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The investigation on the Reiner–Philippoff fluid model embedded with two different 
nanoparticles (Al2O3 and Cu) over a shrinking sheet is carried out. The Tiwari and Das 
model are applied in the study covering the continuity, momentum, energy equations, 
and Reiner-Philippoff relation. The flow studied also considers the mixed convection and 
mass flux influences. The respective equations are first transformed into ordinary 
differential equation form using the similarity transformation before performing the 
computation work using the bvp4c function in MATLAB. The present model is identical to 
the established model in special cases, and then a direct comparative study is executed 
to verify the current model. The results for respective problems are presented in tabular 
and graphical form. It is perceived that the presence of nanoparticles affects the fluid 
characteristic significantly. 
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1. Introduction 
 

An efficient working fluid is required for industrial and technological applications to regulate 
processes and produce superior final products. Although many processes use non-Newtonian fluid 
types to accelerate advancements, pure water (Newtonian) is still used as a cooling agent. There are 
various non-Newtonian fluids, and each has distinctive properties. In contrast to Newtonian fluid, 
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whose strain is by the stress tensor, the non-Newtonian fluid type is classified by either shear 
thinning, which displays pseudo-plasticity, or shear thickening, which describes the dilatant. Shear-
thinning fluids show the behaviour of Newtonian fluids at extreme shear rates, whereas shear-
thickening fluids show the development in viscosity proportional to shear rate. Krishnan et al., [1] 
indicates that the fluid in models reflecting shear thickening and shear thinning characteristics 
includes the Powell-Eyring, Sisko, Carreau-Yasuda, and Carreau viscosity models and Reiner-
Philippoff. 

The Reiner-Philippoff model, which belongs to the non-Newtonian group, is the most fascinating 
to study because it exhibits Newtonian fluid behaviour at low or high values (shear stress) and non-
Newtonian behaviour at other values. Furthermore, the Reiner-Philippoff model is essential and 
unique in representing natural fluid in industrial applications. In certain situations, it can exhibit three 
fluid characteristics where it can behave like Newtonian, dilatant, and pseudo-plastics. This is 
significant in manufacturing procedures since the applied fluid might vary in a specific process to 
achieve the best production. In addition, numerous researches examined the flow's movement over 
various geometries and its effects on the flow field [2-11]. 

The study of fluid flow has advanced and become more fascinating since the development of 
nanofluids, which can control heat and mass transfer and flow behaviour. In the industrial 
engineering and manufacturing processes, the boundary layer flow triggered by the stretching or 
shrinking surface is widely employed, such as in wire drawing, continuous glass casting, and polymer 
or metal extrusions. The flow across a linearly stretched surface appears to have been studied for the 
first time historically by Crane [12]. Flows over shrinking surfaces have recently drawn attention, in 
contrast to flows over stretched surfaces. The flow that the shrinking surface causes is effectively a 
reverse flow, claims Goldstein [13]. In addition, numerous researches have examined the impact of 
various physical parameters on stretching and shrinking surfaces [14-23]. 

Convection heat transfer is a process caused by differences in temperature and density, through 
which heat is transferred from one part of the fluid to another. There are two types of convection: 
forced convection and natural convection. Forced convection is the process of fluid motion imparted 
by an external source, while natural convection is caused by natural means such as buoyancy effects. 
Mixed convection is formed when forced and natural convection systems combine. Due to its 
significance in industrial systems, including nuclear reactors, solar collectors, and electronic devices, 
mixed convection flow is a topic of great interest to researchers. Merkin [24] examined the mixed 
convection flow toward a vertical plate in a porous material. Ingham [25] researched the mixed 
convection flow over a moving vertical flat plate. Ramachandran et al., [26] then applied this work to 
the stagnation flow problem and discovered that the opposing flow area was where the solution's 
non-uniqueness occurred. In addition, previous researches have also considered the work on the 
mixed convection flow over various geometry [27-31]. 

In recent years, hybrid nanofluids have replaced nanofluids in several technologies to enhance 
thermal performance. Turcu et al., [32] and Jana et al., [33] are among the first researchers to 
integrate hybrid nano-composite particles in their experimental work. Due to the synergistic effects 
of its various nanoparticles, a hybrid nanofluid is an innovative fluid that can accelerate the heat 
transfer rate [34]. The appropriate nanoparticles can also be combined or hybridized to achieve the 
optimum heat transfer [35]. Suresh et al., [36] created a nanocrystalline Cu- Al2O3 hybrid 
nanocomposite using a thermochemical process. Then, the produced nanocomposite powder was 
dissolved in deionized water to form the hybrid Cu-Al2O3/water nanofluid. The experimental findings 
show that nanoparticles' volume concentration increases with the hybrid nanofluid's thermal 
conductivity and viscosity. When the viscosity and thermal conductivity of the nanofluids were 
examined, it was found that the viscosity increase was considerably more than the thermal 
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conductivity increase. Moreover, they claimed that even while alumina has a low heat conductivity, 
it has a good level of chemical inertness, which could help to keep the hybrid nanofluid stable. Suresh 
et al., [37] investigated the pressure drop characteristics of the Cu-Al2O3/water hybrid nanofluid and 
laminar convection heat transfer in uniformly heated circular tubes. Compared to the Nusselt 
number of waters, the testing results show a maximum rise in the Nusselt number of 13.56%. 0.1% 
hybrid Cu- Al2O3/water nanofluid has a slightly higher friction factor than 0.1% Al2O3/water nanofluid. 
Because of Suresh's discoveries, Cu- Al2O3/water is an incredibly efficient hybrid nanofluid in 
transferring heat. Additionally, Singh and Sarkar [38] and Farhana et al., [39] also commented on the 
relevance of the combination of alumina and other nanoparticles. In this regard, Devi and Devi [40] 
investigated the Al2O3-Cu hybrid nanofluid boundary layer flow problem across a stretching surface 
using new correlations of the thermophysical properties that matched the findings of Suresh et al., 
[37]. They found that the higher nanoparticle volume fractions enhanced the heat transfer rate in 
those studies. In recent years, a hybrid nanofluid's boundary layer flow past a stretching or shrinking 
surface has been thoroughly studied. The significance of this field's uses in manufacturing processes, 
such as synthetic fiber synthesis, paper manufacture, and polymer extraction, has led to a 
tremendous rise in studies in this area. Waini et al., [41] reported a temporal stability analysis on the 
flow via a stretching and shrinking surface in a hybrid nanofluid. They found that one of the solutions 
was unstable over time, whilst the other was stable and physically trustworthy. 

Motivated by the above literature survey, this study focuses on the mixed convection of Reiner-
Philippoff hybrid nanofluid. The flow is expected to pass across a shrinking sheet. Also, as water is 
regarded as a base fluid, Al2O3-Cu nanohybrid particles are added to the based fluid to expedite the 
heat transfer rate. Influences from mass flux are also considered in the flow. The governing equations 
are derived into ordinary differential equation form using the similarity transformation before it is 
solved computationally using the bvp4c function in MATLAB. The findings are presented graphically 
and briefly discuss how various physical factors were influenced. This problem has not been studied 
before, so the reported results are new. 
 
2. Methodology 
 

Figure 1 depicts the physical configuration of Reiner-Philippoff nanofluid across a shrinking 

surface where the velocity’s surface is 𝑢 = 𝑎𝑥1/3𝑓′(𝜂) with 𝑎 > 0. The mass flux velocity 𝑣𝑤(𝑥) 

represents the surface permeability, while given 𝑇𝑤 = 𝑇∞ + 𝑇0𝑥
−1/3 is the surface temperature 

where the constant ambient temperature is 𝑇∞ and 𝑇0 is the reference temperature. Thus, the 
comprehensive equations for the suggested model are as follows [10,31]: 
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Fig. 1. The physical model 

 
where (𝑢, 𝑣) are the velocity components in the (𝑥, 𝑦) directions, respectively. Further, 𝜌ℎ𝑛𝑓 is fluid 

density, (𝜌𝛽)ℎ𝑛𝑓 is thermal expansion, (𝜌𝐶𝑝)ℎ𝑛𝑓 is heat capacity, 𝑘ℎ𝑛𝑓 is thermal conductivity, 𝜇ℎ𝑛𝑓 

is dynamic viscosity, 𝜇∞ is limiting dynamic viscosity, T is temperature, g is acceleration due to gravity, 
𝜏 is shear stress of Reiner-Philippoff fluid, 𝜏𝑠 is references shear stress and 𝜀 is stretching/shrinking 
parameter. The subscripts of hnf and f stand for hybrid nanofluid and fluid, respectively. The similarity 
transformation is as follows [42]: 
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The term 𝜓 is express by 𝑢 = 𝜕𝜓/𝜕𝑦 and 𝑣 = −𝜕𝜓/𝜕𝑥 yield: 
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At 𝜂 = 0, the wall mass flux velocity obtained as: 
 

( ) 1/32

3
w hnfv x a x S−= −              (8) 

 
in which 𝑓(0) = 𝑆 indicates the parameter of constant mass flux. There are three different situations 
of the value of S, where S = 0 denote the impermeable surface, S < 0 for injection and S > 0 is for 
suction, while 𝜈𝑓 = 𝜇∞/𝜌𝑓 is the fluid kinematic viscosity. The similarity between Eq. (9) to Eq. (12) 

are obtained after employing Eq. (6) and Eq. (7): 
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The dimensionless parameter Bingham number γ, Reiner–Philippoff fluid λ, mixed convection Z, 

and Prandtl number Pr, are defined by: 
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Note that λ = 1 presents viscous Newtonian type, whereas λ > 1 signifies the shear-thinning and 

λ < 1 is the shear-thickening fluid type, respectively. Further, ε = 0 signifies the static sheet, ε > 0 
indicates the stretching sheet, and ε < 0 is the shrinking sheet. The quantity of physical in terms of 
skin friction and local Nusselt number is given by: 
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where 
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The 𝜏𝑤 symbolizes the quantity of 𝜏 on y = 0, and 𝑞𝑤 presenting the surface heat flux. Then, one 

gets: 
 

,                    (16) 

 

where 𝑅𝑒𝑥 = 𝑢𝑤(𝑥)𝑥/𝑣𝑓 is the local Reynolds number and 𝐺𝑟𝑥 = (𝑔∗(𝛽𝑇)𝑓(𝑇0𝑥
−1/3)𝑥3)/𝑣𝑓

2 is the 

Grashof number. The physical properties of water, Al2O3, and Cu are listed in Table 1, whereas the 
thermophysical characteristics of nanofluid and hybrid nanofluid are listed in Table 2. Meanwhile, 

the nanoparticle volume fractions of Al2O3 and Cu are symbolized by 
1  and 2 , respectively. Also, 

the subscripts of hnf, nf, and f, stand for hybrid nanofluid, nanofluid, and fluid, respectively. 
 

Table 1 
Thermophysical properties of water, Al2O3, and Cu [43] 
Thermophysical properties Water Al2O3 Cu 

( )3/kg m
 

997.1 3970 8933 

( )/pC J kgK
 

4179 765 385 

( )/k W mK
 

0.613 40 400 

( )510 1/ K −
 

0.85 1.67 21 

 
Table 2 
Thermophysical properties of nf and hnf [44] 
Thermophysical 
properties 

Nanofluid Hybrid nanofluid 

Density ( )1nf f s   = − +
 ( ) 1 1 2 21hnf hnf f s s      = − + +  
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( ) ( ) ( ) ( ) ( )1 21 2

1p p p phnfhnf f s s
C C C C      = − + +  

Dynamic viscosity 

( )
2.5

1

1

nf

f



 
=

−

 
( )

2.5

1 2

1

1

hnf

f



  
=

− −
 

Thermal 
conductivity 

( )
( )

2 2

2 2

s f f snf

f s f f s

k k k kk

k k k k k





+ − −
=

+ + −

 

( )

( )

1 1 2 2
1 1 2 2

1 1 2 2
1 1 2 2

2 2 2

2 2 2

f hnf f
hnf hnf

f
f hnf f

hnf

k k
k k k k

k

k kk
k k k k

 
  



 
  



+
+ + + −

=
+

+ − + −

 

Thermal expansion 
coefficient 

( ) ( )( ) ( )1
nf f s

    = − +
 

( ) ( )( ) ( ) ( )1 21 2
1 hnfhnf f s s

      = − + +  

where 1 2hnf  = +  

 
 
 
 

( )1/2Re 0x fC g= ( )1/2Re 0
hnf

x x

f

k
Nu

k

− = − 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 111, Issue 2 (2023) 195-213 

201 
 

3. Results and Discussion 
 

The numerical solutions of Eq. (9) to Eq. (12) are obtained using the boundary value problem 
solver, bvp4c, a feature of the MATLAB software. It uses the three-stage Lobatta IIIa formula and is a 
finite difference approach. To acquire the necessary solutions, the selection of initial guess and 
boundary layer thickness η∞ will depend on the parameters used. This solver is also being utilized by 
various researchers to solve boundary layer flow problems [45-49]. 

A direct comparison analysis is conducted on the existing value of ( )0f   provided by Cortell [50], 

Ferdows et al., [51], and Waini et al., [18] to vouch for the dependability of the current model. It 
should be noted that the equations on the current model were the same for the limiting case, making 
a comparison between the present findings and the current output appropriate. In Table 3 and Table 

4, respectively, the validation data on the values of ( )0f   are presented. The comparison reveals 

excellent agreement, which supports the current mathematical formulation and the provided 
numerical results. 
 

Table 3 
Comparative model in terms of momentum equations 
Author Model (momentum) Limiting cases 

Current ( )

( )
21 2

0
3 3

Thnf hnf

f T f

g f ff Z



 

  
    − − + = 

    

 

Z = 0 

Cortell [50] ( )
2

3 2 0f ff f  + − =  - 

Ferdows et al., [51] 
( )2 22 1

0
3 3

f ff f Mf Gr Gc    + − + + + =  
M = Gr = Gc = 0 

Waini et al., [18] 
2

/
3 2 0

/

hnf f

hnf f

f ff f
 

 
  + − =  

- 

 
Table 4 
Comparative value of 𝑓′′(0) at 𝜀 = 𝜆 = 𝛾 = 1, Pr = 2 and Z = 0 for different value of S 
S Cortell [50] Ferdows et al., [51]  Waini et al., [18] Current 

-0.75 -0.453521 -0.453523 -0.453523 -0.453523325 
-0.5 -0.518869 -0.518869 -0.518869 -0.518869429 
0 -0.677647 -0.677648 -0.677648 -0.677647983 
0.5 -0.873627 -0.873643 -0.873643 -0.873642863 
0.75 -0.984417 -0.984439 -0.984439 -0.984439388 

 

To strengthen the current formulation and the current output, the values of ( )0g  are also 

compared with the result obtained by Sajid et al., [10] and Waini et al., [52] for various values of the 
Reiner-Philippoff fluid parameter λ, the Bingham number γ and Pr = 2. A strong agreement can be 
seen in the comparison; hence, Table 5 and Table 6 show the corresponding numerical values. For 

higher values of γ, the values of ( )0g  significantly increase. However, with the rise of λ, there is a 

slight decrease in the values of 1/2Rex fC . 

 
 
 
 

Table 5 
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Comparative model in terms of momentum equations 
Author Model (momentum) Limiting cases 

Current 

 

Z = 0 

Sajid et al., [10] 
 

- 

Waini et al., [52] 
 

M = 0 

 
Table 6 
Comparative value of g(0) for λ and γ when S = Z = 0 and 𝜀 = 1 
γ λ Sajid et al., [10] Waini et al., [52] Current 

0.1 0.1 -0.660273 -0.660275 -0.660275189 
0.5  -0.380604 -0.380604 -0.380603983 
1  -0.246415 -0.246415 -0.246414994 
0.1 0.3 -0.664497 -0.664498 -0.664497827 
 0.5 -0.668484 -0.668486 -0.668486422 
 0.7 -0.672282 -0.672277 -0.672276682 

 
The analysis conducted for this study is shown graphically in terms of physical quantities and 

profile data. The values of 1/2Rex fC  and 1/2Rex xNu−  for various values of dimensionless physical 

parameters are shown in Table 7. At a fixed value for the measured parameters (ε = -1, S = 2.4, λ = 

1.5, γ = 0.1, Pr = 10 and Z = -0.5) where 
1 2 0 = =  (pure fluid), it appears that the values of 1/2Rex fC  

increase when S, Z, and Pr rise, whereas they decrease when ε, λ and γ are added. The values of 
1/2Rex xNu−  (thermal rate) increase when ε, S, Z, and Pr are increased while it trends downward with 

the accession of λ and γ. Stretching flow, suction, mixed convection parameters, and a high Prandtl 
number are dominant phenomena that tend to release energy to the flow. On the other hand, the 
flow energy is slowed by the presence of the Bingham number and the Reiner-Philippoff fluid 

parameter. The fluctuation of 1/2Rex fC  and 1/2Rex xNu− under the influence of S and λ at constant 

values of ε = -1, γ = 0.1, Pr = 10 and Z = -0.5 is depicted in Figure 2 and Figure 3. The values of 1/2Rex fC  

and 1/2Rex xNu−  are decreased due to the rise of λ in a shrinking sheet. Larger values of λ, from a 

physical perspective, establish barriers to the shear-thinning effect, which lessens the fluid's 
interaction with surfaces and produces less drag. Meanwhile, the increase in S substantially raised 

the values of 1/2Rex fC  and 1/2Rex xNu− . 

 
 
 
 
 
 
 
 
 
 

Table 7 

( )
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0
3 3

Thnf hnf

f T f

g f ff Z



 

  
    − − + = 

    

22 1
0

3 3
g ff f  + − =

( )2 22 1
sin 0

3 3
g ff f M f   + − − =
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Values of and for various values of physical 

parameters 
ε S λ γ Z Pr   

-1 2.4 1.5 0.1 -0.5 10 1.071559759 15.797838638 
-0.5      0.673644536 15.902427543 
1      -2.671121502 16.173117605 
-1 2.35     0.983959247 15.458950581 
 2.38     1.040255984 15.662372870 
 2.42     1.100157249 15.933222541 
 2.4 0.5    1.123427917 15.798679715 
  1.2    1.089582739 15.798125718 
  1.8    1.051917467 15.797528114 
  1.5 0.09   1.076613256 15.797920603 
   0.11   1.066023793 15.797748671 
   0.15   1.037822480 15.797291518 
   0.1 -0.7  1.057149539 15.797731777 
    0  1.107545857 15.798105180 
    0.8  1.165010666 15.798529902 
    -0.5 3 0.698234629 4.597082725 
     5 0.728543011 7.795010391 
     12 0.765218974 18.993257535 

 

 
Fig. 2.  vs S for various values of λ where ε = -1, γ = 0.1, Pr = 10 and Z = -0.5 

 

1/2Rex fC 1/2Rex xNu−

1/2Rex fC 1/2Rex xNu−

1/2Rex fC
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Fig. 3.  vs S for various values of λ where ε = -1, γ = 0.1, Pr = 10 

and Z = -0.5 

 

Figure 4 and 5 illustrate how λ and γ affect variations in 1/2Rex fC and 1/2Rex xNu− when ε = 1, Pr = 

10 and S = Z = 0. For this model to be a non-Newtonian Reiner-Philippoff fluid model, 
1  and 2  are 

both set to zero. The increase in 1/2Rex xNu−  and the decrease in 1/2Rex fC  were both influenced by 

the rise in λ. When γ = 0.3, 0.5, 2 and λ = 1 (Newtonian fluid), the values of 1/2Rex fC = -0.67764793  

and 1/2Rex xNu− = 1.117224634  remain unchanged (Table 8). Further, as γ increases, it becomes clear 

that the quantity of 1/2Rex fC  rises when λ < 1 (dilatant fluid) and decreases when λ > 1 (pseudoplastic 

fluid), while the thermal rate yields opposite outcomes. Additionally, for future reference, Table 8 

tabulates the computed values of 1/2Rex fC and 1/2Rex xNu− with various values of λ and γ. 

 

1/2Rex xNu−
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Fig. 4.  vs λ for various values of γ where ε = 1, Pr = 10 and S = Z = 0 

 

 
Fig. 5.  vs λ for various values of γ where ε = 1, Pr = 10 and 

S = Z = 0 
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Table 8 

Values of  and  for λ and γ when ε = 1, Pr = 10 and  

λ γ = 0.3 γ = 0.5 γ = 2 

      

0.2 -0.571405913 1.109494135 -0.454413417 1.074919188 -0.312096465 0.976476966 
0.5 -0.621589532 1.113354604 -0.571307799 1.102878900 -0.487759442 1.071410812 
0.8 -0.657721255 1.115877294 -0.641511772 1.113010824 -0.610294917 1.104426708 
1.0 -0.677647983 1.117224634 -0.677647983 1.117224634 -0.677647983 1.117224634 
1.5 -0.718769953 1.119945712 -0.748419875 1.124193035 -0.816690687 1.136574988 
2.0 -0.752029995 1.122104847 -0.802981734 1.128741894 -0.929233695 1.147725714 
2.5 -0.780309880 1.123916366 -0.848005566 1.132107848 -1.024871047 1.155141945 
3.0 -0.805104451 1.125486397 -0.886660341 1.134776439 -1.108575709 1.160506653 

 
This study also looks at the impact of volumetric concentration on a related topic. According to 

Table 9, it was shown that the 1/2Rex fC and 1/2Rex xNu−  improve higher when the concentration of Cu 

( 2 ) nanoparticles increases, while for Z = -1, the reverse behaviour is seen. A higher concentration 

of Cu nanoparticles produces more kinematic energy, which boosts the fluid particles' ability to 

transfer heat (Figure 6 and Figure 7). Additionally, it is seen that as Z and 2  increases, so do the 

values of 1/2Rex xNu− . This finding demonstrates that the synergistic effects mentioned by Sarkar et 

al., [34] can increase the heat transfer rate when hybrid nanoparticles are added. 

Figure 8 to 13 show several samples of the velocity and temperature  profiles for 

particular parameters. The boundary condition is asymptotically satisfied by these profiles, 
confirming the accuracy of the numerical findings. Figure 8 and 9 show the analysis with Reiner-
Philippoff parameters considered for the velocity and temperature profiles. The profiles demonstrate 
that the fluid's velocity decreases as λ increases. The temperature profiles, however, exhibit the 
opposite behaviour. The analysis of the velocity and temperature profiles with variations in S and Z 

was shown in Figure 10 to 13, respectively (with fixed values of = 0.01 and = 0.02). Figure 10 and 

Figure 12 show that the increasing behaviour is seen as S and Z increase. Nevertheless, the 
temperature profiles shown in Figure 11 and 13 exhibit conflicting behaviour. 
 

Table 9 

Values of  and  for selected values of , and Z when ε = -1, Pr = 10 and S = 2.4 

where  = Al2O3 and = Cu 

Z 
   

      

-1 0.646807266 15.696747986 0.575950470 15.703827628 0.505812081 15.710987918 
0 1.281574759 15.705673614 1.329781786 15.714050900 1.376873461 15.722440787 
1 1.451175837 15.707110093 1.580218334 15.716154487 1.707536315 15.725196750 

 
 

1/2Rex fC 1/2Rex xNu−
1 2 0S Z  = = = =

1/2Rex fC 1/2Rex xNu− 1/2Rex fC 1/2Rex xNu− 1/2Rex fC 1/2Rex xNu−

( )f  ( ) 

1 2

1/2Rex fC 1/2Rex xNu−
1 2

1 2
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Fig. 6.  vs Z for various values of  and where ε = -1, Pr 

= 10 and S = 2.4 

 

 
Fig. 7.  vs Z for various values of  and  where ε = -1, Pr 

= 10 and S = 2.4 
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Fig. 8. Velocity profiles  vs η for various values of λ where ε = -1, γ = 0.1, 

Pr = 10, S = 2.4 and Z = -0.5 

 

 
Fig. 9. Temperature profiles  vs η for various values of λ where ε = -1, 

γ = 0.1, Pr = 10, S = 2.4 and Z = -0.5 
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Fig. 10. Velocity profiles  vs η for various values of S where ε = -1, λ = 1.5, γ 

= 0.1, Pr = 10 and Z = -0.5 

 

 
Fig. 11. Temperature profiles  vs η for various values of S where ε = -1, 

λ = 1.5, γ = 0.1, Pr = 10 and Z = -0.5 

 

( )f 

( ) 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 111, Issue 2 (2023) 195-213 

210 
 

 
Fig. 12. Velocity profiles  vs η for various values of Z where ε = -1, S 

= 2.4, λ = 1.5, γ = 0.1, Pr = 10, = 0.01 and = 0.02 

 

 
Fig. 13. Temperature profiles  vs η for various values of Z where ε = -1, S = 

2.4, λ = 1.5, γ = 0.1, Pr = 10, = 0.01 and = 0.02 

 
4. Conclusions 
 

A mathematical analysis of mixed convection of the Reiner-Philippoff fluid flow past a shrinking 
sheet is established. The Reiner-Philippoff parameter shows that the increase in λ reduces the 

( )f 

1 2

( ) 

1 2
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velocity of the fluid while the reverse behaviour is attained for the temperature profiles. On the other 
hand, the increasing behaviour of the velocity profile is observed with the increasing of S and Z 

(where 
1 = 0.01 and 2 = 0.02). Still, it shows a contradictory behaviour for the temperature profiles. 

The increase in the injection/suction parameter, mixed parameter and Prandtl number increase the 
local Nusselt number, while the increases in the Reiner-Philippoff parameter and Bingham number 
decrease the skin friction coefficient. 
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