high Ha 
values, the heat transfer is mainly assured by the conduction regime. Moreover, the 
temperature-dependent viscosity in MHD results in the disappearance of the Centro 
symmetry of the central cell and the migration of the center towards the active wall. 
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1. Introduction 
 

The free convection of fluids under the influence of a magnetic field, known by the scientific term 
magnetohydrodynamics (MHD), is a discipline that has a vast variety of applications in engineering 
as well as in nature, such as cooling electronic components, nuclear reactors, and the process of 
manufacturing materials crystal growth [1-3]. MHD (magnetohydrodynamics) plays a crucial role in 
the biomedical field, including applications such as reducing tissue temperature, separating and 
treating cancerous tumors, aiding in vehicles and drug delivery, as well as in energy storage, building, 
conservation, firefighting, and the production of chemical, food, and metallurgical products [4-7]. 
This is the reason why magnetohydrodynamics is a very important research subject. 
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Before initiating the problematic research on MHD, extensive studies demonstrated the 
occurrence of free convection under the influence of a magnetic field across various fluid types and 
boundary conditions (Dirichlet, Neumann) in both square and rectangular cavities. Research on free 
convection with Newtonian fluids under the impact of a magnetic field has been conducted for both 
horizontal thermal conditions in published papers by Oreper and Szekely [8], Pirmohammadi and 
Ghassemi [9], Ghasemi et al., [10], Kefayati [11], and Alchaar et al., [12] and vertical thermal 
conditions in other published scientific articles by Liao et al., [13], Benzema et al., [14], Zürner et al., 
[15], and Chtaibi et al., [16]. The flow of conductive fluids during natural convection is notably 
affected by the interaction between the magnetic force and buoyancy forces, contributing to flow 
stabilization and the regulation of oscillatory instabilities. Considering the prevalence of non-
Newtonian rheological fluids in industrial installations, there has been a significant focus from 
researchers on studying MHD with this type of fluid. Notably, among the authors who have 
conducted research on MHD with horizontal thermal conditions and non-Newtonian fluids we find 
the published papers by Kefayati [17], Dimitrienko and Li [18], and Makayssi et al., [19], while Liao et 
al., [13] focused on Newtonian fluids while also accounting for the mass transfer. The results highlight 
the considerable impact of magnetic field alignment on streamlines and isotherms within a square 
cavity. They demonstrate that both the average Nusselt number and the maximum flux intensity 
decrease as the magnetic field strength increases. Furthermore, a decrease in the behavior index 𝑛 
leads to a significant rise in fluid circulation intensity and heat transfer. However, the influence of 𝑛 
becomes less pronounced for high values of 𝐻𝑎, particularly in the presence of strong magnetic fields. 
Chtaibi et al., [16] presented a preliminary study obtained from numerical simulations of free 
convection in a square enclosure of the Rayleigh-Benard type filled with a ferrofluid under the impact 
of an outside magnetic field. The equations describing the physical problem were solved using 
Boltzmann method. These results show that increasing the Hartmann number brought the ferrofluid 
flux back to the resting state from a certain threshold value which depends on Ra. Moreover, in 
addition to the intensity of the magnetic field, its direction is also a parameter which plays a non-
negligible role. Naffouti et al., [20] carried out a study on the direction of the magnetic field imposed 
on the flow structure and the rate of heat transfer in a cubic enclosure heated from below they 
noticed that the presence of magnetic field results in the distortion of the forms iso surfaces not only 
in the center of the cavity but also in the vicinity of each side. And that the effect of the magnetic 
field greatly decreases the rate of heat transfer. In fact, the average profile of the Nusselt number 
presents two peaks which may be due to the local appearance of instabilities and bifurcation 
phenomena. It is also obvious that the direction of the magnetic force can help or oppose the buoyant 
force. Ahmed et al., [21] studied the impact of the magnetic field on Rayleigh Benard convection in a 
closed square enclosure which was analyzed by LBM (Lattice Boltzmann Method). Heat transfer 
applications and flow characteristics inside the closed cavity are largely dependent on magnetic field 
strengths, tilt angles, and 𝑅𝑎 values. Heat transport is shown to degrade with an increase in 𝐻𝑎 value 
at various 𝑅𝑎 and 𝑃𝑟 values. For a low Ra value, the magnetic field has little effect, because the 
isotherms begin to intersect one another in parallel due to surpassing of RB convection, and 
conduction mostly dominates the heat transfer inside the container, isotherms become parallel for 
𝐻𝑎 >  25, at 𝑅𝑎 = 105 to 106, but Higher levels of the buoyancy parameter created instability and 
oscillation, making this characteristic invisible. They also observed that for various fluids, the 𝐻𝑎 
numbers significantly affect the 𝑁𝑢 value. Benzema et al., [14] conducted a numerical study to 
demonstrate how the orientation of the magnetic field influences the Rayleigh-Benard convection of 
a nanofluid in a square enclosure. Empirical models were employed to simulate the nanoparticle 
presence in the fluid. The study revealed a direct correlation between the Hartmann number and the 
average Nusselt number, indicating that the introduction of nanoparticles enhances heat transfer 
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only in the presence of a magnetic field. Makayssi et al., [22] numerically studied the impact of an 
ascending magnetic field on thermally driven convection in a square enclosure subjected to a vertical 
thermal gradient and the normal walls are assumed to be insulated. For all values of Hartmann and 
behavior indices, there are several cells in the flow, and the number of cells relies on the Hartmann 
number rather than the behavior index. A rise in Ha causes the intensity of flow and heat transfer to 
decrease for all values of n, Additionally, for dilating fluids at extremely high values of Ha, convection 
goes towards a conduction regime, but for pseudoplastic fluids, it is delayed. A crucial value Rac of 
the Rayleigh number, which relies on both Hartmann and the behavior index, controls the beginning 
of convection. 

However, it is important to note that in the majority of investigations, the characteristics of fluids 
are generally considered to be stable despite temperature fluctuations. But this only applies to a 
limited temperature variation between thermally active surfaces. For many fluids, the change in 
viscosity with temperature is often much higher than for other properties. Among the works that 
show this dependence, we find Hirayama and Takaki [23] and Kaddiri et al., [24]. However, there is 
no research on Rayleigh Benard convection in a square cavity exposed to a magnetic field for a non-
Newtonian fluid whose viscosity varies with temperature. 

To address the scarcity of studies concerning the square cavity exposed to a vertical flow and a 
magnetic field for non-Newtonian fluids with temperature-dependent viscosity, the research will 
concentrate on analyzing the flow structure, its intensity, and the heat transfer characteristics for 
non-Newtonian Rayleigh-Bénard fluids under the influence of a magnetic field. 
 
2. Methodology 
2.1 Formulation of the Problem and Viscosity Model 
 

Figure 1 depicts a two-dimensional square enclosure of dimensions (H', H'), subject to a uniform 

external magnetic field B0
⃗⃗⃗⃗ . The enclosure experiences a flow directed by its horizontal walls, while 

the adiabatic conditions are maintained along the normal walls. 
 

 
Fig. 1. Cavities with applied heat conditions and magnetic 
fields are shown schematically with the corresponding 
markers 

 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 110, Issue 2 (2023) 138-156 

141 
 

Non-Newtonian electrically conductive fluids whose rheological behavior can be modeled using 
Ostwald-de Wael power law model and which, in terms of apparent viscosity, vary with temperature 
may be stated as: 

 

𝜇𝑎′ = 𝐾𝑇 {2 [(
𝜕𝑈′

𝜕𝑋′
)
2

+ (
𝜕𝑉′

𝜕𝑌′
)
2

] + (
𝜕𝑈′

𝜕𝑌′
+

𝜕𝑉′

𝜕𝑋′
)
2

}

𝑛𝑘−1

2

         (1) 

 
where 𝑛𝑘 represents the behavior of the flow, and 𝑘𝑇 represents the consistency index and which 
are generally temperature dependent, However, the change of 𝑛 as a function of temperature is 
negligible. (nk≈constant = n) with respect to that of 𝑘𝑇, this may be calculated using the Frank-
Kamenetskii exponential rule [24]: 
 

𝐾𝑇 = ke−b(𝑇′2−𝑇𝑟
′2)  

 
where 𝑏, also known as the thermal dependence coefficient, is an exponent connected to the flow 
energy activation and the universal gas constant. 𝑘 is the consistency index at the reference 
temperature 𝑇𝑟. For 𝑛 =  1 Newtonian behavior is seen, and consistency is just the viscosity µa = k. 
For 0 <  𝑛 <  1, as the shear rate increases, the effective viscosity diminishes. And the behavior is 
shear thinning (or pseudo plastic). And for 𝑛 >  1, the behavior is shear-thickening (or dilatant), and 
the viscosity rises with the shear rate. 
 
2.2 Equations and Boundary Conditions 
 

The dimensionless parameters employed in this context are: 
 
(𝑋, 𝑌) = (𝑋′, 𝑌′) / 𝐻′, (𝑈, 𝑉) = (𝑈′, 𝑉′) / (𝛼 / 𝐻′), 𝑇 = (𝑇′) / (𝑞′𝐻′ / 𝜆), 𝑃 = 𝑃’/( 𝜌𝛼2/𝐻′2) and 
𝛹 = 𝛹’/𝛼. 
 
For this reason, the controlling equations without dimension are given as follows: 
 
Continuity Equation 
 
𝜕𝑈
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Momentum Equation 
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Energy Equation 
 

𝑈
𝜕𝑇

𝜕𝑋
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𝜕𝑌
=

𝜕2𝑇
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with 
 

𝜇𝑎 = 𝑒−𝑚𝑇 {2 [(
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𝜕𝑋
)
2

+ (
𝜕𝑉
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2
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𝜕𝑈

𝜕𝑌
+

𝜕𝑉
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)
2

}

𝑛−1

2

         (6) 

 
The current function 𝛹 is used to study the flux structure: 
 

𝑈 =
𝜕𝛹

𝜕𝑋
     ;     𝑉 = −

𝜕𝛹

𝜕𝑌
            (7) 

 
Dominant Parameters 
 

Furthermore, to the flow behavior index, four other significant factors without units are present 
in the determining formulae. These factors are the Rayleigh, Prandtl, Pearson and Harman numbers 
calculated as follows: 
 

𝑅𝑎 =
𝑔𝛽𝐻′(2+2𝑛)𝑞′

(𝐾/𝜌)𝛼𝑛𝜆
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1
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= −
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𝐾𝑇
𝐾

)

𝑑𝑇
  ;   𝐻𝑎 = 𝐵0

′𝐻′𝑛 (
𝜎

𝑘
𝛼1−𝑛)

1

2
  (8) 

 
The Pearson number m evaluates the impact of temperature variation on apparent viscosity. This 

is a new quantity that is taken into account in this analysis. In the concrete context, the non-
dimensional parameters of the corresponding limits are: 
 

𝑈 = 𝑉 = 𝛹 =
𝜕𝑇

𝜕𝑌
+ 1 = 0  𝐹𝑜𝑟 𝑌 = 0 𝑎𝑛𝑑 𝑌 = 1  

 
and 
 

𝑈 = 𝑉 = 𝛹 =
𝜕𝑇

𝜕𝑋
= 0  𝐹𝑜𝑟 𝑋 = 0 𝑎𝑛𝑑 𝑋 = 1         (9) 

 
2.3 Heat Transfer 
 

The formula shown below is utilized to calculate the average Nusselt number, which measures 
the natural convection flux contribution to the overall heat transfer: 
 

𝑁𝑢 = ∫
1

∆𝑇ℎ

1

0
𝑑𝑋                       (10) 

 
with, ∆𝑇h is the temperature difference between the two horizontal walls. 
 
2.4 Numeric 
 

Previous Eq. (2) to Eq. (5) associated with boundary conditions Eq. (9) can be expressed generally 
as follows [11]: 
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𝜕

𝜕𝑋
(𝑈∅ − ɼ

𝜕∅

𝜕𝑋
) +

𝜕

𝜕𝑌
(𝑉∅ − ɼ

𝜕∅

𝜕𝑌
) = 𝑆∅                    (11) 

 
with ∅ the variable which can be either T, U or V, to find the equation of quantity of motion ɼ is 
replaced by Prμa, and for the energy it is 1, and S∅ is the source term. The Eq. (12) must be converted 
into a linear system that results in: 
 
𝐴𝑃∅𝑃 = 𝐴𝑊∅𝑊 + 𝐴𝐸∅𝐸 + 𝐴𝑆∅𝑆 + 𝐴𝑁∅𝑁 + 𝑆∅                   (12) 
 
with ∅P are variables U, V and Ƭ at point P and Eq. (12) is the final version of the discretized equation 
relating the variable to its nearby grid point. ΔV = ΔX x ΔY where ΔX and ΔY are the pitch of the X and 
Y directions. With the use of the line-by-line method based on the tridiagonal matrix algorithm 
(TDMA), the discretized system created for control volume is composed of a series of linear algebra 
equations that are then simply resolved [25-27]. The SIMPLE method resolves the velocity-pressure 
relationship [28]. The numerical code is implemented using Fortran and the solution convergence is 
obtained when the maximum residual of all the governing equations is less than 10−6. 
 

𝑀𝐴𝑋 (
(∅)𝑛+1−(∅)𝑛

(∅)𝑛+1 ) ≤ (10)−6                      (13) 

 
2.5 Validation of the Numerical Code Findings Used 
 

Table 1 compares the numerical findings for both Newtonian and non-Newtonian fluids with the 
results from Turan et al., [29]. The considered geometry is a square submitted to imposed constant 
temperatures on the vertical walls. Table 2 and Table 3 provide comparisons in a similar configuration 
but this time in the presence of the magnetic field with references of Makayssi et al., [19] and 
Pirmohammadi et al., [30] respectively. The three tables confirm the excellent agreement with all 
comparisons indicating that the highest error does not exceed 1.25% testifying of the current 
numerical code accuracy. 
 

 Table 1 
 The values numerical results at 𝑅𝑎 = 104 for different value of 𝑛 and 𝑃𝑟 = 100 

 Present Works Turan et al., [29] 

 Nu Dev (%) UMAX Dev (%) Nu UMAX 

n=1.8 1.030 0 1.575 0.38 1.030 1.569 
n=1 2.123 0.09 14.361 0.13 2.121 14.342 
n=0.6 3.472 0.02 42.135 0.05 3.471 42.157 

 
 Table 2 
 Numerical results at results at 𝐻𝑎 = 30 , Ѳ= 0°, 𝑛 = 1 , and various values of 𝑅𝑎 

 |𝚿𝒎𝒂𝒙|    𝐍𝐮   Dev (%) 

𝑹𝒂 Present 
study 

Makayssi et 
al., [19] 

Pirmohammadi 
et al., [30] 

Present 
study 

Makayssi et 
al., [19] 

Pirmohammadi 
et al., [30] 

Present 
study 

𝟏𝟎𝟑 0.127 0.128 0.128 1.001 1 1.002 0.78 

𝟏𝟎𝟒 1.193 1.192 1.193 1.175 1.175 1.183 0.68 

𝟏𝟎𝟓 5.716 5.698 5.710 3.121 3.132 3.151 0.31 

𝟏𝟎𝟔 14.149 14.088 14.088 7.943 7.899 7.907 0.96 
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Table 3 

Numerical results at 𝑅𝑎 = 105, Ѳ= 0°, 𝑛 = 1 , and for different values of 𝐻𝑎 
 |𝚿𝒎𝒂𝒙|    𝑵𝒖   Dev (%) 

𝐇𝐚 Present 
study 

Makayssi et 
al., [19] 

Turan et 
al., [29] 

Present 
study 

Makayssi et 
al., [19] 

Turan et 
al., [29] 

Present 
study 

0 11.194 11.177 11.053 4.712 4.713 4.738 1.25 
15 8.525 8.498 8.484 4.114 4.121 4.143 0.70 
30 5.716 5.698 5.710 3.121 3.132 3.150 0.92 
45 3.829 3.818 3.825 2.344 2.355 2.369 1.06 
60 2.627 2.621 2.623 1.831 1.840 1.851 1.09 

 
2.6 Grid Size 
 

Table 4 studies the stability of the results as a function of the number of grid points to choose a 
mesh size that leads to better accuracy and optimal computation time The results obtained for 𝑅𝑎 =
104, 𝑛 = 0.6 , Ѳ = 0° and 𝐻𝑎 = 10 show that the 120*120 grid is sufficient to accurately simulate 
the problem at hand. 
 

Table 4 

Maximum Stream function |𝛹𝑚𝑎𝑥| and Nusselt number 𝑁𝑢 inside the enclosure for 
different mesh sizes at 𝑅𝑎 = 104, 𝑛 = 0.6 , 𝑡ℎ𝑒𝑡𝑎 = 0 and 𝐻𝑎 = 10 
Grids Nu Dev (%) |Ψmax|  Dev (%) 

80×80 2.509 ----- 4.230 ----- 
120×120 2.507 0.07 4.230 0 
200×200 2.505 0.07 4.227 0.07 
300×300 2.500 0.19 4.226 0.02 

 
3. Results 
 

In this part, the results are presented and discussed according to the previously established 
dimensionless parameters, namely the Prandtl number, 𝑃𝑟, the Pearson number, m, 0 ≤  𝑚 ≤  10, 
the Hartmann number, 𝐻𝑎, the behavior index flow rate, 𝑛, which varies in the range 0,6 ≤  𝑛 ≤
1,4 and the Rayleigh number, 𝑅𝑎. Initially, in order to prevent difficult scenarios caused by instability 
and bifurcations, proper study parameters were chosen. Table 5 presents the effect of 𝑃𝑟 for 
Newtonian and non-Newtonian fluids considered in this study, from the analysis of the table it can 
be clearly drawn that any increase in 𝑃𝑟 from 60 no longer has effect on |𝛹𝑚𝑎𝑥| and 𝑁𝑢. Therefore, 
this work adopts numerical simulations with 𝑃𝑟 = 100, Lamsaadi et al., [31] showed that this fact is 
true even when there is no magnetic field. 
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Table 5 
Effect of the Prandtl number 
n Pr Ha=20 Ha=40 Ha=60 

|𝛹𝑚𝑎𝑥| Nu |𝛹𝑚𝑎𝑥| Nu |𝛹𝑚𝑎𝑥| Nu 

0.6 1 7.27 3.76 3.3 3.06 1.86 2 
20 6.96 4.19 3.28 3.13 1.86 2.01 
60 6.95 4.20 3.28 3.13 1.86 2.01 
100 6.95 4.20 3.28 3.13 1.86 2.01 

1 1 6.53 2.82 3.26 2.32 1.79 1.69 
20 6.53 2.85 3.26 2.32 1.79 1.69 
60 6.53 2.85 3.26 2.32 1.79 1.69 
100 6.53 2.85 3.26 2.32 1.79 1.69 

1.4 1 2.82 2.14 2.32 1.76 1.69 1.4 
20 2.85 2.14 2.32 1.76 1.69 1.4 
60 2.85 2.14 2.32 1.76 1.69 1.4 
100 2.85 2.14 2.32 1.76 1.69 1.4 

 
Figure 2 displays the variation of the critical number of Rayleigh, 𝑅𝑎𝑐, that is to say, the threshold 

of appearance of the convection, according to the 𝑛 for various values of 𝐻𝑎, we note that for any 
value of 𝐻𝑎, 𝑅𝑎𝑐 is a raising function of 𝑛, which means that shear-thinning behavior anticipates 
convection, whereas shear-thickening has the opposite result. We see that, for a given 𝑛, a rise in 𝐻𝑎 
leads to an increase in 𝑅𝑎𝑐, expressing the fact that the MHD tends to eliminate convection. 
However, the optimal Rayleigh value for studying Rayleigh Benard convection in interaction with the 
magnetic field is 𝑅𝑎 = 105. 
 

 
Fig. 2. Evolution of 𝑅𝑎𝑐 with 𝑛, for various values of 𝐻𝑎 

 
Figure 3 and Figure 4 show the streamlines and isotherms for 𝑅𝑎 = 105, Ѳ = 0°, and different 

values of 𝐻𝑎. It is evident that a rise in 𝐻𝑎 causes major qualitative and quantitative changes in the 
intensity and the flow structure in the convective regime in the presence of the magnetic field. For a 
given value of 𝑛, the more Ha increases, the more the streamlines tilt, and this is due to the influence 
of the magnetic force, which modifies the trajectory of the convective movement of the fluid. The 
greatest qualitative changes are observed in the central region of the cavity. In fact, the central cells 
are horizontal for 𝐻𝑎 = 0, which take an oval shape for 𝐻𝑎 = 60 and straighten until approaching 
the vertical shape for 𝐻𝑎 = 100, and by soot, it has become more and more tight next to the vertical 
walls, this change is significant when the power law index is decreased, the quantitative changes is 
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very intense because the flow intensity is reduced significantly from 36 to 0.1 when the number Ha 
further increases up to 𝐻𝑎 =  100. Overall, the influence of the magnetic force is contrary to that of 
the buoyancy force, this demonstrates that the coupling of Rayleigh Benard convection and the 
magnetic field reinforces the flow braking phenomena. 
 

 n=0.6 n=1 n=1.4 

(a) 

   

(b) 

   

(c) 
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(d) 

   
Fig. 3. Streamlines for 𝑅𝑎 = 105, Ѳ = 0˚, for different values of n ((left) n =0.6, (middle) n =1, (right) 
n =1.4) and various values of Ha ((a) (Ha=0) 0, (b) (Ha= 20), (c) (Ha=60), (d) (Ha=100)) 

 
 n=0.6 n=1 n=1.4 

(a) 

   

(b) 

   

(c) 
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(d) 

   
Fig. 4. Isotherms for 𝑅𝑎 = 105, Ѳ = 0˚,for different values of n ((left) n =0.6, (middle) n =1, (right) 
n =1.4) and various values of Ha ((a) (Ha=0) 0, (b) (Ha= 20), (c) (Ha=60), (d) (Ha=100)) 

 
Due to the strong coupling between the velocity and temperature fields, the qualitative and 

quantitative effects on the temperature distribution inside the cavity, accompanying the increase in 
the Hartmann number as can be seen in Figure 4, Indeed, in the absence of the magnetic field, the 
distortions of the isotherms are observed and become more and more attenuated in the central 
region of the cavity by the incrementation of 𝐻𝑎, and at a very large value of 𝐻𝑎, the isotherms are 
almost parallel to the walls horizontals, which also subsequently causes a sharp drop in the 
temperature gradients on the horizontal walls of the enclosure, indicating that the convection of the 
fluid is dampened with the increase in the magnetic field and that most of the heat transfer in the 
cavity does not take place in the form of thermal convection but in the form of thermal conduction. 

Figure 5 shows the effect of the Hartmann number on flux intensity and heat transfer for 𝑅𝑎 =
105,𝜃 = 0° and different values of 𝑛. The increase in Ha causes a very strong decrease in |𝛹𝑚𝑎𝑥| and 
Nu, this effect becomes more pronounced for 𝑛 = 0.6 than for 𝑛 = 1.0 and 𝑛 = 1.4, this is due to 
the increase in apparent viscosity with 𝑛, which weakens the flux intensity, where the magnetic field 
no longer has influence. Nevertheless, as can be seen from this figure, when 𝐻𝑎 increases the 
difference between the curves relative to 𝑛 = 0.6, 𝑛 = 1 and 𝑛 = 1.4 decreases, this shows that the 
increase in magnetic field strength suppresses the effect of rheological behavior on convective flux 
intensity and heat transfer. 
 

  
Fig. 5. Variation of the Nusselt number and the maximum of stream fonction at 𝑅𝑎 = 105, Ѳ = 0˚ 
with the variation of Hartmann number for different values of 𝑛 
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Figure 6 shows the distribution of velocities v in the middle of the cavity with a Rayleigh number 

of 𝑅𝑎 = 105 for different power law indices and Hartmann numbers. It shows that an increase in the 
intensity of the magnetic field leads to a very strong decrease in the speed in the middle of the cavity, 
in particular, when n=0.6 instead of the behavioural fluid of index 𝑛 > 1, because when the law index 
power increases, the force of resistance to viscous flow becomes stronger with respect to buoyancy, 
which leads to a decrease in the convection process and subsequently leads to the weakening of the 
magnetic force. These trends confirm the effect of the Hartmann number and the behavior index on 
the flow and the heat transfers already discussed. Regarding the profiles of T in the central part of 
the enclosure presented in Figure 7, we can also notice that these profiles become less curved with 
an increase in the value of 𝑛 at the heart of the enclosure, the temperature are almost straight lines 
for high values of Ha which leads to a purely conductive regime. Moreover, it is evident that the effect 
of n on the temperature distributions decreases remarkably with increasing Ha. 
 

n=0.6 n=1 n=1.4 

   
Fig. 6. Normal Velocity profile at the center of the cavity (𝑦 = 1/2) for various values of the Hartman 

number Ha, behavior index n at 𝑅𝑎 = 105, Ѳ = 0˚ 

 
n=0.6 n=1 n=1.4 

   
Fig. 7. Temperature at the center of the cavity (𝑦 = 1/2) for various values of the Hartman number 

Ha, behavior index n at 𝑅𝑎 = 105, Ѳ = 0˚ 

 
Figure 8 and Figure 9 contain the streamlines and the isotherm at 𝑅𝑎 = 105, 𝐻𝑎 = 40, and for 

different angles of inclination. First, one can easily notice that the distributions of the isotherms and 
the streamlines are almost identical in that where Ѳ = 0° and Ѳ = 180°, which is proof of the 
periodic changes of π. It can be seen that the effect of the angles of inclination on the thermal and 
dynamic structure is considerable, because an elongation is very important and can be noticed in the 
vertical direction when Ѳ = 0° and separates in the horizontal direction when Ѳ = 90°, while the 
flow field distributions at Ѳ = 45° and Ѳ = 90° are more complex, which mainly depends on a 
consequence of the competition between buoyancy and magnetic force. These phenomena are 
explained by the combined effect of the magnetic force and the buoyancy force. When Ha is high 
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enough, the flux is mainly driven by the magnetic force, which is perpendicular to the direction of the 
magnetic field. For example, when Ѳ = 0°, the magnetic force acts only in the direction (y); 
considering the symmetry, the velocity u is dominant at the vertical centreline due to 𝑣 =  0, which 
means that the total velocity is almost parallel to the magnetic field and therefore the magnetic force 
is close to zero, because the magnetic force can reduce the effect of buoyancy; as a result, conductive 
fluids are stretched larger near the horizontal axis, for the same reason, The Lorentz force acts in the 
horizontal direction (x) in the case where Ѳ = 90° or The velocities close to the horizontal walls are 
dominated by the vertical component of velocity v, and the horizontal component of velocity is 
relatively weak, which results in the dominance of the buoyancy force compared to the magnetic 
force which can be translated by an elongation of the cells towards the vertical walls. As a result, the 
streamlines on the side walls are denser (faster speed), on the contrary; the streamlines at the top 
and bottom of the walls are spaced out (lower speed). 
 

 n=0.6 n=1 n=1.4 

(a) 

   

(b) 

   

(c) 
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(d) 

   
Fig. 8. Streamlines for 𝑅𝑎 = 105, Ha=40, different values of n ((left) n =0.6, (middle) n=1, (right) n=1.4) 
and various values of Ѳ ((a) (Ѳ =45) 0, (b) (Ѳ = 90), (c) (Ѳ =135), (d) (Ѳ =180) 

 
 n=0.6 n=1 n=1.4 

(a) 

   

(b) 

   

(c) 
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(d) 

   
Fig. 9. Isotherms for 𝑅𝑎 = 105, 𝐻𝑎 = 40, different values of n ((left) n=0.6, (middle) n=1, (right) 
n=1.4 and various values of Ѳ ((a) (Ѳ = 45) 0, (b) (Ѳ =  90), (c) (Ѳ = 135), (d) (Ѳ = 180) 

 
To study the influence of the directions of the magnetic field, the Nusselt number has been 

plotted as a function of the angle of magnetic incidence in Figure 10, under the conditions of 𝑅𝑎 =
105 and 𝐻𝑎 = 40. For a value of behavior index 𝑛 = 0.6, we note that Nu exhibits periodic 
oscillations and that the Nusselt numbers reach maximums at Ѳ = 0°, 180° and 360° and minimum 
values in particular around the values of Ѳ = 45°, and Ѳ = 270°. For the fluid of behavior index 𝑛 =
 1.4, the number of Nusselt increases monotonically with the angle of the magnetic field, which varies 
between 𝜃 =  45˚ and 𝜃 =  120˚, and for the change of angle, which varies between 𝜃 =  225° and 
𝜃 =  315°, then drops to a minimum value between 𝜃 =  120° and 𝜃 =  225°, because the 
magnetic force will produce resistance in the opposite direction to the flow of fluids. 
 

  
Fig. 10. Variation of Nusselt number and maximum Heat Transfer with the magnetic field inclination 

angle for 𝑅𝑎 = 105, 𝐻𝑎 = 40 and various values of 𝑛 

 
Figure 11 represents the streamlines, for 𝑅𝑎 = 104, 𝐻𝑎 = 35, and for different values of the 

behavior index 𝑛, with and without temperature variation as a function of the viscosity. We note that 
when the viscosity of the fluids changes as a function of temperature, the symmetry of the convective 
cells begins to disappear with the increase in 𝑛, and the core of the cells migrates downwards, which 
leads to the formation of two zones, one stagnant, close to the horizontal wall bottom, and the other 
active area near the top of the horizontal wall. 
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 n=0.6 n=1 n=1.4 

m=0 

   
 𝑁𝑢 = 3.45 , |𝛹𝑚𝑎𝑥| = 3.84 𝑁𝑢 = 2.45 , |𝛹𝑚𝑎𝑥| =3.82 𝑁𝑢 = 1.89 , |𝛹𝑚𝑎𝑥| =3.26 

m=10 

   
 𝑁𝑢 = 3.31, |𝛹𝑚𝑎𝑥| =4.03 𝑁𝑢 = 2.33 , |𝛹𝑚𝑎𝑥| = 3.77 𝑁𝑢 = 1.76, |𝛹𝑚𝑎𝑥| = 3.25 

Fig. 11. Streamlines for Ra = 105, Ѳ = 0˚,for different values of n ((left) n=0.6, (middle) n=1, (right) 
n=1.4) and various values m and at Ha=35 

 
Figure 12 shows the evolution of the speed according to the number of Hartmann 𝐻𝑎, and 𝑚, 

one can quickly notice that the velocity increases when the intensity of the magnetic field lacks 
whatever the nature between the viscosity and the temperature, which clearly shows the braking 
effect produced by the magnetic field. The velocity figure also shows that the rise of m causes the 
formation of two zones, one active near the bottom wall and the other stagnant along the top wall, 
due to the decrease in viscosity apparent in the active area, the elevation of 𝑚 also disturbs the 
center symmetry of the cell which migrates towards the active zone, but in the other zone where the 
thermo-dependent fluid evacuates more heat, which leads to better cooling of the cavity, which 
pushes subsequently to the rise in the apparent viscosity, which clearly explains the weakening of 
the velocity in the stagnant zone. 
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Fig. 12. Normal velocity profiles in the cavity center for 
various Hartman, and Pearson Numbers at 𝑛 = 1.4 and at 

𝑅𝑎 = 105 and Ѳ = 0 

 
4. Conclusions 
 

The present numerical work implements the (FVM) to study free Rayleigh Benard convection in a 
square cavity charged with non-Newtonian conductive fluids in the viscosity depends on the 
temperature, and which is subjected to an external magnetic flux. The examination of the 
determining parameters: the Rayleigh number 𝑅𝑎, the index of behavior, 𝑛, Prandtl number, 𝑃𝑟, 
Hartmann number 𝐻𝑎, magnetic field inclination angle, Ѳ, and the Pearson number, 𝑚, on the Fluid 
flow and heat transfer characteristics lead to the following main results:  

(i) The onset of convection is controlled by the critical value 𝑅𝑎𝑐 of the Rayleigh number, which 
depends on both 𝐻𝑎 and 𝑛. This start is delayed when 𝑛 and 𝐻𝑎 increase. 

(ii) The intensity of the flux and the heat transfers decrease with the improvement of the 
Hartmann number for Newtonian and non-Newtonian fluids, and at very high values of 𝐻𝑎, 
the convection 

(iii) tends towards a conduction regime. 
(iv) The improvement in the behavior index 𝑛 decreases the heat transfer and the intensity of 

the flow, and this is due to the increase in the apparent viscosity, which leads to the slowing 
down of the movement of the fluid. This effect of 𝑛 begins to disappear for a high Hartmann 
number. 

(v) The orientation of the applied magnetic field has a very large effect on the heat transfer and 
the intensity of the flow. It is also obvious that the orientation of the magnetic field can help 
or oppose the buoyancy force, which leads to an elongation of the convection cells in the 
zones where the magnetic force cancels each other. 

(vi) The dependence of viscosity on temperature for MHD leads to the formation of two zones, 
one active near the hot wall and the other next to the cold wall, and this tendency disappears 
with the weakening of the behavior index 𝑛. This phenomenon is characterized by the 
disappearance of the Centro symmetry of the central cell and the migration of the center 
toward the active wall. 
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Based on the findings outlined, the importance of this investigation to the scientific community 
lies in its valuable insights into the interactions between non-Newtonian conductive fluids, magnetic 
fields, and thermal conditions. These findings contribute to a deeper understanding of the complex 
mechanisms underlying Rayleigh-Benard convection, offering crucial guidance for the design and 
optimization of heat transfer systems in various industrial and engineering applications. 
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