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The analysis of heat transfer problems can be highly complex due to factors such as 
temperature, position, and time. Most heat transfers are typically two-dimensional as 
conduction is often negligible in the third dimension. Two-dimensional heat conduction 
problems can be solved analytically or numerically. In steady-state conditions, the Laplace 
equation can be applied to solve two-dimensional heat conduction problems analytically, 
in which the separation of variables method is used to solve the Laplace equation under 
fixed boundary conditions to determine the temperature at a specific point. The Laplace 
equation plays a significant role in the solution of heat transfer problems, as it 
demonstrates the behavior of linear and non-linear equations in the computational fluid 
dynamics domain. Despite their inability to provide exact results at any point, numerical 
methods are superior to analytical methods when handling complex geometries with 
various boundary conditions. This project involves the development of a computational 
code using MATLAB to solve two-dimensional steady-state heat conduction problems 
using Gauss-Seidel iterations. Comparing analytical solutions from Excel with numerical 
solutions from MATLAB and ANSYS, specifically the developed MATLAB code, revealed an 
accuracy level of 99.902% for the Laplace equation. An analysis of the produced code from 
MATLAB found that it could solve two-dimensional steady-state heat conduction across 
different combinations of materials while allowing users to specify initial and boundary 
conditions to produce a contour plot similar to ANSYS. 
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1. Introduction 
 

Recent advances in modelling and simulation techniques, as well as the use of high-speed 
computers, have made it less challenging to conduct thermal and heat transfer analyses. More 
models are being created, tested, and used, which simplifies the calculation process and allows for 
both immediate results and the prediction of future trends and other auxiliary data. For conventional 
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and advanced processes, simulation methods and simulation software like MATLAB, ANSYS, and 
SimScale may be used to tackle heat transfer-related issues [1]. 

Due to the limitations of mathematical techniques, analytical solutions to thermal conduction 
differential equations are frequently difficult. Numerical techniques for resolving the heat conduction 
problem have long been a study interest due to the development of computer technology. In the 
past few decades, heat conduction problems have been effectively resolved utilizing traditional 
numerical techniques, including the boundary element, finite volume, and finite difference 
approaches. The complexity of engineering techniques is substantially increased by the fact that, 
despite the methods' shown correctness, solving discrete equations for heat conduction problems 
still necessitates a sizable amount of integral computations. A concentrated effort has thus been 
undertaken to research and create novel numerical solution techniques [2]. 

Li et al., [2] suggested a hidden temperature approach to handle data-driven computational 
issues involving one-dimensional heat conduction in a recent study. During the iterative process, this 
novel model, which uses an artificial neural network, creates a correspondence link between the 
node temperature values, yielding a "Data to Data" answer. Li et al., [2] compared the hidden 
temperature method with conventional numerical methods and concluded the hidden temperature 
method provides highly accurate in both steady-state and transient conditions. 

Matt and Cruz [3] presented a study on two-phase composite heat transfer with a finite element 
computational method. This study also emphasized the need for further geometric and physical 
model development to produce more accurate computational findings, particularly in the context of 
random (disordered) composites' three-dimensional heat conduction. The gap in benchmark results 
for effective conductivity in random composites has been emphasized by Matt and Cruz [3]. 

Building upon these prior studies, the present research aims to contribute to the field of 
numerical heat transfer analysis by providing an alternative method to solving two-dimensional heat 
transfer. This study aims to develop a computational code that estimates an optimum grid size for 
steady-state heat conduction in two dimensions using suitable iterative methods. There are typically 
no significant differences in the results obtained after a certain grid size, therefore, fewer iterations 
can be undertaken to save time. This code will give researchers and engineers an alternative 
numerical approach for efficient and accurate heat transfer analysis. 

By addressing the gap in benchmark results for effective conductivity in random composites and 
offering a practical computational tool, this study aims to advance the understanding and application 
of numerical methods in heat transfer analysis. 

In summary, recent advancements in modelling and simulation techniques have paved the way 
for more efficient thermal and heat transfer analyses. Numerical methods have gained prominence 
due to the limitations of analytical techniques. The hidden temperature method proposed by Li et al., 
[2] has demonstrated high accuracy in one-dimensional heat conduction problems, while the work 
of Matt and Cruz [3] highlighted the gap in benchmark results for random composites' effective 
conductivity. Following these studies, the current work seeks to incorporate programming as a 
method of solving heat transfer problems while analyzing two-dimensional heat transfer across a 
variety of material combinations, and contribute to the field of numerical heat transfer analysis. 
 
2. Methodology 
2.1 Methodology Flowchart 
 

The methodology, as shown in Figure 1, begins with the development of MATLAB code for 
simulating steady-state temperature distribution. The first step involves specifying the grid geometry 
and boundary conditions for the heat conduction problem. To evaluate the accuracy of numerical 
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solutions, an analytical solution is first performed using Microsoft Excel as a reference. 
Simultaneously, a numerical solution is conducted in ANSYS under the same conditions. The analytical 
and numerical solutions are then compared to assess the agreement and identify any disparities. If 
the numerical solution proves to be inaccurate, refinements are made to the ANSYS model, and if it 
is accurate, the methodology proceeds to the development of the MATLAB code. Once the ANSYS 
model has been verified as accurate, MATLAB simulations are conducted under the same conditions 
as the Excel and ANSYS simulations. The temperature distribution results obtained from the MATLAB 
simulation are carefully examined to assess their accuracy and consistency. 
 

 
Fig. 1. Methodology flowchart 

 
A comparison is made between the MATLAB results and those from Excel and ANSYS to determine 

whether they are in agreement and if any discrepancies exist. A debugging process and rerun of the 
simulation may be necessary if the MATLAB results are not accurate, and if they are, multiple 
simulations with varying grid sizes may be conducted. Analysis of the results of varying grid sizes is 
used to determine the optimum grid size by identifying cases with minimal temperature distribution 
differences and reduced computational time, thereby enabling efficient computations. The MATLAB 
code is enhanced to model heat transfer across materials, and material properties are input for 
analysis. The heat distribution plots of various materials are compared and discussed to gain a deeper 
insight of their behaviour and characteristics. The methodology concludes after simulating 
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temperature distribution, optimizing grid size, and analyzing heat transfer across various materials 
have been achieved. 

 
2.2 Finite Difference Method 
 

Heat transfer problems are most commonly solved using the Laplace equation in the study of 
heat conduction. The Laplace equation generally describes equilibrium situations or those that do 
not depend explicitly on time, which essentially means steady-state. There are both analytical and 
numerical approaches to solving the Laplace equation. In the analytical approach, there are methods 
like the integral heat balance method and spreadsheet programs like Microsoft Excel to calculate 
temperature distributions. In the numerical approach, solutions are found using numerical methods 
such as the finite difference, finite element, or boundary element methods [4]. Due to its simplicity 
in implementation, finite difference methods have been widely used in solving heat conduction 
problems. This project utilizes the finite difference method to discretize the Laplace equation. 

Finite difference methods begin by discretizing space and time coordinates to create a mesh of 
nodes. A set of linear algebraic equations (termed nodal equations) can then be derived from the 
energy balance applied to the volume elements surrounding the nodes. These equations, containing 
as many unknown as nodes in the mesh, are solved through matrix factorization or iterative methods. 
In order to obtain the finite difference solutions, computer programs are used since the accuracy of 
the approximation increases with the number of nodes [5]. Based on this, the accuracy of the 
approximation is inextricably tied to the grid resolution. As grid resolution increases, smaller grid 
squares are created, resulting in more accurate results at the cost of additional computational 
resources. 

Figure 2 illustrates a section of a body subdivided into several small volumes using equal divisions 
in the x- and y- directions. Nodal points (nodes) of these volumes are denoted with (m+1, n), (m, n), 
(m-1, n), etc., where m and n represent x and y increments respectively. At the nodal points of each 
volume, it is assumed that the thermal properties are concentrated. A finite difference approach is 
used to approximate the Laplace equation's differentials to obtain temperature at the nodal points 
[5]. Nodal equations should be written for each node, with temperature as the unknown. Once the 
equations are derived, the temperature at each node is obtained by solving them [6]. 
 

 
Fig. 2. Defined nomenclature for two-dimensional 
numerical analysis [5]  
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2.3 Numerical Modelling and Simulation using ANSYS 
 

This section delves into numerical modelling and simulation using ANSYS, providing valuable 
insights into temperature distribution and comparing the nodal temperature analytical solution with 
that of numerical modelling. Simulations of temperature distribution were conducted using the 
ANSYS simulation software to compare the calculated nodal temperature analytical solution with the 
simulated numerical temperature distribution. Based on the simulation, a block with dimensions of 
1m-by-1m was used, and since the three edges are of the same temperature, the three edges are 
assumed to be insulated. Consequently, there is no conduction or convection on those sides, except 
for the top edge where air is present. The block dimensions were determined based on the geometry 
of the grid used to calculate the nodal temperature in Excel. The parameters used in both the ANSYS 
simulation and Excel calculation were kept the same as much as possible in order to ensure a fair 
comparison of results. The specifications for the simulation are provided in Table 1. 
 

Table 1 
ANSYS simulation specifications 
Property Value Units 

Left Edge Temperature 500 K 
Right Edge Temperature 500 K 
Bottom Edge Temperature 500 K 
Top Edge Temperature 300 K 
Ambient Temperature 300 K 
Top Edge Heat Transfer Coefficient 40 W/m2.K 

 
To verify, validate, and benchmark the accuracy of numerical solutions like MATLAB in solving 

heat conduction problems, the obtained results from MATLAB were compared to ANSYS results and 
Excel analytical solutions. As there are no experimental results in the modelling of heat transfer 
across materials, it is necessary to validate ANSYS numerical data to demonstrate that the MATLAB 
solver is able to predict outcomes accurately and reliably by comparing them with established 
correlations in the literature [7]. Additionally, by comparing both analytical and numerical solutions, 
it can be determined if numerical methods are accurate, which, in turn, may be used to determine 
the computational cost in terms of grid size and time. While the numerical method does not provide 
exact solutions to two-dimensional heat conduction problems, it is more applicable and has sufficient 
accuracy to be used in solving them, as the analytical method is only suitable for solving problems 
with simple boundary conditions [8]. The implementation of this method would contribute to the 
project's objective of determining the optimum grid size by saving time on executing the code. 
 
2.4 Analytical Calculation using Excel 
 

In contrast to an analytical solution, which allows for temperature distribution at any point of 
interest in a medium, a numerical solution enables the determination of the temperature at only 
discrete points. Analytical solutions based on Eq. (1) would be compared with numerical solutions on 
ANSYS to determine which provides a more accurate distribution of temperatures. Eq. (1) was 
derived from a solution to the Laplace equation for two-dimensional heat conduction under steady-
state conditions by using the separation of variables method. 
 

𝜃(𝑥, 𝑦) =
2

𝜋
∑

(−1)𝑛+1+1

𝑛
𝑠𝑖𝑛

𝑛𝜋𝑥

𝐿

sinh(
𝑛𝜋𝑦

𝐿
)

sinh(
𝑛𝜋𝑊

𝐿
)

∞
𝑛=1           (1) 
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Figure 3 displays the grid used for the calculation of the nodal temperature in the Excel analytical 
solution. In order to verify the reliability of the numerical simulation, it was necessary to perform the 
numerical simulation using the same boundary conditions as those shown in Figure 3, which ensured 
that similar results were obtained from the analytical results on Excel. Furthermore, the numerical 
simulation and analytical solution are used as benchmarks to assess the functionality of the MATLAB-
developed code. 
 

 
Fig. 3. Grid for nodal temperature calculation in analytical 
solution 

 
2.5 Numerical Computation using MATLAB 
 

To validate the numerical solution, MATLAB was employed as a computational tool to explore an 
alternative numerical approach. As a result, a numerical solution comparable to that validated 
through ANSYS simulations could be developed and assessed. The numerical solution, once validated 
by comparing the analytical and numerical solutions, can thus be developed using MATLAB as an 
alternative numerical method. In order to validate the MATLAB code, a simulation was performed 
under similar conditions to the one that was conducted with ANSYS. An essential aspect of numerical 
studies is the validation of numerical codes to ensure their accuracy in comparison with other 
previous studies. Additionally, the code validation process facilitates the test of the code prior to its 
execution [9]. In general, it should produce the same results or results very similar to those of 
previous studies. Furthermore, it is crucial to gain a thorough understanding of a numerical code's 
capabilities and limitations in order to achieve high accuracy [10]. A fair comparison of results was 
ensured by using identical geometry, grid size, and boundary conditions to those used in the ANSYS 
simulation. The block measures 1m-by-1m. has a grid size of 5×5, and the edges of the block display 
identical temperatures. A point of interest will be selected after the simulation is complete in order 
to determine whether the temperature at that point is similar for all three methods. By verifying the 
accuracy of the MATLAB code, the optimum grid size can be determined, and boundary conditions 
and material properties may be manipulated in order to study how each factor affects heat transfer. 
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3. Results 
3.1 Comparison of Analytical and Numerical Solutions from Excel and ANSYS 
 

Calculations of the nodal temperature were performed using an Excel spreadsheet, which 
enabled a systematic analysis of the temperature distribution. Table 2 presents the calculated 
temperature values at specific nodes within the block. The recorded temperature values at different 
nodes serve as useful reference values for subsequent validation of numerical simulation tools such 
as ANSYS and MATLAB. 

A comparison with the analytical solution is necessary to validate the numerical solution [4]. 
Comparing Table 2 and Figure 4, it is clear that ANSYS exhibits a distinct difference in temperature 
change compared to Excel. It is evident from both figures that the temperature contour in ANSYS is 
much smoother, provides a better view of the distribution of heat across the block, and allows a more 
accurate analysis of heat transfer rates. In addition, the ability of mesh refinements for the numerical 
solution leads to higher accuracy in the results obtained. 
 

Table 2 
Calculated Nodal Temperature Analytical Solution using Excel 
y   x   

 0 0.25 0.5 0.75 1 
1 500 301.18 300.84 301.18 500 
0.75 500 413.59 391.89 413.59 500 
0.5 500 463.59 450 463.59 500 
0.25 500 486.41 480.92 486.41 500 
0 500 500 500 500 500 

 

 
Fig. 4. ANSYS simulation with the same boundary conditions as Excel analytical solution 

 
Mesh refinement is essential for increasing the accuracy of a numerical solution created with 

finite elements [11]. An iterative refinement process involves finding the solution, calculating error 
estimates, and refining parts of the model with high error rates. In comparison to the analytical 
method, the numerical method is a better solution for solving two-dimensional steady-state heat 
conduction problems since the accuracy of the results retrieved is higher. In a comparison of both 
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analytical and numerical solutions, it can be concluded that both results are almost the same. If 
accurate results from ANSYS are desired, generating a finer mesh in the block is essential, whereby 
results obtained for a fine mesh can be compared with those obtained for a coarse mesh. 
 
3.2 Validation of MATLAB Numerical Solution 
 

In the following stage of analysis, a simulation was carried out under similar conditions done on 
ANSYS from the computational code developed on MATLAB. A fair comparison of results was ensured 
by using identical block dimensions, grid size, and boundary conditions to those used in the ANSYS 
simulation. The block measure 1m-by-1m, has a grid size of 5×5, and the edges of the block display 
identical temperatures. Based on the simulation performed under these conditions, the MATLAB 
code produced a plot, as shown in Figure 5, which showed similar results to those obtained from 
ANSYS due to the approximate similarity of the temperature distribution. Comparing the results 
obtained from the three methods showed that the temperatures determined at each discrete point 
were similar. Accordingly, this validates the accuracy of the numerical solution and the possibility of 
calculating temperature distributions further using this method. 
 

 
Fig. 5. MATLAB simulation with the same boundary 
conditions as Excel and ANSYS  

 
3.3 Obtaining Optimum Grid Size 
 

Verification processes have a direct impact on the validity and accuracy of the obtained 
outcomes. Accordingly, it is necessary to determine the optimum grid size prior to performing 
simulations, also known as a grid independence test in other studies [12]. Grid independence tests 
are generally conducted as part of the process of designing an optimal grid, because an optimal grid 
is required to produce accurate results. However, the approximate solution of each grid also has an 
impact on the accuracy of the overall simulation results. A critical factor that influences the total 
computational cost and the accuracy of simulation analysis results is the number of grids. Coarse 
grids result in significant spatial discretization errors, reducing the accuracy of the analysis results 
[13]. Meanwhile, too many fine grids may increase the round-off error above the truncation error, 
this reducing the accuracy of the results. As a result, it is imperative to determine an appropriate 
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number of grids. In many CFD studies, grid independence tests were conducted in order to determine 
the optimum grid size. Based on an evaluation of several grid conditions, the grid independence test 
aims to find the optimal grid condition with the fewest number of grids without causing a difference 
in the numerical results [14]. 

In this project, one of the objectives was to determine the optimum grid size. In general, after a 
certain grid size, the results obtained will show minimal differences. It is therefore possible to save 
computational costs by not having to run so many iterations once an ideal grid size has been 
determined. Several simulations were conducted with various grid sizes in order to determine the 
optimum grid size. Additionally, the number of iterations was calculated at the point where the code 
enters the while loop, which continues until the difference between the current and previous 
solutions is less than the tolerance. The elapsed time for execution of the code was calculated and 
compared against the other grid sizes. The elapsed time can be used to determine which is the 
optimum grid size based on the shortest amount of time required to achieve the same results as the 
analytical solution [15,16]. 

A compilation of results obtained for various grid sizes can be found in Table 3, which shows the 
number of iterations required for Gauss-Seidel to reach convergence and the average time required 
for the code to be executed. Also shown in Figure 6 to Figure 13 are plots of error against iterations 
and temperature distribution contours for various grid sizes with fixed boundary temperatures. The 
presented results will allow an improved analysis and comparison to be made in order to determine 
an optimum grid size. 
 

Table 3 
Matlab numerical results of various grid sizes with fixed boundary 
temperature 
Grid Size Iterations Elapsed Time (s) 

5×5 36 0.007724 
9×9 140 0.012809 
17×17 494 0.022205 
33×33 1692 0.125093 
65×65 5624 0.280241 
129×129 17896 3.653261 
257×257 53172 39.199266 
513×513 139047 566.910094 

 

 
Fig. 6. Results of 5×5 Grid Size 
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Fig. 7. Results of 9×9 Grid Size 

 

 
Fig. 8. Results of 17×17 Grid Size 

 

 
Fig. 9. Results of 33×33 Grid Size 
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Fig. 10. Results of 65×65 Grid Size 

 

 
Fig. 11. Results of 129×129 Grid Size 

 

 
Fig. 12. Results of 257×257 Grid Size 
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Fig. 13. Results of 513×513 Grid Size 

 
Observing the error and temperature distribution plots, the optimum grid size appears to be 

65×65. The reason for this is the fact that from observing the contour of the temperature distribution 
for all grid sizes after, there are no evident differences. Furthermore, it can also be observed in the 
graphs of increasing grid size that there is a steep decrease in error as iterations increases. However, 
if elapsed time were to be compared, 65×65 seems to be the optimum grid size since it takes the 
least amount of time to execute the code. In addition, Figure 14 supports this analysis when a 
reference point has been taken from the analytical solution, as shown in Table 2, to determine if the 
same reference point would produce the same results on the contour plot of the temperature 
distribution. 
 

 
Fig. 14. Reference Point of 65×65 Grid Size 
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Based on the x and y coordinates equal to 0.5, the analytical solution obtained 450K as the 
temperature. Using the same reference point, the temperature plot for the 65×65 grid size produced 
a value of 449.56K, nearly the same as the analytical result. Using a 65×65 grid size can produce 
similar results to the analytical solution, thus saving time without running as many iterations. 
 
3.4 Heat Transfer Across Different Materials 
 

Simulations have been conducted on various materials to investigate the transfer of heat 
between them. For each simulation, the dimensions of the materials and boundary conditions have 
been altered to determine if there are significant differences in the contour plots of the temperature 
distribution. Unlike the simulations presented in the earlier sections, the simulations in this section 
incorporate a new thermal conductivity parameter, which measures a material's ability to conduct 
heat. 
 
3.4.1 Aluminium and wood 
 

The first test focused on aluminium and wood. The thermal conductivity values used for 
aluminium were 237 W/m∙K and 0.17 W/m∙K for wood, under the assumption that the ambient 
temperature is 300K [17,18]. For the first test involving these two materials, there were two 
simulations carried out with varying widths. In the first simulation, aluminium was simulated on the 
left and wood on the right, separated on a left-right axis. Aluminium and wood were simulated with 
widths of 0.3m and 0.7m, respectively. As part of this simulation, a fixed temperature of 500K is 
applied at the left boundary, convection at the right boundary, and insulation and the top and bottom 
boundary. Table 4 and Figure 15 illustrate the results of this simulation. 
 

Table 4 
Matlab numerical results of various grid sizes for Simulation 1 
Grid Size Iterations Elapsed Time (s) 

5×5 34 0.038627 
9×9 95 0.023307 
17×17 297 0.030171 
33×33 961 0.106162 
65×65 3141 0.445498 

 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 111, Issue 1 (2023) 135-155 

148 
 

 
Fig. 15. 65× 65 Grid for Aluminium (Left) and Wood (Right) – Fixed 
Temperature (Left), Convection (Right), Insulation (Top and Bottom) 

 
In the second simulation, wood was simulated on the left and aluminium on the right, separated 

on a left-right axis. Wood and aluminium were simulated with widths of 0.3m and 0.7m, respectively. 
In this simulation, the same boundary conditions are applied as in Simulation 1. Table 5 and Figure 
16 illustrate the results of this simulation. 
 

Table 5 
Matlab numerical results of various grid sizes for Simulation 2 
Grid Size Iterations Elapsed Time (s) 

5×5 70 0.027982 
9×9 173 0.036485 
17×17 481 0.048386 
33×33 1384 0.213352 
65×65 3983 0.744630 
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Fig. 16. 65×65 Grid for Wood (Left) and Aluminium (Right) – Fixed 
Temperature (Left), Convection (Right), Insulation (Top and Bottom) 

 
Despite the same boundary conditions and material used in both simulations, both plots 

produced significant differences in temperature distributions. As the width of the materials was kept 
constant, this indicates that material placement is crucial in analyzing heat transfer across a variety 
of materials with different thermal properties. Furthermore, based on the analysis of the two plots, 
it appears that conduction is likely to dominate heat transfer between aluminium and wood in 
contact. A further conclusion that can be drawn is that aluminium is a much better conductor of heat 
than wood, owing to its higher thermal conductivity. Consequently, aluminium is able to transfer 
heat much more effectively than wood. It is natural for heat to flow from the object with the higher 
thermal conductivity to the object with the lower thermal conductivity when two objects made of 
different materials are in contact with one another [19]. A clearer example of this can be seen in 
Figure 16, where aluminium was simulated on the left and wood on the right. There is a rapid 
temperature change when heat is transferred from aluminium to wood. The difference between 
wood simulated on the left and aluminium simulated on the right indicates that heat dissipates slowly 
from wood to aluminium, supporting the hypothesis that materials with a lower conductivity are 
poorer heat conductors. 
 
3.4.2 Copper and styrofoam 
 

The second test focused on copper and styrofoam. The thermal conductivity values used for 
copper were 413 W/m∙K and 0.027 W/m∙K for styrofoam, under the assumption that the ambient 
temperature is 300K [20,21]. For the second test involving these two materials, there were two 
simulations carried out with varying widths. In the first simulation, copper was simulated on the left 
and styrofoam on the right, separated on a left-right axis. Copper and styrofoam were simulated with 
widths of 0.8m and 0.2m, respectively. As part of this simulation, a fixed temperature of 500K is 
applied at the bottom boundary, convection at the top and left boundary, and insulation at the right 
boundary. Table 6 and Figure 17 illustrate the results of this simulation. 
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Table 6 
Matlab numerical results of various grid sizes for Simulation 1 
Grid Size Iterations Elapsed Time (s) 

5×5 38 0.025315 
9×9 112 0.028011 
17×17 373 0.040246 
33×33 1213 0.163970 
65×65 3775 0.616496 

 

 
Fig. 17. 65×65 Grid for Copper (Left) and Styrofoam (Right) – Fixed 
Temperature (Bottom), Convection (Top and Left), Insulation (Right) 

 
In the second simulation, styrofoam was simulated on the left and copper on the right, separated 

on a left-right axis. Styrofoam and copper were simulated with widths of 0.8m and 0.2m, respectively. 
In this simulation, the same boundary conditions are applied as in Simulation 1. Table 7 and Figure 
18 illustrate the results of this simulation. 
 

Table 7 
Matlab numerical results of various grid sizes for Simulation 2 
Grid Size Iterations Elapsed Time (s) 

5×5 72 0.029423 
9×9 160 0.028720 
17×17 400 0.046871 
33×33 1100 0.160142 
65×65 3195 0.856505 
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Fig. 18. 65×65 Grid for Styrofoam (Left) and Copper (Right) – Fixed 
Temperature (Bottom), Convection (Top and Left), Insulation (Right) 

 
Based on the plots presented in Figure 17 and Figure 18, the temperature distribution did not 

appear to be similar. It is easy, however, to differentiate the boundary conditions at first glance. 
Clearly, convection occurs at the top and left boundaries, as indicated by the widely spaced contour 
lines, which indicate rapid changes in temperature. There is insulation at the right boundary, which 
has a fixed temperature of 300K to prevent heat transfer to the surrounding environment, as well as 
a fixed temperature at the bottom boundary that illustrates how 500K slowly dissipates heat across 
the boundaries. Styrofoam as an insulated conductor appears to show a gradual change in 
temperature by the closely spaced contour lines in Figure 17 when compared to the insulated 
boundary in Figure 18, with copper simulated on the right. Similarly, convection is more prominent 
in Figure 18, where there is a drastic temperature change at the left and top boundaries. It is also 
evident that when copper occupies a larger width of 0.8m in the first simulation, heat dissipates 
rapidly, as can be seen by the widely spaced contour lines extending from the bottom boundary. It 
appears that convection is causing heat dissipation to be slowed down in the same simulation, as the 
temperature is seen slowly decreasing towards the right insulated boundary. 
 
3.4.3 Porcelain and granite 
 

In previous sections, heat transfer has been examined across different combinations of materials. 
In order to gain a better understanding of how heat transfer occurs in our daily lives, practical 
applications have been used to study how realistic materials transfer heat. This section discusses 
underfloor heating in cold climates as an example. Essentially, underfloor heating entails warming up 
a home with flexible and strong tubing embedded in the floor. As an efficient and affordable means 
of providing thermal comfort, it is a superior alternative to radiators in many respects. When using 
underfloor heating, tile and stone are the most suitable flooring types. In order to study the heat 
transfer between porcelain and granite, which is commonly used in tiles and stones, simulations of 
these materials are being conducted. 

For the simulation of porcelain and granite, the thermal conductivity values used for porcelain 
were 1.5 W/m∙K and 3.1 W/m∙K for granite, under the assumption that the ambient temperature is 
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300K [22,23]. As part of the current test involving these two materials, two simulations were 
performed. In the first simulation, porcelain was simulated on the left and granite on the right, 
separated on a left-right axis. Porcelain and granite were simulated with equal widths of 0.5m each. 
As part of this simulation, a fixed temperature of 320K is applied at the bottom boundary, convection 
at the top boundary, and insulation at the left and right boundary. Furthermore, the simulations were 
conducted with parameter values and boundary conditions that were as close to those in reality as 
possible. Generally, the floor heating system operates at a temperature of 45°C, which is 
approximately 320K [24]. Table 8 and Figure 19 illustrate the results of this simulation. 
 

Table 8 
Matlab numerical results of various grid sizes for Simulation 1 
Grid Size Iterations Elapsed Time (s) 

5×5 35 0.016309 
9×9 98 0.022122 
17×17 299 0.033567 
33×33 954 0.123004 
65×65 3074 0.434522 

 

 
Fig. 19. 65×65 Grid for Porcelain (Left) and Granite (Right) – Fixed 
Temperature (Bottom), Convection (Top), Insulation (Left and Right) 

 

In the second simulation, granite was simulated on the left and porcelain on the right, separated 
on a left-right axis. Granite and porcelain were simulated with equal widths of 0.5m each. In this 
simulation, the same boundary conditions are applied as in Simulation 1. Table 9 and Figure 20 
illustrate the results of this simulation. 
 

Table 9 
Matlab numerical results of various grid sizes for Simulation 1 
Grid Size Iterations Elapsed Time (s) 

5×5 30 0.021680 
9×9 900 0.020998 
17×17 286 0.034629 
33×33 932 0.105756 
65×65 3039 0.380941 
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Fig. 20. 65×65 Grid for Granite (Left) and Porcelain (Right) – Fixed 
Temperature (Bottom), Convection (Top), Insulation (Left and Right) 

 
It appears that there are no apparent differences between the two temperature distribution plots 

in Figure 19 and Figure 20, despite simulating the materials at different positions. As can be seen 
from the plots, heat is readily dissipated from the bottom boundary, where the temperature is fixed, 
to the top boundary, where it is insulated on the sides. The plots clearly depict how an underfloor 
heating system dissipates heat. 

In general, heat flows from hotter to colder regions, and the ground temperature is usually lower 
than the temperature of the underground heating element. As a result of the convection that occurs 
at the top of the floor, the room can be heated evenly. Upon heating, the air near the floor rises, 
creating a natural convection current that circulates warm air throughout the space. In this manner, 
heat can be distributed evenly across the room, and hot spots and cold spots can be avoided. By 
insulating the sides of the underfloor heating system, the heat loss to the surrounding environment 
can be reduced. Thus, the underfloor heating system may be more efficient, and energy consumption 
may be reduced. Generally, underfloor heating systems are most effective when convection is 
applied to the top surface of the floor and insulation is applied to its sides, ensuring an even and 
efficient distribution of heat throughout the space. 
 
4. Conclusions 
 

The purpose of this study was to develop a computational code for solving two-dimensional 
steady-state heat conduction problems using Gauss-Seidel iterations. The developed code models 
heat transfer accurately across a variety of combinations of materials and allows users to input initial 
and boundary conditions to produce contour plots identical to those produced by ANSYS. By 
comparing analytical and numerical solutions obtained from Excel, MATLAB and ANSYS, the accuracy 
of numerical solutions for the Laplace equation was evaluated and verified. Results of this study have 
proven that solutions from Excel and MATLAB are just as accurate as costly programs like ANSYS. 
Furthermore, simulations with different grid sizes were conducted in order to determine the 
optimum grid size. Findings have suggested that once an ideal grid size has been determined, it is 
possible to save time by not having to run so many iterations. Analysis of the results has concluded 
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65×65 as the optimum grid size since it required a significantly shorter execution time for the code 
while achieving the same results as the analytical solution. To conclude, this study presents a method 
of calculating heat transfer by numerical means that is both accurate and efficient. As a result of the 
development of this code, it can be used in the analysis of two-dimensional heat transfer between 
different combinations of materials. On the basis of these findings, future studies can further 
optimize the code and increase the complexity of the simulations, such as simulating heat conduction 
through irregular shapes. 
 
Acknowledgement 
This research was not funded by any grant. 
 
References 
[1] Rafique, Muhammad Musaddique Ali. "Modeling and Simulation of Heat Transfer Phenomena." Heat Transfer: 

Studies and Applications 225 (2015). https://doi.org/10.5772/61029  
[2] Li, Kun, Shiquan Shan, Qi Zhang, Xichuan Cai, and Zhijun Zhou. "A computational method to solve for the heat 

conduction temperature field based on data-driven approach." Thermal Science 26, no. 1 Part A (2022): 233-246. 
https://doi.org/10.2298/TSCI200822165L  

[3] Matt, Carlos Frederico, and Manuel Ernani Cruz. "Heat conduction in two-phase composite materials with three-
dimensional microstructures and interfacial thermal resistance." In Heat Transfer in Multi-Phase Materials, pp. 63-
97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. https://doi.org/10.1007/8611_2010_10  

[4] Alfarawi, Suliman, Azeldin El-sawi, and Hossin Omar. "Exploring discontinuous meshing for CFD modelling of 
counter flow heat exchanger." Journal of Advanced Research in Numerical Heat Transfer 5, no. 1 (2021): 26-34. 

[5] Karwa, Rajendra. Heat and mass transfer. Springer, 2020. https://doi.org/10.1007/978-981-15-3988-6  
[6] Aly, Shahzada Pamir, Said Ahzi, Nicolas Barth, and Benjamin W. Figgis. "Two-dimensional finite difference-based 

model for coupled irradiation and heat transfer in photovoltaic modules." Solar Energy Materials and Solar Cells 
180 (2018): 289-302. https://doi.org/10.1016/j.solmat.2017.06.055  

[7] Muhammad, Nura Mu'az, Nor Azwadi Che Sidik, Aminuddin Saat, and Bala Abdullahi. "Effect of nanofluids on heat 
transfer and pressure drop characteristics of diverging-converging minichannel heat sink." CFD Letters 11, no. 4 
(2019): 105-120. 

[8] Böckh, Peter, and Thomas Wetzel. Heat transfer: basics and practice. Springer Science & Business Media, 2012. 
[9] Hassan, Qais Hussein, Shaalan Ghanam Afluq, and Mohamed Abed Al Abas Siba. "Numerical investigation of heat 

transfer in car radiation system using improved coolant." Journal of Advanced Research in Fluid Mechanics and 
Thermal Sciences 83, no. 1 (2021): 61-69. https://doi.org/10.37934/arfmts.83.1.6169  

[10] Hasan, Husam Abdulrasool, Zainab Alquziweeni, and Kamaruzzaman Sopian. "Heat transfer enhancement using 
nanofluids for cooling a Central Processing Unit (CPU) system." Journal of Advanced Research in Fluid Mechanics 
and Thermal Sciences 51, no. 2 (2018): 145-157. 

[11] Tan, C., S. Zainal, C. J. Sian, and T. J. Siang. "ANSYS simulation for Ag/HEG hybrid nanofluid in turbulent circular 
pipe." Journal of Advanced Research in Applied Mechanics 23, no. 1 (2016): 20-35. 

[12] AbdulWahid, Ammar F., Zaid S. Kareem, and Hyder H. Abd Balla. "Investigation of heat transfer through dimpled 
surfaces tube with nanofluids." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 67, no. 2 
(2020): 116-126. 

[13] Sidik, Nor Azwadi Che, Chow Hoong Kee, Siti Nurul Akmal Yusof, and Ahmad Tajuddin Mohamad. "Performance 
enhancement of cold thermal energy storage system using nanofluid phase change materials." Journal of Advanced 
Research in Applied Mechanics 62, no. 1 (2019): 16-32. 

[14] Lee, Minhyung, Gwanyong Park, Changyoung Park, and Changmin Kim. "Improvement of grid independence test 
for computational fluid dynamics model of building based on grid resolution." Advances in Civil Engineering 2020 
(2020): 1-11. https://doi.org/10.1155/2020/8827936  

[15] Zulkurnai, Fatin Farhanah, Norhidayah Mat Taib, Wan Mohd Faizal Wan Mahmood, and Mohd Radzi Abu Mansor. 
"Combustion characteristics of diesel and ethanol fuel in reactivity controlled compression ignition engine." Journal 
of Advanced Research in Numerical Heat Transfer 2, no. 1 (2020): 1-13. 

[16] Japar, Wan Mohd Arif Aziz, Nor Azwadi Che Sidik, Natrah Kamaruzaman, Yutaka Asako, and Nura Mu'az Muhammad. 
"Hydrothermal performance in the Hydrodynamic Entrance Region of Rectangular Microchannel Heat Sink." 
Journal of Advanced Research in Numerical Heat Transfer 1, no. 1 (2020): 22-31. 

https://doi.org/10.5772/61029
https://doi.org/10.2298/TSCI200822165L
https://doi.org/10.1007/8611_2010_10
https://doi.org/10.1007/978-981-15-3988-6
https://doi.org/10.1016/j.solmat.2017.06.055
https://doi.org/10.37934/arfmts.83.1.6169
https://doi.org/10.1155/2020/8827936


Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 111, Issue 1 (2023) 135-155 

155 
 

[17] Mahesh, M., P. Thangavel, M. S. Abdullah, B. Arulpriyan, P. Gokul, and D. Mahesh Kumar. "Performance 
improvement in thermal conductivity measuring apparatus using spiral heating coil." In AIP Conference Proceedings, 
vol. 2492, no. 1. AIP Publishing, 2023. https://doi.org/10.1063/5.0113149  

[18] Mussa, Hadeel Mahmood, and Tawfeeq Wasmi M. Salih. "Thermal conductivity of wood-plastic composites as 
insulation panels: Theoretical and experimental analysis." Építöanyag (Online) 73, no. 2 (2021): 54-62. 
https://doi.org/10.14382/epitoanyag-jsbcm.2021.9  

[19] Sidik, Nor Azwadi Che, Saidu Bello Abubakar, and Siti Nurul Akmal Yusof. "Measurement of Fluid Flow and Heat 
Transfer Performance in Rectangular Microchannel using Pure Water and Fe3O4-H2O Nanofluid." Journal of 
Advanced Research in Applied Mechanics 68, no. 1 (2020): 9-21. https://doi.org/10.37934/aram.68.1.921  

[20] Horton, W. Travis, and J. Clair Batty. "Use of high-thermal conductivity composites in cryogenic systems." In 
Cryogenic Optical Systems and Instruments VII, vol. 2814, pp. 217-227. SPIE, 1996. 
https://doi.org/10.1117/12.254145  

[21] Srihanum, Adnan, Maznee TI Tuan Noor, Kosheela PP Devi, Seng Soi Hoong, Nurul H. Ain, Norhisham S. Mohd, Nik 
Siti Mariam Nek Mat Din, and Yeong Shoot Kian. "Low density rigid polyurethane foam incorporated with renewable 
polyol as sustainable thermal insulation material." Journal of Cellular Plastics 58, no. 3 (2022): 485-503. 
https://doi.org/10.1177/0021955X211062630  

[22] Garcia, Eugenio, A. De Pablos, M. A. Bengoechea, L. Guaita, Maria Isabel Osendi, and P. Miranzo. "Thermal 
conductivity studies on ceramic floor tiles." Ceramics International 37, no. 1 (2011): 369-375. 
https://doi.org/10.1016/j.ceramint.2010.09.023  

[23] Cho, W. J., S. Kwon, and J. W. Choi. "The thermal conductivity for granite with various water contents." Engineering 
Geology 107, no. 3-4 (2009): 167-171. https://doi.org/10.1016/j.enggeo.2009.05.012  

[24] Vadiee, Amir, Ambrose Dodoo, and Elaheh Jalilzadehazhari. "Heat supply comparison in a single-family house with 
radiator and floor heating systems." Buildings 10, no. 1 (2019): 5. https://doi.org/10.3390/buildings10010005  

 
 
 
 

https://doi.org/10.1063/5.0113149
https://doi.org/10.14382/epitoanyag-jsbcm.2021.9
https://doi.org/10.37934/aram.68.1.921
https://doi.org/10.1117/12.254145
https://doi.org/10.1177/0021955X211062630
https://doi.org/10.1016/j.ceramint.2010.09.023
https://doi.org/10.1016/j.enggeo.2009.05.012
https://doi.org/10.3390/buildings10010005

