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1. Introduction 
 

Hydraulic jump is a rapidly varied phenomenon in open channel flow. A hydraulic jump occurs 
when a supercritical upstream flow transited to a more tranquil subcritical downstream condition.  
At the location of hydraulic jump, water surface rises abruptly, surface rollers are formed, and energy 
is dissipated. Hydraulic jump is found at the outlet structure of gravity dam, stilling basin, 
downstream of bridge and culvert. It is one of the most effective mechanism to dissipate kinetic 
energy of flow into turbulent energy and potential energy. The purpose of energy dissipation is to 
protect the downstream riverbank and bed from erosion [1-5]. 

Hydraulic jump is classified into undular jump, weak jump, oscillating jump, steady jump, and 
strong jump based on the Froude number of the approaching flow, as shown in Figure 1.  As the 
Froude number increases, the ratio of flow depth after hydraulic jump to before the jump increases, 
the amount of energy dissipated by the jump also increases [1,3].  
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To design a hydraulic structure such as gravity dam, it is crucial to predict the. Location 
and the length of the hydraulic jump. Numerical model comes in handy to deal with the 
conditions which are costly to reproduce the laboratories such as the hydraulic jump 
experiment. In this study, two models (Saint-Venant model and Boussinesq model) are 
solved numerically to simulate the formation of hydraulic jump in a flat rectangular 
channel. The performance of the models in reproducing the flow profile of hydraulic jump 
and its location, under different advection solvers, i.e. the CIP, MUSCL, and upwind 
scheme are investigated. Numerical results showed that the inclusion of Boussinesq term 
does not have significant effect on the numerical reproduction of the hydraulic jump in 
terms of the location and the water surface gradient at the hydraulic jump. Numerical 
solutions show that the accuracy of the advection term solver and its shock-capturing 
capability is critical for accurate simulation of hydraulic jump. 
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Fig. 1. Classification of hydraulic jump with Froude number [3] 

 
Many experiments studies have been extensively investigated on the hydraulic jump in different 

roughness, i.e. hydraulic jump over smooth beds [6,7], and jump over rough beds [8,9]. By 
considering known flow depth and initial flow velocity, sequent depth ratio and the length of the 
jump can be determined using empirical or mathematical formula. It is undeniably that laboratory 
experiments provide actual flow characteristics by measurements, however it is too costly to conduct 
the experiments. With the advancement of computer technology, computational fluid dynamics 
(CFD) has been widely used in many fields such as heat transfer [23-26], hydrology, and hydraulic 
fields including the study of free-surface flow problems such as hydraulic jump. 

A few numerical works have been done by the past researchers on the simulation of hydraulic 
jump using Boussinesq equations [10-12]. Chaudhry and Gharangik numerically simulated hydraulic 
jump by solving the Boussinesq equations using explicit finite difference schemes [10]. Raman and 
Chaudhry also solved the same problem using grid adaptation technique [11]. Pranab and Chaudhry 
simulated dam break flow by numerical solution of Boussinesq equations to investigate the effect of 
non-hydrostatic pressure distribution. The contribution of individual Boussinesq term was 
investigated by comparing the results of Saint-Venant equations and the Boussinesq equations [12]. 
In rapidly varied flow with steep water surface gradient, the pressure distribution is non-hydrostatic 
because of vertical acceleration. Therefore, the inclusion of Boussinesq term to account for the effect 
of non-hydrostatic pressure is required [10,11]. 

Constrained Interpolation Profile (CIP) scheme was developed by Yabe et al., in 1985 [13].  It is a 
semi-Lagrangian scheme, which employed Lagrangian invariant solution f(xi, t + ∆t) = f(xi − ui∆t, t), 
which always cast in non-conservative form [14]. The information in the grid cell, i.e. spatial 
derivatives and spatial gradients, are used to reconstruct a solution which are close to the real 
solution using cubic polynomial interpolation function [15]. CIP scheme is found to have third order 
accuracy in both time and space derivative [16]. CIP scheme has been proven to be superior as it can 
capture discontinuities without severe numerical oscillation. In other words, CIP possesses good 
shock-capturing capability. Similar work on the application of CIP scheme to solve the advection term 
in the governing equations for the simulation of hydraulic jump is not yet available at the point of 
writing. Therefore, this study is carried out to evaluate the performance CIP scheme in simulating 
hydraulic jump. 

In this study, two numerical models are used to simulate the formation of hydraulic jump in a 
rectangular channel. The first model, namely Saint-Venant (SV) model solves the Saint-Venant 
equations and the second model, Boussinesq model solves the one-dimensional Boussinesq 
equations. Three different numerical schemes, i.e. Upwind, MUSCL and CIP schemes, are adopted to 
solve the advection term. The numerical simulations are coded in FORTRAN 95 programming 
language. The numerical results are compared with the experimental results by Chaudhry and 
Gharangik [10]. 
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The Saint-Venant equations and the Boussinesq equations are nonlinear partial differential 
equations and the generalized analytical solution of these equations is not available. Besides that, 
Boussinesq term in the Boussinesq equations have third-order term and it is required to use third- or 
higher-order numerical methods to solve these equations [17]. Therefore, adoption of higher-order 
numerical scheme is required to solve the Boussinesq equations.  

  
2. Methodology 
2.1 Governing Equations 

 
The Saint-Venant equations consist of the one-dimensional depth-averaged continuity and 

momentum equation as shown in Eq. (1) and Eq. (2a). The one-dimensional Boussinesq equations 
consist of the one-dimensional depth-averaged continuity equation and momentum equation with 
the inclusion of Boussinesq term as shown in Eq. (1) and Eq. (2b). The flow variables and the 
coordinate set up are defined Figure 2. 

 
Continuity equation:  
𝜕ℎ

𝜕𝑡
+
𝜕(𝑢ℎ)

𝜕𝑥
= 0 (1) 

 
Momentum equation: 
𝜕(𝑢ℎ)

𝜕𝑡
+
𝜕(𝑢𝑢ℎ)

𝜕𝑥
= −𝑔ℎ (

𝜕ℎ𝑠
𝜕𝑥
+
𝜏𝑏𝑥
𝜌𝑔𝑅

) (2a) 

 
Momentum equation with Boussinesq term included: 
𝜕(𝑢ℎ)

𝜕𝑡
+
𝜕(𝑢𝑢ℎ)

𝜕𝑥
= −𝑔ℎ (

𝜕ℎ𝑠
𝜕𝑥
+
𝜏𝑏𝑥
𝜌𝑔𝑅

) −
𝜕

𝜕𝑥
(𝐵1 + 𝐵2 + 𝐵3) (2b) 

 
Here, 𝑢= depth-averaged velocity in 𝑥-direction, ℎ𝑠= water surface elevation and ℎ= flow depth.  

𝐴= 𝐵ℎ is the cross-sectional area of flow for rectangular channel where 𝐵 is the width of the channel. 
𝜏𝑏𝑥= bottom shear stress in 𝑥-direction, 𝑔= gravity acceleration, 𝑅= hydraulic radius and 𝜌 = density 
of water, ℎ𝑠  is defined as ℎ𝑠 = ℎ 𝑐𝑜𝑠 𝜃  + 𝑧𝑏  with 𝑧𝑏= bed elevation measured from the datum. 
The Boussinesq terms, 𝐵1, 𝐵2 and 𝐵3 in Eq. 2b account for the vertical acceleration and they are 
defined in Eq. (3) as follows: 

 

𝐵1 = −
ℎ3

3
(
𝜕2𝑢

𝜕𝑥𝜕𝑡
) 𝐵2 = −

ℎ3

3
(𝑢
𝜕2𝑢

𝜕𝑥2
) 𝐵3 =

ℎ3

3
(
𝜕𝑢

𝜕𝑥
)
2

 (3) 

 
The bottom shear stress term, 𝜏𝑏𝑥 is evaluated in the model by using Manning’s equation in Eq. 

(4) as follows, 
 

𝜏𝑏𝑥
𝜌𝑔𝑅

=
𝑢|𝑢|𝑛2

ℎ4/3
 (4) 

 
where 𝑛= Manning roughness coefficient. In deriving the relation in Eq. (4), the rectangular channel 
is assumed to be wide enough so that  𝑅 ≈ ℎ. 
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       Fig. 2. Definition of flow variables  
       in the governing equations 

 
2.2 Numerical Solution 

 
Three different numerical algorithms, each adopting different advection term solvers are used to 

solve the governing equations. The numerical algorithms are described as follows 
 

i. Upwind + Adam-Bashforth (UP+AB) 
 

The upwind scheme is used to evaluate the numerical fluxes in the advection term in both the 
continuity and momentum equations. The pressure, bottom shear stress and Boussinesq terms are 
discretized using finite difference method. The Adam-Bashforth multistep method is used to solve 
the time integration explicitly. This method is second order accurate in time and first-order accurate 
in space. 

 
ii. MUSCL + Adam-Bashforth (MUSCL+AB) 

 
The Monotonic Upstream-Centered Scheme for Conservation Laws (MUSCL scheme) is used to 

evaluate the momentum fluxes in the momentum equation. Meanwhile, upwind scheme is used to 
evaluate the mass fluxes (𝑢ℎ) in the continuity equation.  The pressure, bottom shear stress and 
Boussinesq terms are discretized using finite difference method and the Adam-Bashforth multistep 
method is also used to solve the time integration explicitly. This method is of second-order accuracy 
in time and third-order accuracy in space. 
 
iii. Constrained Interpolation Profile (CIP) 

 
The Constrained Interpolation Profile (CIP) scheme is used to solve the advection term in both 

the continuity and momentum equations. The new flow depth and flow velocity are updated using 
the implicit SMAC method. The full algorithm for this method is explained in Section 2.3. This method 
is of third-order accuracy in both time and space. 

For brevity, only the numerical algorithm for CIP scheme is explained in this manuscript. The 
algorithm for the upwind and MUSCL scheme are available in reference [18] and [19] respectively. 

 
2.3 Solution Algorithm for CIP Solving Boussinesq Equation  

 
The conservative form of the continuity and momentum equation in Eq. (1) and Eq. (2b) are 

changed into a non-conservative form as shown in Eq. (5) and Eq. (6). CIP scheme is used to solve the 
advection term on the left-hand side of Eq. (5) and Eq. (6). 
 

datum

hs

h

θ

y

x
zb

u
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𝜕ℎ

𝜕𝑡
+ 𝑢

𝜕ℎ

𝜕𝑥
= −ℎ

𝜕𝑢

𝜕𝑥
 (5) 

  
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= −𝑔(

𝜕

𝜕𝑥
(ℎ 𝑐𝑜𝑠 𝜃 + 𝑧𝑏) +

𝑢|𝑢|𝑛2

ℎ4/3
) −

1

ℎ

𝜕

𝜕𝑥
(𝐵1 + 𝐵2 + 𝐵3) (6) 

 
Time-splitting method [13] is used to solve Eq. (5) and Eq. (6) in two parts, i.e. the advection part 

(left-hand side) and the non-advection part (right-hand side). 
 

Step 1 
 
The advection part of the continuity and momentum equations are shown in Eq. (7) and Eq. (8). 

The value of  ℎ and 𝑢 are upgraded to temporary values (ℎ* and 𝑢*) by using CIP scheme[13]. 
  

𝜕ℎ

𝜕𝑡
+ 𝑢

𝜕ℎ

𝜕𝑥
= 0 

𝑠𝑜𝑙𝑣𝑒𝑑 𝑤𝑖𝑡ℎ 𝐶𝐼𝑃
→             ℎ𝑛

      
→ ℎ∗ (7) 

  
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 0 

𝑠𝑜𝑙𝑣𝑒𝑑 𝑤𝑖𝑡ℎ 𝐶𝐼𝑃
→             𝑢𝑛

      
→ 𝑢∗ (8) 

 
Step 2 

 
After solving the advection term, the non-advection term can be solved by using Eq. (9) and Eq. 

(10) which are cast from Eq. (5) and Eq. (6). 
 

𝜕ℎ

𝜕𝑡
= −ℎ

𝜕𝑢

𝜕𝑥
 (9) 

  
𝜕𝑢

𝜕𝑡
= −𝑔(

𝜕

𝜕𝑥
(ℎ 𝑐𝑜𝑠 𝜃 + 𝑧𝑏) +

𝑢|𝑢|𝑛2

ℎ4/3
) −

1

ℎ

𝜕

𝜕𝑥
(𝐵1 + 𝐵2 + 𝐵3) (10) 

 
Eq. (9) and Eq. (10) can be discretized as Eq. (11) and Eq. (12) (based on staggered grid system 

shown in Figure 3). 
 

ℎ𝑖
𝑛+1 − ℎ𝑖

∗

∆𝑡
= −ℎ𝑖

∗
𝑢𝑖+1
𝑛+1 − 𝑢𝑖

𝑛+1

∆𝑥
 (11) 

  

𝑢𝑖
𝑛+1 − 𝑢𝑖

∗

∆𝑡
= −𝑔 (

𝜕ℎ𝑛+1

𝜕𝑥
+
𝜕(𝑧𝑏)𝑖
𝜕𝑥

+
𝑢∗|𝑢∗|𝑛2

(ℎ∗)4/3
) −

1

ℎ∗
𝜕

𝜕𝑥
(𝐵1
∗ + 𝐵2

∗ + 𝐵3
∗) (12) 
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Fig. 3. Staggered grid system used to define 
the location of flow variables used in the 
numerical model 

 
where 𝐵1

∗, 𝐵2
∗, 𝐵3 

∗  are 𝐵1, 𝐵2, 𝐵3 terms evaluated using temporary values ℎ∗and 𝑢∗  respectively. 
The calculation of new value ℎ𝑛+1 in Eq. (11) requires the new value 𝑢𝑛+1. However, as shown in  
Eq. (12), the calculation of 𝑢𝑛+1  also requires the value of  ℎ𝑛+1 . The implicit SMAC (Simplified 
Market and Cell) method [16] is used to solve for ℎ𝑛+1 and 𝑢𝑛+1. Based on Kawasaki et al., [21], the 
implicit method SMAC method is described as follows. 

First, an initial guess �̃�𝑖  is calculated using Eq. (12) where all the terms on the right hand side of 
Eq. (12) are evaluated using ℎ∗ and  𝑢∗ values as follows, 

 

�̃�𝑖 = 𝑢𝑖
∗ − 𝑔∆𝑡 (

𝜕ℎ𝑖
∗

𝜕𝑥
+
𝜕(𝑧𝑏)𝑖
𝜕𝑥

+
𝑢∗|𝑢∗|𝑛2

(ℎ∗)4/3
) −

1

ℎ∗
𝜕

𝜕𝑥
(𝐵1
∗ + 𝐵2

∗ + 𝐵3
∗) (13) 

 
Eq. (13) is then subtracted by Eq. (12), yielding the following relations: 
 

𝑢𝑖
𝑛+1 − �̃�

∆𝑡
= −𝑔

𝜕

𝜕𝑥
(𝛿ℎ)𝑖 (14) 

  

(𝛿ℎ)𝑖 = ℎ𝑖
𝑛+1 − ℎ𝑖

∗ (15) 
 
Eq. (14) and Eq. (15) are then substituted into Eq. (11) to the following Poisson equation. 
 

𝜕2(𝛿ℎ)𝑖
𝜕𝑥2

=
1

𝑔∆𝑡
(
𝜕�̃�

𝜕𝑥
+
(𝛿ℎ)𝑖
∆𝑡. ℎ𝑖

∗) (16) 

 
The Poisson equation in Eq. (16) is discretized as follows,  
 

𝛿ℎ𝑖+1 + 𝛿ℎ𝑖−1 − 2𝛿ℎ𝑖
(∆𝑥)2

=
1

𝑔∆𝑡
(
�̃�𝑖+1 − �̃�𝑖
∆𝑥

+
(𝛿ℎ)𝑖
∆𝑡. ℎ𝑖

∗) (17) 

 
(𝛿ℎ)𝑖 in Eq. (17) is solved with SOR (Successive Over Relaxation) method with the over-relaxation 
factor of 1.5. 
 
Step 3 

 
The new values of ℎ and 𝑢 are updated using Eq. (14) and Eq. (15), as shown in Eq. (18) and Eq. 

(19). 
 

ℎ𝑖
𝑛+1 = ℎ𝑖

∗ + (𝛿ℎ)𝑖 (18) 
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𝑢𝑖
𝑛+1 = �̃�𝑖 − 𝑔∆𝑡 (

𝛿ℎ𝑖 − 𝛿ℎ𝑖−1
∆𝑥

) (19) 

 
2.4 Initial and Boundary Conditions 

 
The initial condition is shown in Figure 4.  At 𝑡 = 0.0 s, the flow depth in the calculation domain is 

linearly interpolated using the inflow depth (ℎ𝑖𝑛𝑙𝑒𝑡) and the outflow depth (ℎ𝑜𝑢𝑡𝑙𝑒𝑡/2). The initial 
velocity 𝑢𝑖 at each calculation cell is calculated in Eq. (20) where 𝑞 is the discharge per unit width. 𝑞 
is evaluated using specified inlet velocity, 𝑢𝑖𝑛𝑙𝑒𝑡 and specified inlet flow depth, ℎ𝑖𝑛𝑙𝑒𝑡 as shown in Eq. 
(21). 𝑢𝑖𝑛𝑙𝑒𝑡 is calculated using the specified inflow Froude number 𝐹𝑟 as shown in Eq. (22). 

 

 
The inlet and outlet boundaries of the calculation domain are defined as the left side of cell 𝑖 = 1 

and right side of cell 𝑖 = 𝑖𝑥 + 1 respectively as shown in Figure 4. The constant inflow discharge is 
used as the inlet boundary condition, as shown in Eq. (23). 

 
ℎ𝑖=0 = ℎ𝑖𝑛𝑙𝑒𝑡, 𝑢𝑖=1 = 𝑢𝑖𝑛𝑙𝑒𝑡   (23) 

 

 
Fig. 4. Initial condition and boundary condition used in the simulation of hydraulic jump 

 
For the outlet boundary (𝑖 = 𝑖𝑥), the outflow depth ℎ𝑖=𝑖𝑥  is initially kept constant at ℎ𝑖=𝑖𝑥 =

ℎ𝑜𝑢𝑡𝑙𝑒𝑡/2 before being increased linearly with time from 𝑡= 10.0 s to 𝑡= 60.0 s. The outflow depth 
condition is summarized in Eq. (24). Meanwhile, a zero-velocity gradient condition (Eq. (25)) is 
applied at the last cell in the calculation domain. 

 

𝑢𝑖 =
𝑞

ℎ𝑖
  for  𝑖 = 2 to 𝑖 = 𝑖𝑥 (20) 

   
𝑞 = 𝑢𝑖𝑛𝑙𝑒𝑡 × ℎ𝑖𝑛𝑙𝑒𝑡  (21) 

   

𝑢𝑖𝑛𝑙𝑒𝑡 = 𝐹𝑟 × √𝑔ℎ𝑖𝑛𝑙𝑒𝑡  (22) 
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ℎ𝑖=𝑖𝑥 =

{
 
 

 
 

ℎ𝑜𝑢𝑡𝑙𝑒𝑡
2

, 0.0 𝑠 <  𝑡 ≤  10.0 𝑠

ℎ𝑜𝑢𝑡𝑙𝑒𝑡
2

+ (ℎ𝑜𝑢𝑡𝑙𝑒𝑡 −
ℎ𝑜𝑢𝑡𝑙𝑒𝑡
2

) ×
𝑡

60.0 𝑠
, 10.0 𝑠 <  𝑡 ≤  60.0 𝑠

ℎ𝑜𝑢𝑡𝑙𝑒𝑡,  𝑡 >  60.0 𝑠

 

ℎ𝑜𝑢𝑡𝑙𝑒𝑡 = specified flow depth at the outflow boundary 

(24)  

  
𝜕𝑢

𝜕𝑥
|
𝑖=𝑖𝑥+1

= 0.0 (25) 

 
2.5 Mesh Convergence Test (MCT) 

 
Mesh convergence test is carried out to determine the optimum mesh size by simulating one-

dimensional hydraulic jump. Three different mesh sizes are used in the simulation using SV_(CIP) and 
the simulation results are compared with the experiment results. The parameters for the test are set 
up as shown in Table 1. 

 
   Table 1 
   Simulation conditions of hydraulic jump 

Parameters MCT 1 MCT 2 MCT3 

Inflow Froude number, 𝑭𝒓  2.30  

Upstream flow depth, 𝒉𝒊𝒏𝒍𝒆𝒕  0.064 m  

Downstream flow depth, 𝒉𝒐𝒖𝒕𝒍𝒆𝒕  0.168 m  

Domain size (m)  9.60 m  
Time step, ∆𝒕 (s)  1×10-4 s  
Cell size, ∆𝒙 (m) 0.10 m 0.20 m 0.30 m 

 
2.6 Simulation Condition 

 
In the simulation, three hydraulic jump cases with different inflow Froude number (based on 

Chaudhry and Gharangik [10] experiment) are simulated. These three cases are used to reproduce 
the weak, oscillating and steady hydraulic jump. The simulation conditions are summarized in Table 
2. Time step, ∆𝑡 =1×10-4 s and cell size, ∆𝑥 = 0.1 m determined from the MCT are used in all the 
simulation cases.  

 
       Table 2 
       Simulation conditions of hydraulic jump 

Inflow Froude 
number, 𝑭𝒓 

Type of jump Upstream flow 

depth, 𝒉𝒊𝒏𝒍𝒆𝒕 (m) 
Downstream flow 

depth, 𝒉𝒐𝒖𝒕𝒍𝒆𝒕 (m) 
2.30 Weak jump 0.064 0.168 
4.23 Oscillating jump 0.043 0.222 
5.74 Steady jump 0.040 0.286 

 
The mixed time-space derivative of Boussinesq term, 𝐵1 is ignored in the computations since it 

should be zero when a steady state is reached. Explicit artificial viscosity is introduced in the 
numerical algorithm with higher-order numerical scheme, i.e. MUSCL+AB and CIP to suppress the 
numerical oscillation and smoothen the variables (ℎ  and 𝑢 ) at the end of every time step [22]. 
Courant ratio at every calculation cell is calculated using Eq. (26) in every run to make sure that the 
Courant-Friedrichs-Lewy (CFL) condition is satisfied in the simulation [19]. 
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𝐶𝑜𝑢𝑟𝑎𝑛𝑡 𝑟𝑎𝑡𝑖𝑜 =
𝑢∆𝑡

∆𝑥
  (26) 

 
The Saint Venant (SV) and the Boussinesq (B) models are solved using three different advection 

term solvers, i.e. the UP+AB, MUSCL+AB and CIP, under three different inflow Froude number as 
shown in Table 3. The Manning’s coefficient, 𝑛  was determined by trial-and-error method by 
matching the water surface profile between the numerical and experimental result. Therefore, 
Manning’s coefficient, 𝑛 functioned as a calibration method to determine the location of hydraulic 
jump. The values of 𝑛 varies from 0.013 to 0.022. The Manning’s coefficient, 𝑛 used in the simulation 
are summarized in Table 3. 

 
               Table 3 

         Manning’s coefficient, 𝑛 used in the numerical models 
Inflow Froude number, 
𝑭𝒓 

Manning’s coefficient, 𝒏 
SV_(UP+AB)(1) 
B_(UP+AB) 

SV_(MUSCL+AB)  
B_(MUSCL+AB) 

SV_(CIP) 
B_(CIP) 

2.30 0.013 0.013 0.016 
4.23 0.020 0.020 0.022 
5.74 0.020 0.020 0.022 

         Note (1): SV = Saint Venant model, B= Boussinesq model 
 

The performance of the numerical model is evaluated by determine the relative error of the flow 
depth. The relative error is calculated using Eq. (27) as shown, by comparing the flow depth in the 
simulation results with the experimental result. The relative error of the flow depth at every point 
are first calculated and then the average values are recorded. 

   

𝑅𝐸ℎ = |
ℎ𝑠𝑖𝑚 − ℎ𝑒𝑥𝑝

ℎ𝑒𝑥𝑝
|  (27) 

 
where  𝑅𝐸ℎ  is the relative error of the flow depth, ℎ𝑠𝑖𝑚  is the flow depth obtained from the 
simulation result, and ℎ𝑒𝑥𝑝 is the flow depth obtained from the experimental result. 

 
3. Results and Discussion 
3.1 Result of Mesh Convergence Test 

 
Figure 5 show the numerical results of water surface profile using 3 different mesh sizes, i.e., ∆𝑥= 

0.1 m, 0.2 m, and 0.3 m. The relative error of the flow depth for MCT1, MCT2 and MCT3 against the 
experimental results are 0.99%, 3.40 % and 5.95% respectively. MCT1 ( ∆𝑥= 0.1 m) has the lowest 
relative error as compared to MCT2 and MCT 3. MCT and MCT3 have higher discrepancy in term of 
the location and water surface gradient of the jump when compared with the experiment results. 

Hence, mesh size of ∆𝑥= 0.1 m is selected for the simulation of the one-dimensional hydraulic jump 
in the subsequent sections. 
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Fig. 5. Jump profile for 𝐹𝑟 =2.3 at steady state (𝑡= 120.0 s) 

 
3.2 Formation of Hydraulic Jump 

 
Figure 6 and Figure 7 show the numerical results of the water surface profile at different time 

lapse for B_(MUSCL+AB) and B_(CIP) respectively. The hydraulic jump started to form when the 
downstream depth was increased slowly.  Subsequently, the jump travelled from the downstream 
end towards the upstream. The travel speed of the jump was reduced when the jump approached 
steady state. The jump remained steady at a fixed location at around 𝑡= 90.0 s. At steady state, the 
flow profile is smooth at the region away from the jump. 

 
 

 
Fig. 6. Water surface profile at different times for 𝐹𝑟 =4.23 for B_(MUSCL+AB) 

 

 
Fig. 7. Water surface profile at different times for 𝐹𝑟 =4.23 for B_(CIP) 
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3.3 Steady-State Flow Profile 
  
Figure 8 to Figure 10 show the comparison of steady-state flow profiles between the numerical 

and the experimental result while Table 3 show the relative error of the flow depth for every 
simulation cases. At the region away from the hydraulic jump, the flow profiles are smooth. This is 
because vertical acceleration is negligible in these regions and the pressure distribution is 
hydrostatic. Thus, all the models performed well in terms of the reproduction of the flow profile away 
from the hydraulic jump regardless of the inclusion of the Boussinesq term. 

Numerical and experimental results showed that there was a sudden rise in flow depth at the 
location of hydraulic jump. This phenomenon is more evident in cases with higher inflow Froude 
number, i.e. at 𝐹𝑟 =4.23 and 𝐹𝑟 =5.74. Experimental observation reveals that at the hydraulic jump, 
flow is turbulent and vertical acceleration is non-negligible [10] and the pressure distribution at the 
hydraulic jump is non-hydrostatic. 

As shown in Figure 8 to Figure 10 and Table 3, for all simulation cases, SV_(CIP) and B_(CIP) 
showed good agreement with the experimental result and all of their relative error are within 5.0%. 
It is evident that the gradient and the length of the hydraulic jump were well reproduced by SV_(CIP) 
and B_(CIP) as compared to the B_(UP+AB) and the B_(MUSCL+AB).  B_(UP+AB) and B_(MUSCL+AB) 
showed acceptable results as all of their relative error of are within 10.0%, however the gradient of 
the jump was over predicted by the B_(UP+AB) and the B_(MUSCL+AB) as shown Figure 7 to Figure 
9. In all simulation cases, the flow profiles generated by the SV_(UP+AB) and the SV_(MUSCL+AB) did 
not agree well with the experimental result in terms of the location of the jump and all of their 
relative errors exceeded 20.0%. In both models, the jumps are located nearer to the upstream end. 

SV_(CIP) and B_(CIP) could reproduce approximately similar flow profiles in all cases. This shows 
that the inclusion of Boussinesq term in the B_(CIP) does not have significant effect on the numerical 
reproduction of the hydraulic jump in terms of the location and gradient of the hydraulic jump. 
Chaudhry and Gharangik [10] also concluded that Boussinesq term has little effect in determining the 
location of hydraulic jump in their numerical model.   

On the contrary, comparison of the results between SV_(MUSCL+AB) and B_(MUSCL+AB), and 
between SV_(UP+AB) and B_(UP+AB) showed significant differences in terms of the location of 
hydraulic jump. Since Boussinesq term does not determined the location of the hydraulic jump, this 
shows that the MUSCL and Upwind scheme are much inferior in solving the advection terms in the 
continuity and momentum equations. Therefore, this implies that an accurate advection term solver 
with shock-capturing ability is critical in simulating hydraulic jump. Hence the application of CIP 
scheme, which is of third order accuracy and possesses shock-capturing ability, to solve the advection 
terms is well-justified. 

 
  Table 3 
  Relative error of the flow depth for different models and advection term solvers 

Inflow Froude 
number 

Relative error (%) 

SV_(Upwind+AB) B_(Upwind+AB) SV_(MUSCL+AB) B_(MUSCL+AB) SV_(CIP) B_(CIP) 

2.30 20.28 1.83 20.28 1.84 0.99 1.07 
4.23 39.20 2.43 39.21 2.43 3.60 3.66 
5.74 75.19 5.55 78.87 5.55 4.09 4.09 

  Note (1): SV = Saint Venant model, B= Boussinesq model 

 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 93, Issue 1 (2022) 186-199 

 

197 
 

 
(a) 

 

 
       Fig. 8. Flow profile for 𝐹𝑟 =2.3 at steady state (𝑡= 120.0 s) (a) full domain view (b) close-up view 
       at the jump 

 

 
(a) 

 

 
(b) 

Fig. 9. Flow profile for 𝐹𝑟 =4.23 at steady state (𝑡= 120.0 s) (a) full domain view (b) close-up 
view at the jump 
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(a) 

 

 
(b) 

Fig. 10. Flow profile for 𝐹𝑟 =5.74 at steady state (𝑡= 120.0 s) (a) full domain view (b) close-up 
view at the jump 

 
4. Conclusions 

 
In this study, Saint-Venant model and Boussinesq model were solved numerically to simulate the 

formation of hydraulic jump in a flat rectangular channel. With appropriate initial and boundary 
conditions, numerical simulations were carried out until a final steady state was reached. 

Numerical results showed that the inclusion of Boussinesq term does not have significant effect 
on the numerical reproduction of the hydraulic jump in terms of the location and the water surface 
gradient at the hydraulic jump. Numerical solutions showed that the accuracy of the advection term 
solver and the ability of the scheme to capture shock is critical in simulating hydraulic jump. Hence, 
a numerical scheme with accurate advection term solver is required in the simulation of the 
phenomena of shock wave. 
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