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This paper presents the study of an unsteady rear stagnation point flow of an inclined 
magnetohydrodynamics Casson nanofluid in the attendance of mass transpiration and 
thermal radiation in energy equation. Graphene nanoparticles are immersed in the flow 
of a fluid for getting better rate of heat transfer. In this problem is given in nonlinear 
partial differential equation form and then it is mapped into nonlinear ordinary 
differential equation form, the resulting equation solved analytically with Biot number 
and then expressed the solution in closed form incomplete gamma function. The dual 
nature is also observed in the shrinking sheet case for certain values of parameters. 
Further, one solution for stretching sheet case. Impact of different parameters, alternates 
the performance of the entire flow in both stretching and shrinking case, the results can 
be discussed with the help of graphical representations. These problems arise in 
engineering field and industrial applications namely extrusion process, metal thinning, 
glass blowing etc. 
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1. Introduction 
 

Problems with magnetohydrodynamic flow is place a vital part because the effect of magnetic 
field on the fluid flow is pertinent in numerous industrial cycles viz., preparing magnetic materials, 
crude oil purification, metal thinning, etc. Pavlov [1] illustrated the impact of magnetic field on fluid 
flow. Some other results on MHD can be found in the Ref. [2-6]. Investigations on MHD non-
Newtonian fluid flow past a superlinear stretching/shrinking sheet also attract many of them because 
of its various significances in many fields. Kumar et al., [7] and Vinay Kumar et al., [8] and Siddheshwar 
et al., [9] illustrated on superlinear MHD stretching sheet problems with various physical parameters. 
On the other hand, some works devoted on unsteady flow situation. Fang and Zhang [10] investigated 
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on unsteady boundary layer flows, this technique contains a consistent speed stretching sheet from 
a space, and the slot is moving at a specific speed contingent on the slot moving boundary. 

Recently Mahabaleshwar et al., [11] Benos et al., [12], and Anusha et al., [13] investigated an 
unsteady flow with mass transpiration and thermal radiation and magnetohydrodynamics to 
conclude new results. This unsteady flows are different from steady flows; hence one extra term is 
including in the governing equation of the stretching/shrinking sheet problems. Recent 
developments in nanotechnology have attract the researchers to study the stretching sheet problems 
with nanofluids. Nanofluids have unique physical and chemical properties and containing good 
thermal conductivity. Choi [14] is the pioneer to investigated these type of problems later many 
researchers worked on stretching sheet problems with nanofluids [15-17]. Casson fluid model is 
utilized to describe the non-Newtonian fluid flow. Mahabaleshwar et al., [18], Vinay Kumar et al., 
[19] and Swati et al., [20] conducted a research on Casson fluid flows for both steady and unsteady 
cases by using various physical parameters. Pramanik [21] investigated on Casson fluid flow past an 
exponentially porous stretching sheet with heat transfer in the attendance of thermal radiation. 

Inspired by above mentioned results the current article is investigation on unsteady flow of a 
Casson fluid flow over a superlinear stretching/shrinking sheet. In this flow the effective inclined 
magnetic field is immersed also graphene nanoparticles are added in the fluid flow for getting better 
thermal efficiency. By using suitable similarity variables PDEs are mapped into ODEs. This equation 
solved analytically and then expressed the energy equation is in the form of closed form incomplete 
gamma function. By using different parameters namely Prandtl number, radiation parameter, mass 
transpiration, Casson fluid parameter, unsteadiness parameter, and Biot number, the result can be 
analyzed. Dual solution is observed at shrinking sheet case, only one solution is observed at stretching 
sheet case. FBL and BBL can be defined on the basis of velocity factor of stretching/shrinking 
parameter. With the help of graphical arrangements, the results can be concluded. Present paper is 
well argument with Fang and Jing [22] and Mahabaleshwar et al., [23] work.  
 
2. Mathematical Analysis 
 

A 2-D Non-Newtonian incompressible rear stagnation-point flow of an inclined MHD Casson fluid 
is considered in the current investigation. The flow is happened over a stretching/shrinking the sheet 

with an unsteady free stream velocity 
1

bx
U

t
 = −

−
, where b  and  are constants. If 0b   

indicates stretching case and 0b   indicates shrinking case. The Cartesian coordinates ( ),x y  can be 

arranged as represented in the Figure 1. Graphene nanoparticles are inserted in the fluid to get better 
thermal efficiency and the nanofluid quantities are represented in the Table 1. External free stream 

velocity at the wall can be defined by wU U = − . Here,   is the unknown constant to be 

determined, on the basis of value of   it is indicated that if 0  , allows the flow and 0  should 

be restrict the flow. The specific heat flux at wall is defined by w

T
q

y



= −


 or wT T= .  
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Fig. 1. Schematic diagram of Casson nanofluid flow 

 
The Navier’s stokes equation for the present problem can be represented by 
 

0
u v

x y

 
+ =

 
,              (1) 

 

( )
2 2

2 2

2 2

1
1nf nf nf

u u u P u u
u v B Sin U u

t x y x x y
    

        
+ + = − + + + + −    

          
,     (2) 

 
2 2

2 2

1
1nf nf

v v v P v v
u v

t x y y x y
 

        
+ + = − + + +    

          
,        (3) 

 

( )
2 2

2 2

r
P nfnf

qT T T T T
C u v

t x y x y y
 

       
+ + = + −  

        
        (4) 

 
Boundary conditions utilized with these equations as 
 

, , at 0 as
1 1

w

bx bx
u v V y u y

t t



 
= = = = − →

− −
,        (5) 

 

( ) at 0 asf w

T
h T T y T T y

y
  


− = − = → →


       (6) 

 
Here, ( ),B x t  denotes the strength of magnetic field applied perpendicular to the surface and it is 

defined by ( ) 0, / 1B x t B t= − . The rest of the parameters mentioned in the above equations can 

be explained in Nomenclature. By using the factor b it is easy to classify FBL and BBL. The flow coming 
from the slot and run along +  is identified as FBL and the stretching from +  and run along the slot 
is identified as BBL.  
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Table 1 
Thermophysical properties of graphene and water 

Fluids ( )1

PC JkgK −
 ( )3kgm −

 ( )1WmK −
 ( )1m −

 

Water 4179 997.1 0.613 0.05 
Graphene 2100 2250 2500 1107 

 
Now, define the following similarity transformations to convert PDEs into ODEs.  
 

( ) ( )
( )

( ), , , ,
1 1 w

T Tb b
x y t x f y

t t T T


    

  




−
= = =

− − −
       (7) 

 

By using and  the transverse and tangential velocities can be defined as 

 

( ) ( ),
1 1

bx b
u f v f

y t x t


  
 

 

 
= = = − = −
 −  −

        (8) 

 
2.1 Solution of Pressure 
 

In Eq. (3) it is noticed that it is independent of x term i.e. ( ),
P

F t y
y


=


 and where ( ),G t x  is the 

constant of integration. It is calculated by the term 
( ),G t xP

x x


=

 
, this term is free from 

y  term. By using Eq. (2) with u U=  to get the 
P

x




 value 

 

( )
( )

2

1

2

1
1 ,

1

b xP

x t


 


− = −

 −
             (9) 

 
y−direction pressure term can be obtained as 

 

( ) ( )
( )

2 2 2

1
0 1 1 22

1
1

2 21

b x v v v
P P dy

t yt
 

 

  
− = − + + −

 −
                  (10) 

 
Here, /b =  represents the unsteady parameter, by using this parameter flow is classified into 

two types namely, 0  for accelerating flow and 0  for decelerating flow. 0 = indicates the 

steady state fluid flow. 
 
2.2 Analytical Solution of Momentum and Energy Equation 
 

On applying the similarity transformations and pressure term defined in Eq. (7), (8) and (9) 
respectively into the Eq. (1) to (4) to get the following ODEs 
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( )2 2

2 1 3

1 1
1 1 1 1 0,

2
f ff f f f QSin f       

    
 + + − + − + + − + =    

    
                (11) 

 

( )5 4 Pr 0
2

R f 


 

 
 + + − = 

 
                     (12) 

 
Boundary conditions related with these equations are reduced into following form 
 

( ) ( ) ( )0 , 0 , 1Cf f V f = =  = − ,                      (13) 

 

( ) ( )( ) ( )0 1 0 , 0Bi  = − −  → .                      (14) 

 

Here, 
2

0B
Q

b




=  is Chandrasekhar’s number, 

( )
Pr

P f

f

C


=  is Prandtl number, 

* 3

*

16

3 f

T
R

k




=  is the 

radiation parameter it can be calculated by using Rosseland’s approximation, on the basis of this rq

is modelled as 
* 4

*

4

3
r

T
q

k y

 
= −


, then the term 

4T  can be expand by using Taylor’s series and ignoring 

higher order terms to get 4 3 33 4 .T T T T = − +  on substituting these terms into Eq. (4) to get 
* 3 2

* 2

16

3

rq T T

y k y

  
= −

 
 (see Mahabaleshwar et al., [24,25]), by using this the thermal radiation R can 

be calculated. Also, nanofluid quantities 1 5to   is given by 

 

( )

( )1 2 3 4 5, .
Pnf nf nf nf nf

f f f P ff

C

C

   

    
 =  =  =  =  =  

 

In the present analysis the specific value of   value is to be considered, it means to take decelerating 

flow 2 = − . Therefore, the altered equation becomes 

 

( )2 2

2 1 3

1 1
1 1 2 1 1 0,

2
f ff f f f QSin f      

    
 + + − + + + + − + =    

    
               (15) 

 

( ) ( )5 4 Pr 0R f    + + + = .                      (16) 

 

In Eq. (15) the term ( )2

2 1

1
1 0f ff f  

 
 + + − = 

 
, converted into the results of Hiemenz 

[26] when 1 2, 1, =   =  =  with imposed boundary condition ( ) ( ) ( )0 0 0, 1.f f f = =  = the 2nd 

term 
1

1
2

f f 
 

+ + 
 

 indicates the unsteady effect, and ( )2 1Q Sin f +  indicates the Lorentz 

force.  



 Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 95, Issue 2 (2022) 1-19 

6 
 

Introduce another variable ( ) ( )F f  = +  for the purpose of solving the momentum equation. 

Then the Eq. (15) is transformed as 

( )2 2

2 1 3

1
1 4 0F FF F F Q Sin F    
 

 + + + − − = 
 

,                   (17) 

 
the dimensionless boundary conditions Eq. (13) also transformed as 
 

( ) ( ) ( )0 , 0 1, 0.CF V F F = = +  =                     (18) 

 
Solution of Eq. (17) can be assumed as 
 

( )exp 0F m n  = + −                       (19) 

 
By using Eq. (18) and (19) into Eq. (17) to yield following results 
 

( )2 2

1 1 34 0r m Q Sin  − +  − = ,                      (20) 

 

1 1
, Cn m V

 

 

+ +
= − = + ,                      (21) 

 

Cm n V+ =                         (22) 

 
The solution of Eq. (20) is given by 
 

( ) ( )( )
2 2

1 1 1 3 1

2

4 3

2

1
where 1

C CV V d Q Sin

d

d

 


   +  + − 
=

 
=  + 

 

                  (23) 

 
For a physically feasible solution,   must be greater than zero, and Eq. (20) containing real solutions 

also it is satisfy ( ) ( )
2 2

1 1 3 14 3 0CV d QSin  +  + −   . Negative solution of Eq. (20) it 

mathematically possible but not physically available. For mass suction there exist two solutions and 
for mass injection there exist only one solution (see Ref. [22] and [23]). 
Then the solution of the general problem of Eq. (11) is given by 
 

( ) ( )( )
1

1 expCf V


  


+
= − + + − − ,                    (24) 

 
Tangential velocity becomes 
 

( ) ( ) ( )1 1 expf   = − + + −                      (25) 
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where, 
 

( ) ( )
2 2

1 1 1 3 14 3

2

C CV V d Q Sin

d

 


 +  +  + − 
=  ,                   (26) 

 
for upper branch solution  
 

( ) ( )
2 2

1 1 1 3 14 3

2

C CV V d Q Sin

d

 


 −  +  + − 
= ,                   (27) 

 
for lower branch solution.  

Now, we introduce new variable called  to find the analytical solution of temperature equation 
and it is defined by 

 

( ) ( )2

Pr
1 exp  


= + −                       (28) 

 
Substituting this new variable into Eq. (16) to get the result in the following form 
 

( ) ( )
( )22

1 34
5 5 42 2

1

4
Pr 0

Q Sin
R R d

 
 

  

   + 
 + +  + − + + =       

,               (29) 

 
the boundary condition associated with this temperature equation also reduces to 
 

( ) ( ) ( ) ( )2 2

Pr Pr Pr
1 1 1 1 , 0 0Bi     

  

    
+ + = − − + →    

    
                (30) 

 
Apply the Frobenius method to deduce the power series solution of Eq. (29), for this consider 
 

( ) ( )0

0

0k r

r

r

C C  


+

=

=                        (31) 

 
Derivatives of above equation with respect to  is given by 
 

( )

( )( )

1

0

2
2

2
0

,

1

k r

r

r

k r

r

r

k r C

k r k r C












+ −

=


+ −

=


= +




= + + −






                     (32) 

 
By importing Eq. (32) into Eq. (30) to get the following values of k and recurrence relation 
respectively. 
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0, 1 ,
B

k k
A

= = −  

where, 
 

( ) ( )
( )2

1 34
5 5 2

1

4
, Pr .

Q Sin
A R and B R d





  +
=  + =  + − + 

  
                 (33) 

 

( )

( ) ( )( )
4

1

1

1
r r

k r
C C

k r A k r B
−

 + −
= −

+ + − +
                     (34) 

 
with the help of this recurrence relation and the values of k the solution of Eq. (29) is simplified as 
 

( ) ( )
1

1 0 2 0 4 41 1 ,0 1 ,
B

A
B B B

C C C C
A A A

  
 

− − 
 

      
= + − −  − − − −       

      
                (35) 

 

By using boundary conditions defined in Eq.(30) to get the value of 1 2andC C as follows 

 

( )
( ) ( )

( )

1

1

2 4 42 2
1

0 4

1

4 2

0,

Pr Pr
1 exp 1

1

Pr
1 ,0 1 , 1 .

B

A

B

A

C

Bi
C

B
c

A

B B
Bi Bi

A A

  
 




−

−

−

=


   

= − +  +  +    
     − −  
 

  
 − −  − − +     
   

               (36) 

 

Substituting 1 2andC C values in Eq. (35) to yield the result in terms of  is given by 

 

( )
( )

( ) ( ) ( )

( )
4 2

1

4 4 42 2 2

Pr
1 ,0 1 , 1

. 37

Pr Pr Pr
1 exp 1 1 ,0 1 , 1

B

A

B B
Bi Bi e

A A

B B
Bi Bi

A A




 

   
  

−

−

  
 − −  − − +    
   =


       

− +  +  +  − −  − − +        
      



         (37) 

 
where,  represents the incomplete gamma function. Further we discuss the discussion of result 
with the help of graphical representation as follows. 
 
3. Results and discussion 
 

An unsteady laminar flow of a MHD Casson nanofluid flow in the attendance with mass 
transpiration and thermal radiation is considered in the present analytical problem. Graphene 
nanoparticles are inserted into the fluid to enhance the thermal conductivity of the fluid. The 
analytical results can be obtained after converting PDEs to ODEs via similarity transformations. 
Momentum equation is solved analytically to yield the solution domain. Then this domain used in 
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energy equation and verified exactly and it is expressed in the form of incomplete gamma function. 
The solid volume fraction of Graphene nanofluid is utilized in the throughout the problem. Physical 
scenario can be achieved with the help of different controlling parameters namely, mass 
transpiration, thermal radiation, Biot number, inclined angle, and solid volume fraction and so on. 

Figure 2(a)-(c) indicates the impact of  on CV  as a function of  for 0Q = , 2Q =  and 5Q = , 

respectively. As discussed in the above mathematical analysis part at Eq. (23) here it is observed that 

the dual nature behavior, If 0  , it indicates upper branch solution and if 0  it indicates lower 

branch of solution. Upper and lower branch of solutions respectively denoted by solid lines and 

dashed lines in the figure. In Figure 2(a)-(c) it is clearly seen that CV increases the  value with 

reduces the values of  . The dual nature behavior depending on the values of andQ  . If the values 

of 0Q =  increases the distance between the lower and upper branch of solution increases and the 

thickness of the boundary layer flow decreases. These graphs also exhibit the suction injection 

behavior, if 0CV = indicates no permeability, 0CV  indicates suction case and 0CV  indicates 

injection case. 

Figure 3(a)-(c) portrays the impact of  on   for various values of Q  for 0CV = (No 

Permeability) 0CV  ( suction) and 0CV  ( injection) respectively. In this case also it is seen that

 increases with increase the values of Q  with decreases of  . Upper solution is observed at solid 

lines and lower solution branch is indicated at dashed lines. Also, it is observed that the boundary 

layer flow move towards positive x axis if the value of CV increases. Figure 3(a): Impact of   on 

for different choices of Q  at injection case i.e. 0CV  .  

Figure 4(a) and (b) indicates the impact of tangential velocity ( )f   on  for various choices of 

CV  at the values 0, 1, and 1, 0.1Q Q = = = =  respectively. Purple solid lines represent the upper 

branch solution and blue solid lines indicates the lower branch solution. ( )f  increases with 

increase the values of CV  whereas the value of CV  decreases the ( )f   in upper branch case. It is 

also seen that distance between upper and lower branch of solution decrease with increases the 

values of Q  . Figure 4(c) and (d) indicates the impact of ( )f   on   for various choices of CV  in 

the presence and absence of nanoparticles. Purple solid lines represents the presence of 
nanoparticles and the blue dashed lines represents the absence of nanoparticles, in this case it is also 

observed that thickness of the boundary layer flow is decreases with the increases the values of Q  . 

Figure 5(a) and (b) indicates the impact of ( )f  on   for various values of Q , here also it is seen 

that the same effect as mentioned in Figure 4(a) and (b) i.e. ( )f   more for more values of Q  in 

the lower branch case and it is reversed in the case of upper branch, and the thickness is larger for 
large values of  . 
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(a) 

 
(b) 

 
(c) 

Fig. 2. (a) Impact of   on  for various values of CV at 0Q =  (b) Effect of   on  for various values of 

CV in the attendance of 2Q =  (c) Plot of   verses  for various values of CV at 5Q =  

 

 
(a) 

 
(b) 

Fig. 3. (a) Effect of  on  for different choices of Q  at suction case i.e. 0CV  (b) Impact of  on 

for different choices of Q  at injection case i.e. 0CV   
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4. (a) Impact of ( )f   on   for upper and lower branch solution at 0Q =  (b) Impact of ( )f   

on  for upper and lower branch of solution at Q = 1 (c) Plots of ( )f  verses  at Q = 1  (d) Plots of 

( )f  verses  at Q = 2 

 

 
(a) 

 
(b) 

Fig. 5. (a) Plots of ( )f   verses   at 0.2 = (b) Plots of ( )f   verses   at 0 =  

 
Figure 6(a)-(c) and Figure 7(a)-(c) indicates the impact of ( )f  on   for various choices of 

and   for the cases of no permeability, suction, and injection cases respectively. For these figures 

Purple solid lines indicates the presence of nanofluid and the blue dashed lines represents the 
absence of nanofluids. In Figure 6(a)-(c) it is seen that the thickness of boundary value decreases with 
increase of   and it is moving towards x axis. The similar effect is observed at Figure 7(a)-(c), i.e. 



 Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 95, Issue 2 (2022) 1-19 

12 
 

( )f  decreases with increases the values of  , and the thickness of the layer decreases with 

increases the values of 
CV . 

The impact of ( )   on   for different choices of , , , andCV Q Bi   respectively plotted at 

Figure 8(a)-(e). Purple solid lines indicates the attendance of nanoparticles and blue dashed lies 
represents the absence of nanoparticles. In all the cases ( )   increases with increase of 

, , , andCV Q Bi  , and the boundary value thickness moving outwards form the x axis.  

 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. (a) Plots of ( )f   verses  for different choices of at 0CV = (b) Plots of ( )f  verses 

for various choices of  for suction case ( )0CV   (c) Plots of ( )f  verses  for various choices of 

for injection case ( )0CV   
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(a) 

 
(b) 

 
(c) 

Fig. 7. (a) Plots of ( )f   verses   for various choices of  at 0CV =  (b) Plots of ( )f   verses   

for various choices of  for suction case ( )0CV   (c) Plots of ( )f   verses   for various choices of 

 for injection case ( )0CV   

 
Figure 9(a) and (b) depicts the pattern of streamline flows for suction and injection cases 

respectively. in both the cases we clearly observe the difference between streamline flows, i.e. 
different flow patterns are observed at suction and injection cases. Both graphs are plotted for upper 
branch case also these graphs can be plotted by using stream function defined in Eq. (7). Applied 
inclined magnetic field causes the significant free flow this results the flattening of the velocity 
boundary. Figure 10(a) and (b) and Figure 11(a) and (b) represents the effect of tangential and 
transverse velocities for both suction and injection cases respectively. It can be seen two branches 
namely, upper branch solution and lower branch solution.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 8. (a) Impact of ( )   on  for different choices of 
CV  (b) Plots of ( )   on  for different choices 

of Q (c) Effect of ( )   on  for different choices of  (d) Plots of ( )   verses  for different choices 

of Bi (e) Plots of ( )   verses  for different choices of   
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(a) 

 
(b) 

Fig. 9. (a) Contour plots of stream function for suction 

case ( )0CV   (b) Contour plots of stream function for 

injection case ( )0CV   
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(a) 

 
(b) 

Fig. 10. (a) Tangential velocity components for suction case ( )0CV  (b) 

Tangential velocity components for injection case ( )0CV   
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(a) 

 
(b) 

Fig. 11. (a) Transverse velocity components for suction case ( )0CV  (b) 

Transverse velocity components for injection case ( )0CV   

 
4. Concluding Remarks 
 

An unsteady rear stagnation point flow of a Casson nanofluid flow past a superlinear 
stretching/shrinking sheet in the attendance of mass transpiration and radiation is considered to 
illustrate the new results. The governing PDEs are converted into ODEs via similarity variables and 
then it is solved analytically and express in terms of incomplete gamma function. The new results can 
be deduced by using graphical representations. 

 
i. Dual nature behavior is observed for solution domain 

ii. Value of CV increases the  value with decreases the values of   

iii.   is more for more values of Q . 
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iv. ( )f  increases with increases of CV and Q  for lower branch solution and reduces for upper 

branch solution. 

v. ( )f   decreases for  , and  . 

vi. ( )  increases with increases of CV , Q ,  , Bi , and   values. 
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