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The gravitational water vortex turbine (GWVT) is a promising solution to exploit the 
potential of low-head hydro energy. Previous research has shown that a 3D runner 
performs better than a runner with a flat blade and a 2D curved blade. This research 
investigates the performance of a conical gravitational water vortex turbine (CGWVT) 
with a 3D runner using numerical simulations and experiments. The numerical simulations 
were carried out with Fluent V 6.1, a 2-phase transient incompressible solver, at various 
torque loads. Furthermore, experiments were conducted to validate the numerical 
simulations by varying the torque load and water flow rate. The experiment revealed that 
the maximum power was achieved at a rotational speed of around 100 to 110 rpm. The 
maximum efficiency was 0.28 at a flow rate of 0.00477 m³/s. The developed simulation 
closely matched the experimental results, making it useful for design and prediction for 
further development. 
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1. Introduction 
 

Various types of water turbines have been developed to utilize low-head hydro energy. L. O. M. 
Firman et al., [1] stated that diversification of energy sources stimulates researchers to explore 
different energy sources, making it a critical aspect of modern society. Some solutions to extract low 
head hydro energy potential are horizontal spiral turbines, small undershot water wheels, Dethridge 
wheel, and gravitational water vortex turbines (GWVT). Research indicates that GWVT has 
advantages over other types of turbines in utilizing low-head hydro energy potential. Sitram and 
Suntivarakorn [2] conducted an experimental study comparing small undershot water wheels to 
GWVT and was found that the GWVT was far superior. In addition, gravitational vortex turbines are 
more stable and can operate with lower heads. Mugisidi et al., [3] proposed a novel Dethridge wheel 
blade shape, which can achieve an efficiency of 71.7%. However, this performance was achieved at 
a very low rotational speed of about 13 rpm, which can make it difficult to select a suitable generator. 
According to Date and Akbarzadeh [4], most of the low-head energy potential has not yet been 
utilized, and economic considerations are usually the reason for resisting low head hydro energy 
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utilization. Nonetheless, Guzmán et al., [5] have designed and constructed a 10 kW GWVT for a rural 
area of Peru with a head of 1 m and the highest test discharge reaching 0.6 m³/s. This power plant is 
low-cost and off-grid with the highest efficiency of about 13.9%. 

Many studies have been conducted to improve the performance of GWVT. These studies include 
optimizing the number of blades on the runner, modifying the runner, and optimizing and modifying 
the basin [6,7]. Initially, vortex turbine blades were flat-radial, but they have been developed into 
paddle-type, centrifugal, and paddle with baffles [8-11]. Kora et al., [12] proposed a rotated-blade-
centrifugal runner. In 2020, preliminary research was carried out to determine the general 
characteristics of vortex turbines and introduce a new runner with a 3D profile. The 3D runner 
achieved rotational speeds of up to 190 rpm [13]. 

According to Wichian and Suntivarakorn [11], the diameter of a hole in a turbine plays a crucial 
role in determining the torque generated. If the diameter is too small, the tangential velocity of the 
water will be too low, resulting in low torque generation. Conversely, if the diameter is too large, the 
water level in the basin will be too low, leading to a decrease in the torque generated. Khan [14] 
suggests that the optimal basin-to-hole diameter ratio for a turbine is between 0.14 to 0.18. 

Dhakal et al., [15] conducted a study on various parameters of a turbine basin, namely: opening, 
surface height, diameter, and cone angle, using CFD analysis. They compared different basin 
configurations and concluded that the opening has the greatest impact on the GWVT performance. 

In the study conducted by Yadav et al., [16], the potential of increasing the performance of a 

vortex turbine was investigated by using two runners − a cylinder and a cone simultaneously, 
positioned at a certain distance from each other. The results revealed that there is an optimum 
position and distance for the runners that produce the best performance. Similarly, Kayastha et al., 
[17] conducted a study to determine the impact of different runner positions on the efficiency of a 
GWVT with a conical basin. The blades of the runner were designed in the shape of a Savonius wind 
turbine blade. For the simulation, they used ANSYS CFX as the solver with a single phase and utilized 
a transient solver with a κ-ε turbulent model. The study involved numerical and experimental analysis 
of a vortex turbine prototype at three different runner height positions. The findings revealed that 
the runner in the lowest position resulted in the highest rotational speed and best efficiency. The 
maximum efficiency from experimental analysis was 10.5%, which was slightly different from the 
simulation results. 

Another study by Dakhal et al., [18] investigated the effect of the shape of the vortex basin on 
the efficiency and output power of a vortex turbine with a paddle type without a bevel. They used 
CFD simulations and experiments with two basins, namely a cylinder and a cone. To determine the 
cone angle's effect, the basin's cone angle was varied from 5° to 20°. Calculations with CFD 
simulations showed that the larger the cone angle, the greater the maximum velocity of the particles 
in the flow field. This led to the conclusion that the larger the cone angle, the greater the output 
power. Furthermore, conical basins provide better efficiency than cylindrical ones under the same 
inlet and outlet conditions. 

Bajracharya et al., [19] conducted a study to determine the effect of various geometric 
parameters on conical basin vortex turbines. They investigated seven sets of runner shapes, each 
with four types of runners featuring different geometries. The study concluded that the optimal 
runner height ratio to the basin is between 0.31 to 0.32, the blade taper angle is about 20 degrees, 
the blade curve angle seen from above is between 50 – 60 degrees, and the cut ratio is not more than 
15%. However, none of these runners were 3D. 

Aziz et al., [20] conducted a study using a cone-shaped GWVT. The runner used was a flat plate 
with different angles of inclination. The study also examined the effect of turbine orientation, vertical 
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and horizontal, on its performance. The results showed that the runner with vertical blades and 
horizontal orientation generates a higher tangential force. 

Saleem et al., [21] conducted a single-level GWVT study using a cylindrical basin and an upright 
and inclined Savonius runner. It was found that the inclined runner produces a higher efficiency of 
about 20%. 

Suarda et al., [22] observed the performance of semi-twisted blade runners of GWVT and 
concluded that the GWVT performed better at lower rotation speeds. As the rotational speed of the 
runner increased, the water level at the top of the basin also increased, which hindered water flow 
to the basin and ultimately reduced the GWVT performance. 

In a study conducted by Ullah et al., [23] the characteristics of a GWVT with a multi-stage conical 
runner consisting of 3 rotors with 3 different shafts were investigated. The study aimed to improve 
the extraction of water kinetic energy resulting in higher efficiency. Various parameters, such as 
torque, rotational speed, and power were examined individually and in combination at each level. 
The blade profile used was a 3-level Savonius Wind Turbine Blade. The maximum power obtained 
was about 4.4 Watts, resulting in an efficiency of about 11.9%, with a total head height of 0.94 m and 
a flow rate of 0.004 m³/s. It was found that the top runner achieved the highest rotational speed. The 
research concluded that the use of multilevel runners improves performance due to vortex 
strengthening caused by rigid body rotations of the inter-stage interaction. The weight of the water 
above the runners also generates greater torque. However, the interaction between these stages 
does not always amplify turbine performance because the turbulence generated by the stages above 
can distort the flow reducing vortex strength and in turn, performance. 

A study on the losses that occur in vortex turbines has also been conducted. Nishi et al., [24] used 
experiments and the free surface flow analysis method. They found that there are three major losses: 
tank loss, tank outlet loss, and friction loss inside the tank. However, the losses in the runner and 
friction loss were relatively small. The study also showed that the effective head and the turbine 
efficiency increase as the flow rate increases. As a result, the turbine output increases at a rate 
greater than the increase of the flow rate. To build on this research, this study was conducted to 
investigate the performance of a Conical Gravitational Water Vortex Turbine (CGWVT) with a 3D 
runner, which was carried out using numerical simulations and experiments. 
 
2. Methodology 
 

Figure 1 shows the nomenclature used for the runner geometry of the CGWVT with a 3D runner. 
The taper angle refers to the cone angle of the runner as viewed from the front. Blade angle, on the 
other hand, pertains to the angle of curvature of the blade when viewed from the top. The helix 
angle, meanwhile, refers to the angle of inclination of the blade twist to the line as seen in the lateral 
plane of the cylinder. The CGWVT with 3D Runner is a Gravitational Water Vortex Turbine, which 
consists of a conical basin and an equal tapper angle conical 3D Runner. 
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Fig. 1. Blade geometrical nomenclatures 

 
2.1 Runner Design 
 

In this study, the runner was designed in a 3D shape as recommended by Haryadi et al., [13]. The 
runner consisted of 5 blades as suggested by Sritram and Suntivarakorn [2]. The basin was conical 
with a 20° taper angle, as recommended by Bajracharya et al., [19]. The runner was in a conical shape. 
The arrangement of runner geometrical parameters was done based on the recommendation of 
Bajracharya et al., [19] with some necessary modifications. The picture and model of the conical 3D 
runner are depicted in Figure 2. The runner height was 240 mm, the blade angle was 60°, the helix 
angle was 63°, and the tapper angle was 20°. The top diameter was 350 mm, and the mean diameter 
was 262.7 mm. 
 

 
Fig. 2. Picture and model of the conical 3D 
runner 

 
2.2 Numerical Simulation 
 

Numerical simulations were performed using ANSYS Flow V 6.1, a CFD code with a 3D model, 
transient, incompressible method. The working fluids were water and air (two phases). The Volume 
of Fluid (VOF) model was used to solve the free-surface two-phase flow problem. The simulations 
were conducted under various torque loads. The computational domain, as shown in Figure 3, 
featured a runner placed in a conical basin. The computational elements were constructed on CGWVT 
geometry, with homogeneous cell sizes necessary for a two-phase transient flow calculation. The 
computational elements were hexagonal shapes, with a total of 53,995 cells, as seen in Figure 4. 
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Fig. 3. Computational simulation domain 

 

 
Fig. 4. Computational 
elements, as seen from 
some planes 

 
Numerical simulations were conducted using dynamic fluid-body coupling interactions. In this 

transient-incompressible solver, the flow of a two-phase water-air fluid applies pressure or force on 
the runner's surface. The shaft and runner assembly were assumed uniform. This interaction causes 
the runner to rotate on its axis (one degree of freedom). The fluid properties are described in Table 
1, while the boundary and initial conditions are described in Table 2. The external torque in the y-
axis direction was used as the load model. 
 

Table 1 
Fluid properties 
 Property Value Unit Remarks 

Water Density 998.3 kg/m3  
Viscosity  0.001 Pa.s  

Air Density ρ 1.225 kg/m3  
Viscosity 1.7894xE-5 Pa.s  

Water-air 
interactions 

Surface tension 0.072 N/m  
Contact angle 90 °  
Runner revolution  0 rpm  

Runner, shaft, 
bearing (solid, 
homogenous 
assumed) 

Revolution direction (x, y, z) (0,1,0) - The rotation 
axis is y+ 

Translation direction (x, y, z) (0,0,0) - No translation 
Mass 3.39 kg - 
Gravity 9.81 m/s2 y- direction 

Load model on 
the shaft 

External moment  0.172; 
0.329; 
0.495; 
0.645; 
0.707; 
0.801 

N.m Y- direction 
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Table 2 
The boundary and the initial conditions 
 Parameter Value Unit 

Boundary 
conditions 

Debit 4.77 Liter/s 
Pressure 1 atm 
Courant number 1  

 Roughness basin 0 m 
Initial conditions Water fraction  0 - 

Runner revolution 0 rpm 
Solver Transient - - 

incompressible - - 

 
2.3 Experimental Setup 
 

The test installation primarily comprises a conical basin with a runner and consists of an open 
channel, plenum reservoir, and pump. Figure 5 shows a schematic of the experimental setup. The 
main components of the experimental apparatus are a vortex basin with a 3D conical runner, an open 
channel, a Prony brake with a torque meter, and an ultrasonic flow meter. The ultrasonic flow meter 
was calibrated by filling the reservoir with water and recording the time taken for the process using 
a stopwatch. The rotational speed was measured using a digital laser tachometer. 
 

 
Fig. 5. Experiment setup and apparatus 

 
The torque meter consists of pulleys, a band, two load cells, and a load. By moving along the rod, 

the rod can be balanced. Experiments were conducted at various constant water debits, with the 
load W being varied at each water debit. The water debit was controlled using a ball valve. Then, the 
load W was applied, and after reaching a steady state, the shaft rotation speed was measured, and 
the forces on both sides of the band were recorded using the load cell. Still at the same water debit, 
the load W was changed to obtain the rotational speed and forces on the two sides of the band. The 
obtained mechanical power was calculated using the following equations: 
 

2

60
mP NT


=               (1) 

 

1 2( )T r F F= −               (2) 
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where N is the rotational speed, T is the torque, r is the pulley radius, and F1 and F2 are the forces on 
the two sides of the band, respectively. 

Furthermore, the water level in the waterway was also recorded, and the hydraulic power was 
determined by the following equation: 
 

hP gQH=               (3) 

 
where ρ is the density of water, g is the gravity acceleration, Q is the debit and H is the head (m) 
which is the difference between the water level of the waterway and the end conical basin. The 
stated efficiency of the vortex turbine is: 
 

m hP P =               (4) 

 
3. Results 
3.1 Numerical Simulation Result 
 

Figure 6 shows the numerical simulation results curve of angular velocity at the water debit of 
0.0047 m³/s, with a constant torque load of 0.645 Nm. The graph indicates that the angular velocity 
gradually increases with a relatively large gradient at the beginning when the volume of water 
touching the turbine blade surface increases. The turbine starts rotating at 0.6 seconds, and the 
rotational speed increases rapidly. After 5 seconds, the rotational speed increases slowly until it 
reaches a steady state. The rotational speed curve exhibits ripples which occur due to the momentum 
pulsation caused by the limited number of blades. So far, this phenomenon has not been observed 
in experimental measurements yet. 
 

 
Fig. 6. Angular velocity against time at torque load 0.645 Nm and 0.00477 
m³/s flow rate 

 
The simulation provided the VOF fraction of each computational cell. A VOF fraction of 1 indicates 

that the cell is filled with water, while a VOF fraction of zero indicates that the cell is filled with air. 
The free surface can be identified by cells with 0.5 < VOF < 1. Figure 7 shows a comparison of the free 
surface obtained from the simulation and the experiment between 0.2 and 11 s. Up to 0.3 seconds, 
the water is still flowing from the open channel to the turbine chamber, causing the turbine to remain 
at rest as shown in Figure 7. At 0.4 seconds, the water flow begins to enter the turbine chamber, and 
at 0.6 seconds, it touches the surface of the turbine blade. 
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Fig. 7. VOF fraction from t = 0.2 to 11 s 

 
Furthermore, until the time of 1.2 seconds, the turbine rotational speed increases rapidly, as 

shown in Figure 6. From 1.2 to 5 seconds, the gradient of increase in turbine rotational speed 
decreases. The turbine rotational speed remains constant from 5 to 11 seconds when the water flow 
into the basin becomes steady. The simulation results indicate that the free surface is similar to the 
experimental results. As shown in Figure 11, by 11 seconds, the rotational speed approaches a steady 
state. 

In Figure 10, it can be observed that the vorticity of 40 s-¹ is an average vorticity that dominates 
and can represent other vorticities. Figure 8 shows the VOF fraction on the surface vorticity of 40 s-1 
for the two-phase water-air flow of GWVHT with a debit of 0.00477 m³/s and a time of 11 seconds. 

    
0.2 s 0.3 s 0.4 s  

    

0.6 s 1.2 s 2.5 s  

    

5 s 10 s 11 s  

 1 

    
0.2 s 0.3 s 0.4 s  

    

0.6 s 1.2 s 2.5 s  

    

5 s 10 s 11 s  

 1 

    
0.2 s 0.3 s 0.4 s  

    

0.6 s 1.2 s 2.5 s  

    

5 s 10 s 11 s  

 1 
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The figure indicates that a vortex also occurs in the air phase. At the top layer, the VOF is equal to 
zero, and the zero VOF dominates, indicating that even in conditions that are close to steady, the air 
phase still occupies most of the basin space. Thus, numerical simulations of vortex turbines should 
indeed be conducted in two phases ─ air and water. Compared with Figure 6, it can be concluded 
that even though the water has entered the basin at t=11 seconds, the vorticity is still likely to be less 
than 40 s-1 and hence not visible in Figure 8. The figure also demonstrates that the fluid flow under 
the runner has a vorticity of 40 s-1, which is dominated by the water phase. 
 

 
Fig. 8. VOF fraction on the iso-surface vorticity 
of 40 s-¹ the debit of 0.00477 m³/s and time of 
11 s 

 
Figure 9 illustrates the velocity distribution of the fluids at the four different planes in the basin 

when the water debit is 0.00477 m³/s and the time is 11 seconds. At the top plane, the fluid velocity 
appears to be generally quite low, ranging between 0 and about 1.3 m/s. This is because there is no 
runner blade present, which means it does not contribute directly to the formation of torque. 
However, at the second plane, the average speed is increasing although it is still seen that the speed 
is low in the near shaft area caused by the whirl. In the third plane, located below the runner, the 
fluid velocity increases, which is partly due to the reduced cross-sectional area. Finally, in the fourth 
plane, the average water velocity is about 2.6 m/s which is more or less the same as the velocity of 
water through the orifice due to the water column. 

Figure 10 shows the distribution of the vortex’s strength or vorticity in a two-phase water-air flow 
in open channels and basins. The figures reveal that even though some areas are not filled with water, 
the cells with a VOF fraction equal to zero still dominate the space. It can be concluded that the 
turbine power can be further increased by either flowing more water or optimizing the geometry of 
the basin and runner. Moreover, the vorticity is getting higher at the bottom, indicating that the use 
of a conical basin can increase the vortices. Although the vortices in the initial segments appear large 
and disappear when the water returns to the inlet, the vorticity between segments is relatively 
consistent in the middle and lower areas. 
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Fig. 9. Velocity at the plane 2 phase water-air 
flow at the debit of 0.00477 m³/s and time of 
11 s 

 

 
Fig. 10. Vorticity for several cross sections at t = 
11 s 

 
Figure 11 illustrates the angular velocity of the runner against the time at different torque loads 

from numerical simulation. All curves display a similar trend. At the beginning of the fluid flow, the 
runner is still at rest until 0.35 seconds, after which it begins to rotate as the working fluid pushes the 
blade and gradually increases the angular speed of the runner as the mass of the flowing fluid 
increases. The increase in runner angular speed is relatively the same for all torque loads in the time 
range of 0 - 1.2 seconds, except for the torque load of 0.810 Nm, which is fairly low. The runner's 
rotational speed continues to increase with different gradients until t = 4 seconds, after which it starts 
to slope towards steady fluid flow conditions, where the incoming fluid's mass flow rate equals the 
fluid's mass leaving the hole. It is also observed that the runner's rotational speed decreases with 
increasing torque load, which moves against the direction of the runner's rotation. The curves show 
ripples, with the height getting smaller with time due to pulsation caused by the free space between 
the blades. For the torque load of 0.810 Nm, the blade rotation tends to be unstable, caused by the 
amplification of the ripple at a very low angular speed. At this condition, the average angular speed 
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from the numerical simulation was 9.5 rad/s, while from the experiment was 16.8 rad/s (44 rpm). 
This was because of the simulations have not yet reached fully steady, as explained later. 
 

 
Fig. 11. Angular speed against time at various torque loads and 
0.00477 m³/s flow rate from simulation 

 
3.2 Experiment Result 
 

Figure 12 shows a graph that plots the shaft power against the rotational speed at different flow 
rates. The graph indicates that the highest power output of 6.8 watts is achieved at a flow rate of 
0.00477 m³/s when the rotational speed is at around 95 to 110 rpm. At a flow rate of 0.00404 m³/s, 
the maximum power output of 5.1 is achieved at a rotation of about 100 to 115 rpm. The maximum 
power at a flow rate of 0.00477 m³/s was 6.8 watts, while at a flow rate of 0.00404 m³/s, the 
maximum power was 5.1 watts. Maximum power tends to decrease with decreasing flow rate. The 
water only partially inundates the basin at a low flow rate. It was seen during the experiment that at 
a low flow rate, the water was empty in the middle of the basin. The figure also shows that the 
maximum efficiency peak does not shift from the area between 100 – 110 rpm indicating that the 
flow pattern tends to be the same. 
 

 
Fig. 12. Shaft power against rotational speed 

 
Figure 13 shows a graph of efficiency against rotational speed. The efficiency referred to here is 

the ratio of shaft power to hydraulic power. The hydraulic power is calculated using the head, the 
difference between the height of the water level in the open channel, and the water level at the 
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turbine tail race. It can be seen in Figure 13 that the maximum efficiency that can be achieved is 0.28, 
which is much higher than that of the 3-stage conical runner, which is estimated at 0.11. The graph 
also shows that the efficiency at a flow rate of 0.00477 m³/s is generally slightly higher than that at a 
flow rate of 0.00403 m³/s. Compared to the 3D cylinder, which achieved an efficiency of 23.8%, the 
conical design is considerably more efficient. 
 

 
Fig. 13. Efficiency against rotational speed 

 
Figure 14 shows a graph of efficiency against rotational speed. The efficiency referred to here is 

the shaft power divided by the hydraulic power. The hydraulic power is calculated using the head, 
the difference between the height of the water level in the open channel, and the water level at the 
turbine tail race. The graph indicates that the maximum efficiency that can be achieved is 0.28, which 
is much higher than that of the 3-stage conical runner, which is estimated at 0.11. The graph also 
reveals that the efficiency is generally slightly higher at a flow rate of 0.00477 m³/s than at a flow 
rate of 0.00403 m³/s. Compared to the 3D cylinder, which reached 23.8%, the efficiency of the 3D 
conical is also much higher. During the experiment, the shaft powers obtained were higher than those 
of the numerical simulation at almost all torque load values. This was because the simulations did 
not yet reach a fully steady state due to the computational capacity limitation of the iteration 
duration. For the two highest torque values, the shaft powers obtained from the experiment were 
smaller than those of the numerical simulation, probably because of the presence of mechanical 
friction in the experiment. 
 

 
Fig. 14. Comparison of shaft power obtained from simulation and 
experiment 
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4. Conclusions 
 

The Conical Gravitational Water Vortex Turbine (CGWVT) with 3D runner has been developed and 
tested. The maximum power is achieved at around 95 to 110 rpm when the flow rate is 0.00477 m³/s, 
while at a flow rate of 0.00404 m³/s, the maximum power is reached at a rotation of about 100 to 
115 rpm. Comparison with the 3D cylindrical runner shows that this 3D conical runner is better. At a 
flow rate of 0.00477 m³/s, the maximum efficiency was 0.28. The shaft power obtained from the 
developed simulation is quite close to the experimental results. 

The numerical calculations successfully predicted the angular velocity, water-free surface 
pattern, and turbine performance. Therefore, the behaviour of CGWVT can be simulated by 
numerical methods that have been developed. Even though there is still air-filled space in the GWVT 
basin, turbine power can still be increased by accelerating the flow rate or improving the surface 
curve of the runner blade. 
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