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In this study, the stability analysis is conducted in order to observe the reliability of the 
generated solutions. The influence of several parameters is taken into consideration 
including heat source/sink parameter, suction, magnetic field, and heat transfer. The well-
known heat transfer fluid that is Al2O3-Cu/H2O hybrid nanofluid past a 
stretching/shrinking wedge is implied. The similarity equations are achieved after 
implying suitable similarity transformation which then needed to be solved numerically 
using bvp4c, embedded in MATLAB software. Dual solutions are observed along the 
investigation within specified values of involved parameters. It is important to note that 
verification results show excellent concordance with pre-existing reports. 
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1. Introduction 
 

Hybrid nanofluids have been created recently to enhance the fluids' thermophysical and heat-
transporting capabilities. Even so, one of the most important factors in preserving a stable hybrid 
nanofluid composition is picking the appropriate nanoparticles. Therefore, exploring the full potential 
of this powerful nanofluid mixture requires continual investigation. Numerous studies have lately 
focused on the efficiency of hybrid nanofluids as heat-transfer fluids in a variety of flows and surfaces, 
including wedge-shaped surfaces. This is noteworthy due to the several uses in the chemical and 
technical fields, including those related to geothermal energy and aerodynamics [1,2]. Zainal et al., 
[3] and Rehman et al., [4] claimed that selecting different and appropriate nanoparticle proportions 
in the hybrid nanofluids through a wedge will enable one to achieve the necessary heat transfer rate. 
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Additional promising discoveries about how hybrid nanofluids could improve heat transfer are 
available in Sajjad et al., [5] and Idris et al., [6]. Thus, in accordance with the literature mentioned 
above, this suggests that hybrid nanofluids could speed up the heating process of the 
stretching/shrinking wedge. 

The implications of heat source/sink should not be ignored because the majority of engineering 
operations usually entail extremely high temperatures. Since the heat source/sink parameter 
contributes to the trend of boundary layer temperature, which in turn impacts product quality, the 
investigation of heat source/sink is crucial in boundary layer flows and heat transfer. When the heat 
source/sink parameters are included in the fluid flows study, Manohar et al., [7] found that the 
temperature of the hybrid nanofluids is invariably higher than the temperature of the nanofluids. In 
another study, Masood et al., [8] concluded that the temperature field increases for the heat 
source/sink factor while the velocity field is boosted for the velocity ratio parameter. The analytical 
and numerical analysis of heat transfer and boundary layer flow with a focus on the heat source/sink 
parameter in the hybrid nanofluid is available in previous researches [9-11]. 

The goal of the current work is to fill a knowledge gap, notably in the area of hybrid nanofluid 
flow with the effects of heat source/sink on a stretching/shrinking wedge surface. The main 
contribution of this study is the development of a new mathematical hybrid nanofluids model with 
the inclusion of the heat source/sink parameter, which also witnessed the appearance of several 
other significant variables like the magnetic field and suction effect. This study also noted the 
establishment of numerous solutions. Given the considerable relevance practical of the boundary 
layer flow behavior of the wedge-shaped surface, this important discovery could contribute to a 
better knowledge of this research. 
 
2. Methodology 
 

A steady magnetohydrodynamics (MHD) Al2O3−Cu/H2O hybrid nanofluids flow with the effect of 
heat source/sink over a stretching/shrinking wedge is studied which shown in Figure 1. The free-

stream velocity is given by m

e eu U x=  with ( ) m

w wu x U x=  is the velocity of the stretching/shrinking 

wedge. Next, 
eU  is a constant, 0wU   and 0wU   denote as the stretching wedge and shrinking 

wedge, respectively. Further, we have ( )2m  = −  where m  represents angle of the wedge and 

  is the Hartree pressure gradient parameters. Since the wedge flow problem is measured in this 

study, thus the value of m  is set in the range of 0 1m  . To be exact, the value of m  is set to 0.1 
which represents the acute wedge angle. The fluid's ambient temperature is represented by the 
stretching/shrinking wedge temperature, where both temperatures are set to be constant. A 

magnetic field ( )B x  is applied in the y−  direction with ( )1 2

0( )
m

B x B x
−

=  where 
0B  is the applied 

magnetics field strength. 
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(a) (b) 

Fig. 1. The coordinate systems for (a) stretching wedge (b) shrinking wedge 

 
Based on the above assumption, the governing equations of the hybrid nanofluids mathematical 

model can be written as [12,13]: 
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Meanwhile, the boundary conditions of the above mathematical assumption are given as follows 
 

( ) ( )

( ) ( )

, , ,   at 0

.

,

, ,    as e
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The heat source/sink variable is denoted as * ( 1)

0

m

eQ Q u x −=  with constant *.Q  The 

thermophysical characteristic of related fluids are portrayed in Table 1 while the correlation 
coefficient for the hybrid nanofluids is depicted in Table 2. The following similarity variables are now 
presented [12] 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 1 21 2 1 2
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e f e f
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thus, 
 

( ) ( )1 2 1 21
.

2

m

w e f

m
v U x S

−+
= −            (6) 
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Table 1 
Properties of the base fluid and nanoparticles [14] 

Component 3(kg/m )  ( / )k W mK  (J/kgK)pC  

Al2O3 3970 40 765 
H2O 0.613 21 4179 
Cu 8933 400 385 

 
Table 2 
Nanofluids with hybrid thermal properties [15] 
Thermophysical properties Alumina-Copper/Water (Al2O3–Cu/H2O) 

Thermal conductivity, hnfk  
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Heat capacity, ( )p hnf
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Electrical conductivity, hnf  ( )
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For further details, S  in the Eq. (6) is the parameter of mass flux and in this study, we only 

considered the positive values where 0S   which represents the suction parameter. The following 
ordinary (similarity) differential equations are then developed by utilising the similarity variables in 
Eq. (5) and Eq. (6) thus 
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where 2

0f f eM B U =  is the magnetic coefficient, Pr f f = is the Prandtl number, and 

w eU U =  represents the stretching/shrinking wedge parameter. The heat source/sink parameter 

is denoted as ( )* .p f
H Q C=  The physical quantities related to this study is declared as 

( )
0

hnf

x

f w y

xk T
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k T T y =
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u
C
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
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. Then, we get 
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( ) ( )1 2 1 2Re 0 ,   Re = 0 ,
hnf hnf

x f x x

f f

k
C f Nu

k
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where ( )Rex e fu x x = . 

 
3. Stability Analysis 
 

In this section, the stability analysis is conducted in order to verify the solution reliability since 
there are more than one solution in the obtained results. The following transformations are 
presented based on the work reported by Weidman et al., [16], Harris et al., [17] and Merkin [18]: 
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By employing the new transformation in the above equation, now Eq. (7) to Eq. (9) are converting 

into 
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Next, we applied the perturbation functions described by Weidman et al., [16] where it is given 

that 
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where ( ) ( ) and     are relatively small as compared with 0 0 and f   and the unknown eigenvalue 

is assigned by  . Next, we substitute Eq. (15) into Eq. (12) and Eq. (13) which transformed the 
equations to the linear eigenvalue problem where 
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Without losing generality, we fix the value of ( )0  as ( )0 1 =  in the current study and derive 

the value of   from the system of equations in Eq. (16) and Eq. (17) in addition to the boundary 
condition (18). According to Eq. (15), as time passes, the flow is in a stable state if   is positive and 
for negative values of  , the flow is said to be in a state of instability. Meanwhile, when   
approaches the critical value or bifurcation point, the values of   tend to zero for both positive and 
negative sides. 
 
4. Results and Discussions 
 

In this section, the results obtained is discussed thoroughly. The reliability of the results is 
examined with Sparrow et al., [19] and Ishak et al., [20], as accessible in Table 3. The authors found 
that the present findings are very much in line with previous investigations. As a result, we are 
confident that the intended computer model can accurately anticipate the behaviour of dynamic fluid 
flow. 

The numerical calculations for different physical parameters used in this study are performed. A 

variety of   is implemented ( )1 20.00 , 0.01    to differentiate between the conventional heat 

transfer fluid and the hybrid nanofluids. Furthermore, a variety of controlling parameter values are 
defined to the preceding scope where the value of the wedge angle and suction parameter are fixed 
to 0.1,  and 2.0m S= = , respectively, while the magnetic are set within 0.0 ≤ 𝑀 ≤ 0.05 and the heat 

source/sink parameter is classified in the range of 0.0 0.5H   to guarantee the compatible of the 
obtained solutions. It should be emphasised that, in order to achieve the desired result, the values 
of the supplied parameter should be utilised to generate an adequate result estimation. 
 

Table 3 

Approximation values of ( )0f   by certain values of S  when 

1 2 0,  and Pr 1M H m  = = = = = = =  

S  Present result Sparrow et al., [19] Ishak et al., [20] 

1.0 1.889313 - 1.8893 
0.5 1.541752 - 1.5418 
0.0 1.232589 1.2310 1.2326 
−0.5 0.969231 0.9697 0.9692 
−1.0 0.756576 0.7605 0.7566 

 
Figure 2 describes the influence of nanoparticles concentration when   is varied as the wedge 

shrinks. When 
1 20.00, 0.01 = = , the alumina-water nanofluid (Al2O3/H2O) is formed, meanwhile 

1 20.01, 0.00 = =  denoted the copper-water nanofluid (Cu/H2O) and the combination of 
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1 2 0.01 = =  produced the alumina-copper/water hybrid nanofluids (Al2O3−Cu/H2O). The 

improvement in velocity profiles ( )f   for both solutions is displayed when the value of   improves 

over the shrinking wedge, as illustrated in Figure 2(a). According to the findings, the Al2O3−Cu/H2O 

displayed the dominant trend of ( )f  , followed by Cu/H2O and Al2O3/H2O. This phenomenon 

causes the boundary layer separation on the shrinking wedge to slow down as a result of the frictional 
drag that is being exerted upsurges in the Al2O3−Cu/H2O. The trend of the temperature distributions 

profile ( )   corresponds to the increment of   is accessible in Figure 2(b). In Figure 2(b), the first 

solution shows an increase of ( )   from conventional fluid to nanofluid and hybrid nanofluid. In 

common practice, Al2O3−Cu/H2O shows better performance in heat transfer efficiency, followed by 
Cu/H2O and Al2O3/H2O. Aluminum is inferior to copper in terms of processor cooling since copper has 
a better thermal conductivity. But due to its lower density as compared to copper, aluminium can 
radiate heat into the air more effectively. 
 

  
(a) (b) 

Fig. 2. Distribution profiles with different  in contrast to  (a) velocity profile (b) temperature profile 

 

Figure 3(a) and Figure 3(b) depict the characteristics of ( )f   and ( )   with respect to the 

addition of magnetic parameter, M . Figure 3(a) apparently showed that the increasing values of M  
specifically in Al2O3−Cu/H2O, reduce the momentum boundary layer thickness in the first solution. 
However, the second solution showed the reduction trend as M  increases. Meanwhile, it is observed 

that ( )   presents a downward trend in both solutions, as exhibited in Figure 3(b). As can be seen, 

the thickness of the thermal boundary layer declines in both profiles. The impact of wedge angle 

parameter, m in Al2O3−Cu/H2O are portrayed in Figure 4(a) and Figure 4(b) concerning ( )f   and 

( )  , respectively. Figure 4(a) displays that as m improved, ( )f   increases in first solution, while 

the alternative solutions point out the opposite. On the other hand, Figure 4(b) illustrates a 

decreasing pattern of ( )   when m improves in first and second solutions, hence we can conclude 

that the thermal performance has progressed as m enhances. 
 

 
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(a) (b) 

Fig. 3. Distribution profiles with different  in contrast to  (a) velocity profile (b) temperature profile 

 

  
(a) (b) 

Fig. 4. Distribution profiles with different m in contrast to  (a) velocity profile (b) temperature profile 

 
The influence of the heat source/sink parameter H  in the present problem is displayed in Figure 

5. Figure 5(a) shows the variations of ( )0 −  for different values of H  where 𝐻 = 1.0,2.0,3.0 and 

the dimensionless temperature profile ( )   is displayed in Figure 5(b). We noticed that H  has a 

remarkable impact on the temperature of the Al2O3−Cu/H2O. Physically, ( )0 −  diminishes when 

the heat generation is incremented due to the presence of additional heat provided in the working 
flow, hence slow down the heat transmission of the system. This is because more heat is generated 
and released to the flow, which benefits in enhancing the momentum boundary layer thickness. On 

another note, the temperature of the hybrid nanofluids ( )   rises as a result of the thermal diffusion 

layer that formed when heat is generated, and this ensues in conjunction with a decrease in the 
thermal rate. Table 4 demonstrates the results of stability analysis to test the reliability of the 

solutions. When 0 as e−→ → , it is recorded that   generates positive eigenvalues. 

Meanwhile, e−→  is recorded to be negative eigenvalues. These findings suggest that the first 
solution is long-term stable, whereas the second solution is unstable and therefore not long-term 
physically dependable. 
 

M 


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(a) (b) 

Fig. 5. Different values of  with  and  (a) reduced heat transfer coefficient (b) temperature profile 

 
Table 4 
Results of the smallest eigenvalues   generated from the analysis of 
solution stability  
  First Solution Second Solution 

−2.0 0.2571 −0.2343 
−2.02 0.2192 −0.2172 
−2.04 0.1756 −0.1947 
−2.06 0.1211 −0.1617 
−2.08 0.0131 −0.0781 
−2.0802 0.0019 −0.0106 

 
5. Conclusions 
 

The recent study verified a numerical simulation of Al2O3-Cu/H2O hybrid nanofluid's response to 
heat source/sink impact along a shrinking wedge with the addition of several governing parameters. 
According to the observations, the presence of the first and second solutions is demonstrated for a 
wide range of control parameters throughout several combinations of the nanoparticle. Through the 
stability analysis, the first solution has been demonstrated to be in a stable state, while the second 
solution responds the opposite way. 
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