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This study aims to investingate the characteristics of a magneto hydrodynamic Casson 
nanofluid flowing over a nonlinear inclined porous stretching surface when subjected to 
heat source/sink effects and viscous dissipation using a Buongiorno fluid model. Through 
the use of similarity transformations, nonlinear ODEs are derived from the governing 
nonlinear coupled PDEs and then solved using bvp4c solver in Mat lab. The outcomes of 
different physical parameters are shown graphically and tabulated to illustrate the 
changes in the velocity, temperature and concentration profiles. Additionally, numerical 
results for the Nusselt and Sherwood numbers are provided in tabular form. The 
correctness and validity of this study's findings are confirmed by a comparison to those 
found in the published literature. A higher rate of viscous dissipation and heat generation 
or absorption is associated with a lower heat transfer coefficient and a higher mass 
transfer coefficient, as shown by this investigation. This information could have 
implications for design and optimizing systems involving casson nanofluids and porous 
media, such as heat transfer systems, energy-efficient processes and catalytic reactions. 
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1. Introduction 
 

Nanofluids are a relatively new type of fluid that consist of nanoparticles floating in a base fluid. 
Nanofluids have been discovered to improve the heat transfer coefficient between the heat transfer 
medium and the heat transfer surface, in contrast to conventional heat transfer fluids like water, 
ethylene glycol, and motor oil, which have poor thermal conductivity. On the other hand, 
experiments have demonstrated that nanofluids possess appreciably higher thermal conductivity 
than the base fluids. Choi and Eastman [1] pioneered the notion of "nanofluid." They noticed that 
adding nanoparticles to the base fluid increased its thermal conductivity substantially. This finding 
has led to extensive research on the use of nanofluids in various engineering applications. The 
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nanoparticles commonly used include 
2 3Al O ,  SiC, AlN, Cu, TiO  and graphite, all of which exhibit strong 

thermal conductivity when compared to normal base fluids. 
Buongiorno [2] has proposed a comprehensive mathematical model to study the thermal 

properties of nanofluids. Brownian motion and thermophoresis are identified as the two key 
processes for particle transfer in nanofluids that contribute to the base fluid's improved thermal 
conductivity. Brownian motion allows nanoparticles that move randomly within the base fluid to 
collide. The transfer of heat resulting from such collisions can significantly improve the thermal 
conductivity of nanofluids. Bakar et al., [3] have analysed the mixed convection nanofluid flow in a 
porous medium. Viscoelastic nanofluid flow with constant heat flux was studied by Mahat et al., [4]. 
Various other researchers have explored the influence of different parameters on nanofluids [5-9]. 

The Casson fluid model is a well-known mathematical model that is often employed to 
characterize the behaviour of non-Newtonian fluids. These fluids exhibit yield stress and are 
particularly relevant in industries such as biomechanics and polymer manufacturing. Casson fluids 
are commonly found in various everyday substances such as honey, jelly, soup, and tomato sauce. 
Various studies have investigated different aspects of Casson fluid behaviour, such as Falodun et al., 
[10], who examined magneto-hydrodynamic heat and mass transfer through a vertical plate, and 
Dash et al., [11] conducted a study on the flow of Casson fluids through a pipe containing a 
homogeneous porous media. Reddy et al., [12] explored Brownian and thermophoretic properties of 
Casson fluid applying the Buongiorno model, while Kamran et al., [13] conducted a numerical analysis 
of MHD flow in Casson nanofluids under slip boundary conditions and Joule heating. In their research, 
Khalid et al., [14] explored the characteristics of unsteady magneto hydrodynamic free convection of 
Casson fluid flowing through a vertical plate that oscillated. Bejawada et al., [15] was examined the 
magneto hydrodynamic casson fluid flow on an inclined nonlinear stretching surface with chemical 
reaction. The study of casson fluid flow with different parameter were explored by other researchers 
[16-18]. 

Current research is primarily focused on the flow of fluids through a sheet that is being stretched 
Crane [19]. The flow of a boundary layer that occurs as a result of either linear or nonlinear stretching 
of a sheet is a significant engineering problem with several applications in industry. These processes 
include the fabrication of rubber sheets, the extrusion of polymer sheets, hot rolling, wire drawing, 
production of glass fiber, better petroleum resource recovery, and cooling of large plates in a bath. 

The quality of the end product is greatly influenced by the heat transfer process in the stretching 
sheet problem, which requires both cooling and heating. Several studies have investigated the flow 
behaviour of different types of fluids over various types of stretching sheets. In their study, Ullah et 
al., [20] analysed the natural convection flow of Casson fluid with magneto-hydrodynamics over a 
surface that stretches non-linearly. Meanwhile, Narender et al., [21] investigated a Casson fluid 
model with a radially stretching surface at the stagnation point. The effects of MHD flow of a Jeffery 
fluid through a stretching sheet was studied by Benal et al., [22]. Considering a time-dependent 
stretching and nonlinear surface, Mukhopadhyay et al., [23] and Mukhopadhyay [24] examined the 
flow of Casson fluid. Das et al., [25] were examined a magneto radiated couple stress fluid over an 
exponentially stretching sheet under the influence of Ohmic dissipation. Sarkar et al., [26] evaluated 
the entropy analysis of Magneto-Sisko nanofluid flow over a stretching and slipping cylinder. Asogwa 
et al., [27] conducted a study on rheology of electromagnet hydrodynamic tangent hyperbolic 
nanofluid over stretching riga surface with different effects. Heat and mass transfer of Williamson 
nanofluid over a stretching surface was explored by Srinivasulu and Goud [28]. Many researchers 
studied the MHD flow of nanofluids over a stretched surface [17,29-32]. 

There has been an increasing interest in the investigation of nanofluid flow over a non-linear or 
linear stretching sheet in recent years, particularly under different conditions, including the 
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implications of chemical reactions and viscous dissipation. Narender et al., [33] conducted a study on 
MHD casson fluids through a stretching surface under the influence of dissipation and chemical 
reaction. Similar effects have also been studied by other researchers in the area of nanofluid flow 
through a stretching surface [34-37]. Additionally, Kamran [38] analysed the impact of heat 
generation or absorption on conventional micro polar fluid flow through a stretching surface. 
Sharanayya and Biradar [39] were analysed the dissipative casson nanofluid flow past a stretching 
sheet with heat generation or absorption. Using finite element analysis, the effect of heat source on 
an unsteady magneto hydrodynamic flow of casson fluid through an oscillating plate was analysed 
by Goud et al., [40]. Reddy et al., [41] were examined the effect of heat source or sink on MHD fluid 
flow along a stretching cylinder. 

Drawing from the literature discussed above, the primary goal of this investigation is to extend 
the work of Reddy et al., [12] to examine the characteristics of the flow of a two-dimensional, 
incompressible Casson nanofluid over a porous stretching sheet inclined at a nonlinear angle. The 
analysis incorporates the effects of viscous dissipation and heat generation or absorption. By utilizing 
similarity transformations, the boundary layer equations were converted into nonlinear ODEs, which 
were then solved using a numerical algorithm in Matlab. The study explores how several 
dimensionless parameters affect the behaviour of the flow and the results are shown in the form of 
tables and graphs. 
 
2. Mathematical Analysis 
 

Consider the flow of an incompressible Casson nanofluid through a porous stretching surface in 
two dimensions. The surface is inclined at an angle  and is subject to both extending speed

( ) m

wu x ax=  and free stream speed ( ) 0u x = . Transverse magnetic field 0B  is applied normal to the 

flow. The wall temperature wT  and nanoparticle fraction wC  are prescribed at the wall. Using the 

temperature fT  and the heat exchange factor fh  proportional to 1x− , the effects of thermal radiation 

are taken into account via convective heating. The temperature distribution T  and mass transfer 

distribution C  of the nanofluid are obtained as y tends to infinity, from Figure 1. 

 

 
Fig. 1. Physical Model 
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The behaviour of a Casson fluid in isotropic motion can be described by the constitutive equation: 
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From Eq. (1), ij ije e =  where ije  denotes (i, j) th component of the deformation rate. This 

indicates that   is a representation of a deformation rate component multiplied by itself. According 

to the non-Newtonian paradigm, c  denotes a critical value of this product. 

The paper examines the Buongiorno model and its application to the Casson fluids, which is a 
type of non-Newtonian fluid used to describe substances like jelly, honey, fruit juices, soup and blood. 
Casson fluids are characterized by a yield stress, infinite viscosity at low shear rates, and near-zero 
viscosity at extremely high shear rates, as well as by their shear-thinning characteristics. 

The equations describing the flow are as follows [12]: 
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The B.Cs are defined as: 
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The formula for calculating the Roseland flux is: 
 

* 4

*
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T
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 
= −
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             (7) 

 

Using the Taylor series of 4T  around the free stream 
T by ignoring the higher order terms and 

the local temperature T  and the free stream have very little variation in temperature. 
 

4 3 44 3T T T T  −              (8) 

 
Eq. (7) and Eq. (8) can be used to simplify Eq. (4) to: 
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=  represents the relationship among the nanoparticle’ heat capacity and the heat 

capacity of liquid. 
Using the below similarity transformations as: 
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where ( , )x y  stream function satisfying 
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Eq. (2) is satisfied by using Eq. (10) and Eq. (11) and Eq. (3), Eq. (5) and Eq. (9) are translated into 

the subsequent ODEs: 
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The associated B.Cs are changed as: 
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The following are the important parameters: 
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In this paper, the parameters of the skin friction coefficient, Nusselt number and Sherwood 

number are investigated. 
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Nusselt number is denoted by (0)− , Sherwood number by (0)− and the skin friction denoted 
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3. Solution of the Problem 
 

Numerical solutions for the ODEs Eq. (12) to Eq. (14) subject to the BCs Eq. (15) are solved by 
using the bvp4c solver in MATLAB. The three-stage Lobatto IIIa formula is implemented by the solver, 
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a finite difference algorithm with fourth order precision. It employs a collocation approach to 
approximate the solution. Collocation involves discretizing the domain into a set of collocation points 
and then satisfying the ODEs at these points. In order to implement the solver, the coupled ODEs Eq. 
(12) to Eq. (14) are converted into system of first order ODEs as follows. 
 
Let 
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the corresponding boundary conditions are. 
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To ensure the accuracy and credibility of the solutions, they are compared with previously 

published results as a benchmark. To analyse the findings, dimensionless parameters are displayed 
on profiles of velocity, temperature, and concentration. Nur and Shr are calculated for various non 
dimensional parameters which are given in a tabular format. 
 
4. Outcomes and Interpretation 
 

This study presents graphical and tabulated forms of numerical results for a number of physical 

parameters, including Magnetic number M , thermal buoyancy parameter , solutal buoyancy 

parameter , inclination angle , Permeability parameter K , Radiation parameter R , Prandtl 

number Pr , Casson parameter  , Eckert number Ec , Chemical reaction parameter Kr , Brownian 

motion Nb , Thermophoresis parameter Nt , Heat generation or absorption parameter Q , Lewis 

number Le , and Biot number Bi . The values of Nur and Shr  are compared with the outcomes from 
a prior study Reddy et al., [12] to ensure that the numerical algorithm used in this study is valid. The 
comparison reveals good agreement between the outcomes produced by the current algorithm and 
those in Table 1. produced by Reddy et al., [12]. A numerical examination of the impact of the Eckert 
number and the heat generation or absorption parameter on the local Nusselt and Sherwood 
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numbers is also provided in Table 2. The findings indicate that when Eckert number and Heat 
source/sink parameter grow, Nusselt number decreases while Sherwood number increases. 
 

Table 1 

Comparison of the present results with Reddy et al., [12] on Reduced Nusselt number  and Reduced 

Sherwood number  when  = 0, = 0 

m           

Reddy et al., 
[12] 

Present 
Outcome 

Reddy et al., 
[12] 

Present 
Outcome 

1 0.5 0.5 0.71 1 0.1 0.5 π/4 0.1 0.072799 0.0726955 2.1317242 2.1316321 
2         0.073107 0.0730052 2.1440112 2.1440114 
3         0.073466 0.0734110 2.1576123 2.1576233 
4         0.073892 0.0737591 2.1728725 2.1727651 
1 1 0.5 0.71 1 0.1 0.5 π/4 0.1 0.074017 0.0739121 2.174142 2.1741222 
 2        0.074168 0.0749002 2.175710 2.1749211 
 3        0.074254 0.0741922 2.176629 2.1765822 
 4        0.074311 0.0742911 2.177230 2.1771121 
1 0.5 0.5 0.71 1 0.1 0.5 π/4 0.1 0.072833 0.0728331 2.133445 2.1334512 
  1       0.073013 0.0730133 2.140694 2.1406942 
  1.5       0.073314 0.0733142 2.152397 2.1523972 
  2       0.073928 0.0739280 2.174682 2.1746829 
1 0.5 0.5 6 1 0.1 0.5 π/4 0.1 0.089083 0.0882321 2.153118 2.1529541 
   7      0.089796 0.0890212 2.153932 2.1538711 
   8      0.090348 0.0899121 2.154921 2.1540021 
   9      0.090789 0.0907890 2.156133 2.1551215 
1 0.5 0.5 7 1 0.1 0.5 π/4 0.1 0.083620 0.0835912 2.154921 2.1548922 
    2     0.085402 0.0854001 2.158643 2.1586004 
    3     0.087457 0.0874123 2.161399 2.1612981 
    4     0.089796 0.0897002 2.163519 2.1635194 
1 0.5 0.5 7 1 0.1 0.5 π/4 0.1 0.081929 0.0819281 2.154921 2.1549112 
     0.2    0.085064 0.0850635 2.171138 2.1711290 
     0.3    0.087661 0.0876600 2.177223 2.1772119 
     0.4    0.089796 0.0897961 2.180837 2.1808291 
1 0.5 0.5 7 1 0.1 0.5 π/4 0.1 0.089434 0.088921 2.154921 2.1539321 
      1   0.089517 0.089002 2.678377 2.6772321 
      1.5   0.089630 0.088914 3.115223 3.1152230 
      2   0.089796 0.089003 3.497552 3.4975422 
1 0.5 0.5 7 1 0.1 0.5 π/6 0.1 0.089515 0.089500 2.137252 2.1371331 
       π/4  0.089718 0.089720 2.149859 2.1498590 
       π/3  0.089796 0.089735 2.154921 2.1548221 
       π/2  0.089853 0.089921 2.158746 2.1584670 
1 0.5 0.5 7 1 0.1 0.5 π/4 0.1 0.089796 0.088921 2.114918 2.1148541 
        0.2 0.162697 0.161921 2.125481 2.1253914 
        0.3 0.222809 0.222901 2.138521 2.1384899 
        0.4 0.273073 0.272990 2.154921 2.1549007 

 
 
 
 
 
 
 
 

Nur

Shr Ec Q

M  Pr R Nb Kr  Bi Nur Shr
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Table 2 

Outcomes of  and  for varied values of  and  

 

 

  

0.1  0.0612107 2.2335 
0.2  0.0510758 2.25797 
0.3  0.0415928 2.28079 
0.4  0.0326763 2.30217 
 -0.1 0.0685859 2.22119 
 0 0.06541 2.22657 
 0.1 0.0612107 2.2335 
 0.2 0.0553904 2.2429 

 

Effects of Magnetic Number M  and Permeable Parameter K are shown in Figure 2. The findings 
show that a decrease in velocity profiles is brought on by an increase in magnetic number. This is 
because the fluid flow has been impeded by the introduction of a transverse magnetic field. A higher 
value for the Permeable parameter enhances the velocity profiles by enlarging the holes and allowing 
more room for fluid particles to move freely. Permeability describes how fluid particles move across 
different regions of the boundary layer. 
 

  
Fig. 2. Impact of  and  on Velocity Profile  

 
The implications of the Casson parameter   and power index parameter m  on the velocity 

profiles is illustrated in Figure 3. The higher values of   correspond to an increase in fluid velocity, 

which results in a drop in the yield stress and a reduction in the thickness of the momentum boundary 
layer. As a result, the velocity profiles get flatter as the Casson parameter increases. Increases in m  
cause the velocity profiles ascend due to stronger shear thinning behaviour of the fluid. Viscosity 
decreases as the shear rate increases which results the increase in fluid velocity. 
 

Nur Shr Ec Q

Ec Q Nur Shr

M K f 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 109, Issue 2 (2023) 151-167 

160 
 

  
Fig. 3. Effect of  and  on Velocity Profile  

 
Figure 4 illustrates how solutal buoyancy   and thermal buoyancy  affect fluid movement. 

The findings indicate that a higher value of these parameters results in a stronger buoyancy force, 
which reduces fluid viscosity and accelerates fluid movement, leading to enhanced velocity profiles. 
Meanwhile, the impact of the inclination factor  can be observed from Figure 5. Due to the 
existence of a magnetic field that hinders fluid flow, the velocity profiles drop as the inclination factor 

rises. Additionally, the velocity profile experiences a greater decline when the value of
2


 = . 

 

  
Fig. 4. Impact of  and  on Velocity Profile  

 
 

 m f 

  f 
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Fig. 5. Impact of  on Velocity Profile  

 

In Figure 6, we see the impact of changing both the radiation parameter R  and the Prandtl 

number Pr .When R  is increased, the profiles of temperature drop close to the boundary and rise at 
the distant distance. This is because an increase in the Radiation parameter causes the fluid's 
temperature to rise and in turn, causes the boundary layer to thicken. The thermal diffusivity to 
momentum diffusivity ratio is quantified by the Prandtl number. The temperature profile first rises 
close to the boundary as the Prandtl number rises, then falls away from the boundary. 
 

  
Fig. 6. Effect of  and  on Temperature Profile  

 
Figure 7 demonstrates the outcomes of Nb  and Nt . Due to the enhancement in the kinetic 

energy and movement of the nanoparticles, the temperature climbs, and the thickness of the thermal 
boundary layer grows as the Brownian motion parameter Nb  increases. The temperature profile 
also increases as the Thermophoresis parameter increases because heated particles move away from 
higher temperatures to lower temperatures, leading to an overall temperature increase in the fluid. 
 

 f 

R Pr 
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Fig. 7. Impact of  and  on Temperature Profile  

 
The impacts of the heat generation or absorption parameter Q  and the Eckert number Ec  are 

described in Figure 8. More energy may be stored in a fluid region with a higher value of viscous 
dissipation. This viscous dissipation leads to the generation of heat due to fractional heating, resulting 
in elevated temperature profiles. More heat is produced with an increase in Q  ( 0Q  ), which raises 

the temperature and thickens the thermal boundary layer. However, as Q  degenerates ( 0Q  ), the 

heat absorbed causes a decrease in temperature and a thickening of the thermal boundary layer. 
 

  
Fig. 8. Effect of  and  on Temperature Profile  

 
The findings of the Biot number Bi  and inclination factor  are shown in Figure 9. The Biot 

number is a measure of how much thermal resistance there is for convection at a body's surface 
compared to thermal resistance for conduction within the body. The temperature profile rises as a 
consequence of increased sheet convective heating, as seen in the figure, which is caused by rising 
Biot number. Like this, raising the inclination factor also causes the temperature profile to rise. 
 

Nb Nt 

Ec Q 
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Fig. 9. Impact of  and  on Temperature Profile  

 
The outcomes of Nb and Nt  are shown in Figure 10. The fluid concentration and boundary layer 

thickness both drop when the Brownian motion parameter is increased. Increases in the 
Thermophoresis parameter cause the fluid concentration to fall close to the boundary but rise further 
away from it, increasing the thickness of the boundary layer. 
 

  
Fig. 10. Impact of  and  on Concentration Profile  

 

Figure 11 depicts the influence of the Kr  and Le . The concentration profile is shown to be 
negatively impacted by an increase in the chemical reaction parameter. It is also shown that the Lewis 
number, a dimensionless quantity that establishes the ratio of species to thermal diffusion rates, has 
an effect. When the Lewis number increases, it indicates that the rate of thermal diffusion is higher 
compared to species diffusion in a fluid mixture. This means that heat is transported more rapidly 
than the species, resulting in a steeper temperature gradient in comparison to the concentration 
gradient. Therefore, the concentration boundary layer becomes thinner. The effect of Ec  on Nusselt 
number and Sherwood number is depicted in Figure 12. It observed that, as Eckert number increases, 
Nusselt number decreases and Sherwood number increases. From Figure 13, it is seen that, for 
increasing values of heat source or sink parameter Q , Nusselt number decreases whereas Sherwood 

number increases. 
 

Bi  

Nb Nt 
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Fig. 11. Effect of Kr  and Le  on Concentration Profile   

 

  
Fig. 12. Effect of Ec  on Nur and Shr  

 

  
Fig. 13. Effect of Q  Nur  and Shr  

 
5. Conclusions 
 

After considering all the arguments and results, we have compiled our findings in the following 
summary: 

 
i. As the fluid's thermal conductivity increases with increasing dissipation, a rise in the Eckert 

number Ec  leads to a higher temperature profile. 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 109, Issue 2 (2023) 151-167 

165 
 

ii. A positive value for the heat source/sink parameter Q  means that more heat is produced in 

the system, leading to a higher temperature and a thicker thermal boundary layer. If Q is 
negative, the system absorbs heat, causing the temperature and the thickness of the thermal 
boundary layer to drop. 

iii. As the Radiation parameter R  rises, so does the temperature profile. 
iv. As Brownian motion increases, the thermal boundary layer thickens, and the concentration 

boundary layer thins. 
v. When the Thermophoresis parameter Nt  is raised, a rise also occurs in the concentration and 

temperature profiles. 
vi. The velocity profiles get flatter when inclination angle  is increased. 

vii. Raising the Casson parameter in a Casson fluid results in a decrease in fluid velocity. 
 

The results obtained in this study will be used to analyse the heat and mass transport features in 
many non-Newtonian nano fluid flow industrial applications. This work can be extended in future 
with some other geometries and physical conditions. 
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