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The primary objective of this study deals with numerical analysis of gyrotactic 
microorganisms in Williamson nanofluids under the influence of chemical reaction 
and variable thermal conductivity along with porous medium. Using the similarity 
transformations, the non-linear PDEs are transformed into ODEs. RK-Fehlberg with 
a shooting strategy utilised to address ODEs with the influence of MATLAB software. 
Effect of Permeability, Prandtl number, magnetic field, Williamson parameter, 
Schmidt number, Peclet number, the profiles of velocity, temperature, 
concentration, and motile microbe density are explored in detail, and the potential 
results are displayed in graphs. The density number, Nusselt number, skin friction 
coefficient, and Sherwood number displayed in tables. 
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1. Introduction 
 

Recently researchers studied promoting on the temperature suspension (inferior to 100 nm in 
size) of immaculate liquids i.e., water, oils and other nanofluids. In fresh water these nanoparticles 
that is metallic copper, silver, etc., carry out and manage the transfer of heat, the kind of heat carrier 
and heat exchangers depends critically on these liquids. Choi and Eastman [1] proposed as non-
Newtonian flows are developed and used, nanoparticles are employed to boost thermal conductivity 
of fluids. Khan et al., [2] explored the structure of nanofluids in many contexts and forms. The second 
rule of thermodynamics is used to study how entropy increases and decreases when temperature 
radiation interacts with nanofluids moving via slender ends. 

Nield and Kuznetsov [3] developed Buongiorno work. Both authors use Thermophoretic and 
Brownian terms went to electrical equations to investigate how Brownian movement and 
thermophoresis affect these equations by putting forth a number of fresh, potentially problematic 
scenarios. A vast number of nanoparticles were used to study biological convection [4,5]. 
Mallikarjuna et al., [6] studied continuous biomarkers of nanofluids and contracted microbes in a 
vertical kiln, dimensionless variation to convert integrating experimental issues into non-intrusive 
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models, and the distinction a comparison of finite and numerical numbers. A mathematical 
framework was provided to analyse the impact of secondary velocity slides on horizontal filter plates 
[7]. Shahid et al., [8] developed the paper provides a numerical assessment of water-based nanofluid 
flow with MHD, heat, and mass transfer across a porous permeable shrinking/stretching sheet of 
gyrotactic bacteria in motion. In the current study, the effect of the magnetic field, heat radiation, 
and chemical reaction taken together into account. Ahmed et al., [9] investigated the fluids ability to 
transport heat through an increasingly extending curved surface when there is varying thermal 
conductivity. Studying the fundamental objective of this investigation is to determine how 
Williamson fluids travel in heat across an exponentially stretched porous curved surface with a heat 
source. Mjankwi et al., [10] studied because unstable MHD flocks of nanofluids have been reported 
to possess varying in terms of both thermal conductivity and fluid characteristics and the 
temperature change-related diffusion coefficient, across an inclined stretched sheet that is 
permeable in the heat radiation and chemical response are present. The issue has a significant impact 
on the cooling technique for the goal of enhancing heated object mechanical characteristics sheet 
that can't be cooled using conventional techniques based on the fundamentals. Williamson nanofluid 
MHD boundary layer flow is introduced the effects of the slip parameters, and the velocity power 
index parameter are investigated throughout an extended sheet with a varying thickness [11]. It is 
possible to run the bio convection whenever there is non-Newtonian nanofluid to improve thermal 
efficiency and extrusion mechanisms in a variety of shipment activities [12]. Convergent approach 
has been used to solve the generated flow problem analytically. Khan et al., [13] investigated 
Williamson nanofluid with gyrotactic microorganisms and heat radiation under bio convection MHD 
flow numerical analysis of a new iterative technique. It is numerically examined how radiative and 
viscous dissipation influence a hydro nanofluid flow with viscous MHD of an upright plate in a study 
by Lakshmi et al., [14]. Various effects of convective mix Jeffery fluid movement across an extended 
sheet were studied by Madhavi [15]. Some recent investigations on gyrotactic microorganisms were 
carried out by many researchers [16-19]. The impact of key parameters on the flow of Casson 
nanofluid in a liquid thin film over an elongated sheet was investigated by Vijaya et al., [20]. 

Madhavi and Sravanthi [19] investigated flow of nanofluid in the presence of gyros on a stretched 
surface subjected to magnetic field and activation energy. The upfront intension of this study is to 
explore the advances in electrically conducting Casson fluid induced due to a porous elongated 
surface taking Arrhenius activation energy [21]. In the present paper, the numerical analysis of 
gyrotactic microorganisms in Williamson nanofluids in the presence of chemical reaction and variable 
thermal conductivity were investigated. 
 
2. Methodology 
 

The current work considers a two dimensional, steady of numerical analysis of gyrotactic 
microorganisms in Williamson nanofluids in the presents of chemical and variable thermal 
conductivity along with porous media. The flow is modelled with the influence of gyrotactic 
microorganisms and bio convection beneath the influence of radiative flow of heat. In the stretching 

sheet the Cartesian coordinates x-axis guidance with the velocity ( )0

m

wu u x b= + . Since the 

stretchable sheet surface's normal direction is along the y axis. The surface thickness is a function of 

( )
1

2

m

y A x b
−

= + , where A≥0 represents the surface's constant and m is the velocity power index, 𝑇𝑤 

and 𝐶𝑤 are and focus of the wall. 𝑇∞ and 𝐶∞ are ambient temperature and concentration. 
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Consider the nanofluid that is unaffected by the direction and velocity of swimming 
microorganisms. Low Reynolds number, B-strength magnetic field was applied in the direction of the 
y-axis. Figure 1 depicts a flowchart setup. The nonlinear PDEs can be given below in Eq. (1) to Eq. (5). 
 

 
Fig. 1. Geometry of the Problem  
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In the equations above, the variables v, 𝐷𝐵 , T, C, T∞, C∞, 𝑏𝑊𝑐, 𝐷𝑚, 𝑁 stand for, respectively, 

kinematic viscosity, Brownian diffusion coefficient, temperature and concentration of fluid, ambient 
temperature and concentration, cell swimming speed, diffusivity of microorganism, and 
microorganism concentration. Following are the boundary conditions of the surface away from the 
sheet: 
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The radiation is provided by 
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By ignoring the higher order of T∞ and extending the Taylor's series at that temperature T∞. 
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The non-dimensional conditions are defined as below 
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Eq. (1) to Eq. (5) are translated into the following dimensionless non-linear ODEs via similarity 

transformations (10). 
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The boundary conditions are given below 
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Dimensionless coordinates of technical interest like skin friction, Nusselt and Sherwood numbers 

and regional density index of motile microbes may be defined as 
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Determining the parameters in the following equation. 
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 ,  𝑁𝑐 =

𝜌𝑝 𝐶𝑝(𝐶𝑤−𝐶∞)

𝜌𝑐
 , Rd=

4𝜎∗𝑇∞
3

𝑘∗𝑘∞
,   Pr = 

𝜈

𝛼
,    

Sc = 
𝜈

𝐷𝐵
,    𝐾𝑝= 

𝜈𝑥

𝑘𝑢𝑒
, M = 

𝜎𝐵0
2𝑥

𝜌𝑈0(1+𝑚)
 ,  𝛿 = 

Tw−T∞

T∞
, 𝐾𝑟= 

𝐾

𝜌𝑐𝑝
(𝑇𝑤 − 𝑇∞) ,  𝜆 = 𝑇√

𝑈0
3(𝑥+𝑏)3𝑚−1(𝑚+1)

𝜈
 .             (17) 

 
2.1 Numerical Solutions 
 

Employing the boundary layer theory, The PDEs (1) to (5) are changed into nonlinear coupled 
ODEs. By using boundary conditions (15), these closely related ODEs (11) to (14) are numerically 
solved using MATLAB's renowned BVP4C solver. The three-stage Lobatto IIIa collocation algorithm 
used by the BVP4C solver yields a C1 continuous solution that is 4th-order accurate over the whole 
domain. 
 
2.2 Runge-Kutta Method 
 

The Runge-kutta method is applied before that, first apply the PDEs into ODEs of first order. Let 
us consider 𝑥1 =  𝜂, 𝑥2 = f, 𝑥3 = 𝑓

′, 𝑥4 = 𝑓
″, 𝑥5 = 𝜃, 𝑥6 = 𝜃

′, 𝑥7 = Ø, 𝑥8 = Ø
′, 𝑥9 = 𝐺, 𝑥10 = 𝐺

′. 
Following system is obtained. 
 

(

 
 
 
 
 
 
 
 

𝑥1
′

𝑥2
′

𝑥3
′

𝑥4
′

𝑥5
′

𝑥6
′

𝑥7
′

𝑥8
′

𝑥9
′

𝑥10
′ )

 
 
 
 
 
 
 
 

=

(

 
 
 
 
 
 
 
 
 
 
 

1
𝑥3
𝑥4

1

1+𝜆𝑥4
(
2𝑚

𝑚+1
𝑥3
2 + (𝑀 +𝐾𝑝)𝑥3 − 𝑥2𝑥4)

𝑥6
1

1+∈𝑥5+
4

3
𝑅𝑑
(−𝑃𝑟𝑥2𝑥6 −

𝑁𝑐

𝐿𝑒
𝑥6𝑥8−∈ 𝑥6

2−
𝑁𝑐

𝐿𝑒𝑁𝑏
𝑥6
2 −𝑀𝑃𝑟𝐸𝑐𝑥3)

𝑥8

−
1

𝑁𝑏
𝑥6
′ − 𝐿𝑒𝑃𝑟 𝑥2𝑥8 + 𝐾𝑟𝑥7

𝑥10

−𝑆𝑐√
(𝑚+1)

𝑚−1
𝑥2𝑥10 + 𝑃𝑒(𝑥8𝑥10 + (𝑥8

′ (𝑥9 + 𝛺)) )

 
 
 
 
 
 
 
 
 
 
 

               (18) 
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The boundary conditions are 
 

(

 
 
 
 
 
 
 

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6
𝑥7
𝑥8
𝑥9
𝑥10)

 
 
 
 
 
 
 

= 

(

 
 
 
 
 
 
 
 

1

𝛼 (
1−𝑚

1+𝑚
)

1
𝑢1
1
𝑢2
1
𝑢3
1
𝑢4 )

 
 
 
 
 
 
 
 

                      (19) 

 
By using Runge-Kutta method Eq. (18) and Eq. (19) are solved. Appropriate initial circumstances 

𝑢1, 𝑢2, 𝑢3 and 𝑢4 are estimated using the Newton's technique until the boundary conditions at 
𝑓(∞) = 1, θ(∞)=0, Ø(∞)=0, G(∞)=0. 
 
3. Results and Discussion 
 

In the present paper the velocity, temperature, concentration and density of microorganism 
concentration profiles are changes from Figure 2 to Figure 23. A=0.1, m=2, Pe=2, B=1, Rd=2, Nc=0.1, 
M=2, Sc=0.1, Kr=0.1, Le=1, C=0.1, K=0.1, Nb = 4, Kp = 2, Ec=0.1, Pr=3.5. In Figure 2 and Figure 3, the 
values of magnetic field parameter increase, the velocity profiles decrease, and temperature profiles 
increase. Because the magnetic field produces Lorentz forces, the Lorentz force causes an increase 
in fluid viscosity. 
 

 

 

 
Fig. 2. 𝑓′(𝜂) for several variations in M  Fig. 3. 𝜃(𝜂) for several variations in M 

 
The temperature and velocity profiles are shifting downward and upward as a result of increasing 

the parameter Kp. It seems in Figure 4 and Figure 5. 
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Fig. 4. 𝑓′(𝜂) for several variations in 𝐾𝑝  Fig. 5. 𝜃(𝜂) for several variations in 𝐾𝑝 

 
Figure 6 and Figure 7 illustrate Williamson parameter increases the velocity profiles are decreases 

temperature profiles are increasing. The viscoelastic shear thinning property of non-Newtonian fluid 
is present in the Williamson parameter. 
 

 

 

 
Fig. 6. 𝑓′(𝜂) for several variations in λ  Fig. 7. 𝜃(𝜂) for several variations in λ 

 
Figure 8 to Figure 10 represent Prandtl number Pr rises temperature, concentration and density 

of microorganism concentration profiles decrease. According to the definition of Pr, the temperature 
profile is decreased by decreasing the fluid's thermal conductivity when the Prandtl number is 
escalates. Furthermore, thermal boundary layer thickness declines with increasing Prandtl number 
Pr. As a result, heat transfers quickly, which lowers the temperature of the substance. 
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Fig. 8. 𝜃(𝜂) for several variations in 𝑃𝑟  Fig. 9. ∅(𝜂) for several variations in 𝑃𝑟 

 

 
Fig. 10. 𝐺(𝜂) for several variations in 𝑃𝑟 

 
The effect of Brownian diffusivity and Lewis number on temperature, concentration and 

microorganisms’ concentration profiles are plotted in Figure 11 to Figure 13 and Figure 14 to Figure 
16 respectively. The parameters Nb and Le increases the temperature, concentration and 
microorganisms’ concentration profiles are diminishes. Since Nb represents of a Particle is the 
thermal motion of the molecular agitation of the liquid medium, size of nanoparticles and Brownian 
motion are connected, in diffusion the particle moves in the direction of high concentration to low 
concentration, a rise in Nb indicates an increase in the activity of the nanofluid particles. Since Le is 
the proportion of thermal to Brownian diffusion, it is physically impossible for Le to be equal to zero. 
With an increase in Nb, Thermal boundary layer and temperature profile degradation has been 
observed. Temperature profiles only exhibit very slight fluctuation when thermophoretic diffusivity 
is very small in comparison to Brownian diffusivity. 
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Fig. 11. 𝜃(𝜂) for several variations in 𝑁𝑏  Fig. 12. ∅(𝜂) for several variations in 𝑁𝑏 

 

 
Fig. 13. 𝐺(𝜂) for several variations in 𝑁𝑏 

 

 

 

 
Fig. 14. 𝜃(𝜂) for several variations in Le  Fig. 15. ∅(𝜂) for several variations in Le 
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Fig. 16. 𝐺(𝜂) for several variations in Le 

 
In Figure 17 temperature profiles are increases when radiation parameter increases because of 

the changing radiation parameter, the mean absorption efficiency declines, raising the fluid's 
temperature. The effect of the Eckert number is displayed in Figure 18. 

From the graph, it can be seen that the distribution of heat increases as the Eckert number rises. 
The ratio of boundaries layer enthalpy to the kinetic energy is known as the Eckert factor. Therefore, 
increasing the Eckert number's value results in an increase the value of the heat distribution. 
 

 

 

 
Fig. 17. 𝜃(𝜂) for several variations in 𝑅𝑑  Fig. 18. 𝜃(𝜂) for several variations in Ec 

 
Figure 19 and Figure 20 demonstrate the relevance and impact of variable thermal conductivity 

constant ∈ on the temperature profile θ(η) concentration profile ∅(η), as increase ∈, the temperature 
profile also increases. While nanoparticle volume fraction profiles show the opposite phenomenon. 
As a result, the premise that thermal conductivity changes with temperature predicts that the 

transverse velocity 
T

K
y y

  
 

  
 in Eq. (3) will be reduced by a certain amount. When using a coolant 

material with a low thermal conductivity characteristic, cooling happens significantly more quickly. 
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Fig. 19. 𝜃(𝜂) for several variations in ∈  Fig. 20. ∅(𝜂) for several variations in ∈ 

 
Figure 21 shows that as Kr grows, the concentration profile drops, which indicates that Kr is 

sluggish agent because it lowers the concentration in the boundary layer, causing the solute 
boundary layer to become thinner and accelerate mass transfer at the site immediately adjacent to 
the sheet. 
 

 
Fig. 21. ∅(𝜂) for several variations in 𝐾𝑟 

 
Figure 22 demonstrates that as the Peclet number increases, the density of the profiles of 

microbe concentrations decreases. Bio convection is caused by microorganisms that are swimming 
up the fluid's upper surface. An upsurge in the Peclet number Pe, the maximal swimming speed of 
microbes and their rate of diffusion during their swimming continuum. The fluid's bio convection 
Peclet number determines the speed of swimming motile microorganisms, which slows them down 
as they approach the outside due to their thickness. Schmidt number's impact on the bio convection 
of moving organisms is shown in Figure 23. A declining concentration profile is associated with rising 
Schmidt number Sc values. As the rate of viscous diffusion increases, the density of motile 
microorganism’s decreases. 

Table 1 takes into account the relatively slight variations in the articles between the base study 
and the current paper. In this article, the disparities in Prandtl numbers are compared. 
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Fig. 22. 𝐺(𝜂) for several variations in Pe  Fig. 23. 𝐺(𝜂) for several variations in Sc 

 
Table 1 
Contrast of −𝜃′(0) for different Pr with Kp= Ec= Kr = 0 
Pr Khan et al., [13] Present result 

1 0.258898 0.222143 
2 0.349549 0.314989 
3 0.451902 0.412214 
4 0.562480 0.507621 

 
In Table 2 and Table 3, it is described that the variations of skin friction, Nusslet, Sherwood 

number and local density number of motile microorganism for various parameters. i.e., M, Kp, λ, 
Pr, Nb, Le, Rd, Ec, ∈, Kr, Pe and Sc. 
 

Table 2 
Rex, Nux, Shx and Nnx variations for different parameters 
M Kp λ Pr Nb Le 𝑅𝑒𝑥

1/2
𝐶𝑓 N𝑢𝑥𝑅𝑒𝑥

−1/2
 𝑠ℎ𝑅𝑒𝑥

−1/2
 𝑁𝑛𝑅𝑒𝑥

−1/2
 

1      2.286815 0.312306 0.379785 0.907986 
2      2.566011 0.271859 0.393229 0.934268 
3      2.825985 0.238543 0.404634 0.956787 
4      3.071794 0.210184 0.414574 0.976567 
 1     2.286815 0.281480 0.394455 0.939978 
 3     2.825985 0.264322 0.392270 0.929764 
 5     3.306749 0.253167 0.390780 0.922850 
 7     3.753339 0.245206 0.389621 0.917628 
  0    1.844311 0.333624 0.379734 0.272481 
  1    1.980130 0.329058 0.379761 0.271470 
  2    2.193972 0.323563 0.379798 0.270261 
  3    2.754924 0.316073 0.379847 0.268626 
   1   1.200110 0.222143 0.525858 1.239328 
   2   1.200110 0.314989 0.931992 2.119127 
   3   1.200110 0.412214 1.252360 2.817043 
   4   1.200111 0.507621 1.530503 3.424595 
    0.5  1.200109 0.461744 0.996447 2.261874 
    1.0  1.200111 0.460973 1.224938 2.758308 
    1.5  1.200110 0.460716 1.300794 2.923353 
    2.0  1.200109 0.460588 1.300794 3.005792 
     0.3 1.200110 0.453963 0.404348 0.978286 
     0.5 1.200109 0.461112 0.729863 1.680885 
     0.7 1.200109 0.465161 0.996706 2.260373 
     0.9 1.200109 0.467756 1.228656 2.765724 
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Table 3 
Rex, Nux, Shx and Nnx variations for different parameters 
Rd Ec ∈ Kr Pe Sc 𝑅𝑒𝑥

1/2
𝐶𝑓 N𝑢𝑥𝑅𝑒𝑥

−1/2
 𝑠ℎ𝑅𝑒𝑥

−1/2
 𝑁𝑛𝑅𝑒𝑥

−1/2
 

1.5      1.200110 0.449521 0.357420 0.285303 
2.0      1.200110 0.413582 0.372868 0.286822 
2.5      1.200110 0.385813 0.384888 0.287997 
3.0      1.200110 0.363942 0.394408 0.288922 
 0.1     2.566011 0.271859 0.393229 0.934268 
 0.2     2.566011 0.215903 0.419979 0.992677 
 0.3     2.566011 0.159931 0.446739 1.051117 
 0.4     2.566011 0.103944 0.473511 1.109587 
  2    1.200110 0.360728 0.396241 0.289214 
  4    1.200110 0.292616 0.425988 0.292186 
  6    1.200110 0.250457 0.444393 0.293964 
  8    1.200110 0.221978 0.456998 0.295144 
   1   1.200110 0.391828 1.053572 2.387594 
   2   1.200110 0.385009 1.473894 3.304646 
   3   1.200110 0.381587 1.793517 4.003621 
   4   1.200110 0.379440 2.061942 4.591345 
    0.5  1.200110 0.413582 0.372868 0.407211 
    1.0  1.200110 0.413582 0.372868 0.567479 
    1.5  1.200110 0.413582 0.372868 0.736736 
    2.0  1.200110 0.413582 0.372868 0.913111 
     0.6 1.200110 0.413582 0.372868 0.623809 
     0.7 1.200110 0.413582 0.372868 0.689092 
     0.8 1.200110 0.413582 0.372868 0.752225 
     0.9 1.200110 0.413582 0.372868 0.813163 

 
4. Conclusions 
 

In the present paper numerical analysis of gyrotactic microorganisms in Williamson nanofluids 
with chemical reaction and variable thermal conductivity is observed. The PDEs converted into ODEs 
by using similarity transformations, RK Fehlberg technique is applied for this. A few crucial 
conclusions are given below. 

 
i. The Magnetic field, Permeability and Williamson parameters are upgrade the velocity and 

temperature profiles are decline and raising respectively. 
ii. The prandtl number, Brownian diffusion and Lewis numbers are increase the velocity, 

temperature and concentration profiles are decreasing. 
iii. The Parameters Rd, Ec and ∈ raises the temperature profiles are escalating. 
iv. The variable thermal conductivity constant ∈, Kr and Sc, Pe are escalating the concentration 

and concentration of motile microorganism’s profiles are decelerates. 
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