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Due to its substantial applications in physics, chemistry, and engineering, some emphasis 
has been given in recent years to explore the boundary layer flow of 
magnetohydrodynamic (MHD) nanofluids. The numerical study is conducted to 
investigate the behaviour of MHD free convection flow of magnetic nanofluids over a 
moving vertical plate with convective boundary conditions by taking a few types of 
parameters into consideration. The similarity transformation was used to reduce the 
partial differential governing equations into ordinary differential equations. Then, the 
reduced equations were solved using fourth-fifth order Runge–Kutta–Fehlberg and 
coded into Maple Software. The results of velocity and temperature profiles were 
illustrated graphically while the results of skin friction coefficient and Nusselt number 
were presented in tabulated data. As a result, inclination angle of magnetic field 
parameter, magnetic interaction parameter, Grashof number and Biot number improve 
the velocity field and lowers the momentum boundary layer thickness. However, the 
nanoparticle volume fraction parameter, and the Biot number parameter boost the 
temperature field and raise the thermal boundary layer thickness. The Nusselt number 
of the moving plate with the flow is the highest, whereas the skin friction coefficient of 
the moving plate against the flow is the highest. Fe3O4-kerosene has a better influence 
to the velocity and temperature profiles as well as skin friction coefficient and Nusselt 
number. 
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1. Introduction 
 

Magnetic nanofluids or known as ferrofluids, are the colloidal dispersion of magnetic particles 
that are nanometer sized [1]. Based on the coated surface, the ferrofluids can be identified as 
surfaced ferrofluids or ionic ferrofluids. The magnetic nanofluids are also known as a heat carrier and 
widely used in various fields. Hence, intensive studies on the behaviours of magnetic nanofluids have 
been done by most of researchers, whose are interested to analyses the problems that are related 
to heat transfer due to their eager to find the solution for this problem. Magnetic nanofluids were 
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suggested as alternatives since they were more cost-effective and offered superior heat transfer 
improvements. Many studies have been done by considering various types of plates and boundary 
conditions [2-8]. 

Most of the researchers conduct their study based on free convection flow fluid because it is 
easier to analyses the behaviours of the magnetic nanofluids since it naturally occurs without 
influenced by any external forces. Previous study by Illias et al., [9,10] investigated unsteady aligned 
MHD boundary layer flow and heat transfer of a magnetic nanofluids past a vertical plate and an 
inclined plate. They discovered that the Grashof number has a considerable impact on the velocity 
and momentum boundary layer thickness. Magnetic nanofluids, Fe3O4-kerosene and Fe3O4-water 
exhibited a significant improvement in heat transfer rate and skin friction coefficient compared to 
Al2O3-kerosene and Al2O3-water. 

Recently, researchers are interested to conduct a study on the convective boundary condition 
since this boundary condition is one of the problems that are related to heat transfer and usually 
happens in daily life. Makinde and Aziz [11] and Yao et al., [12] investigated the effect of convective 
boundary condition on boundary layer flow, heat transfer and nanoparticle fraction over a stretching 
or shrinking surface in a nanofluid and viscous fluid with restricted for two boundary condition which 
is prescribed temperatures or heat flux for heat transfer characteristics. When the Biot number 
approaches infinity, the convective boundary condition affects the velocity and temperature profiles, 
and both problems are reduced to a constant wall temperature boundary condition. Several authors 
investigate the influences of convective boundary condition and induced magnetic field on MHD 
stagnation point flow over a stretching sheet [13-15]. Goyal and Bhargava [16] and Mitra [17] also 
used a convective boundary condition to study the boundary layer flow of a nanofluid over a 
convective heated inclined plate. 

MHD is the phenomena that occur when a magnetic field is applied to an electrically conducting 
fluid. In recent years, research in the field of MHD has progressed quickly. The study of flow and heat 
transfer when a magnetic field is applied past a heated surface yielded many applications involving 
an electrically conducting fluid. Ilias et al., [18] analyses the influences of convective boundary 
condition on the magnetic nanofluids over a flat vertical plate with the presence of a magnetic field 
and continues the researches by considering the inclined plate [19]. They discovered that aligned 
magnetic field parameter influence the total magnetic interaction parameter. The value of the 
aligned magnetic field has a huge impact on velocity, temperature, skin friction coefficient, and 
Nusselt number. There are several studies in MHD recently [20-26]. 

However, to the extent of authors’ knowledge, the study on convective boundary condition is 
mostly conducted on a plate with static position. Thus, this study is aimed to investigate the 
behaviour of aligned MHD free convection flow of magnetic nanofluids over a moving vertical plate 
with convective boundary condition by analysing the velocity and temperature profiles as well as the 
numerical results on the skin friction coefficient and Nusselt number. 
 
2. Mathematical Formulation  
 

This study considers a steady state of two-dimensional laminar free convection boundary layer 
flow of a magnetic nanofluids flow over a moving vertical plate in the presence of aligned magnetic 
field. The aligned magnetic field,   was introduced to the flow and placed in the free stream 

temperature T . The mixtures of magnetic nanofluids used in this study were Fe3O4-water and Fe3O4-

kerosene. The transverse magnetic field assumed to be a function of the distance from the origin and 

can be expressed as ( ) 0 /=B x B x  where 0 0B . 
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Fig. 1. Physical model and coordinate system of the 
experiment [18]  

 

Here, 0B  represent the strength of magnetic field and the coordinate ( ),x y  along the plate 

respectively. The base fluids and nanoparticles are in thermal equilibrium and no slip occurs between 
them. The spherical shaped nanoparticles are considered. The viscous dissipation and radiation are 
neglected in the analysis. 

Together with assumptions of Boussinesq and boundary layer approximations, the governing 
equations of MHD boundary layer flow can be expressed as [18]: 
 

              (1) 

 

       (2) 

 

             (3) 

 
While the boundary conditions used in this study are as follows: 
 

,  ,   at  

,   as             (4) 

 
where u  and v  are refers to x  (along the plate) and y  (normal to the plate) components of velocity 

respectively. T  is the temperature of magnetic nanofluids, fh  is the heat transfer coefficient of the 

plate, and fT  is the temperature of the hot fluids at the left plate surface convectively heating the 

plate. Besides, U  is the constant free stream velocity while   is the electrical conductivity. The 

effective properties of magnetic nanofluids may be expressed in terms of the properties of base 
fluids, nanoparticles and the volume fraction of solid nanoparticles as follow [27]. 
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      (5) 

 

where nf  is the effective density,   is the solid volume fraction,  f  and s  are the densities of pure 

fluid and nanoparticles respectively while  f and nf are the dynamic viscosity of the base fluids and 

the effective dynamic viscosity respectively, ( ) p nf
C  is indicate the heat capacity of the magnetic 

nanofluids meanwhile the specific heat parameters of the base fluids and nanoparticles are denoted 

by ( ) p f
C  and ( ) p s

C  respectively, ( )
nf

 is the thermal expansion coefficient, nf  is the thermal 

diffusivity of the magnetic nanofluids, nfk  is the thermal conductivity of the magnetic nanofluids, fk  

and sk  are the thermal conductivities of the fluids and nanoparticles. The thermophysical properties 

of the base fluid and the solid nanoparticles are given in Table 1. 
 

Table 1 
Thermophysical properties of base fluids and ferroparticle [18] 
Physical properties Water Kerosene Fe3O4 

3( / )kg m  997.1 780 5200 

)/( kgKJC  4179 2090 670 

)/( mKWk  0.613 0.149 6 

( )1510 −− K  21 99 1.3 

 

The continuity equation in Eq. (1) is satisfied by the introducing stream function ( ), x y  as 

shown below, 
 

and              (6) 

     
The following similarity variables are introduced to solve the governing equations in Eq. (1) to Eq. 

(3), as in the study by Illias et al., [18], 
 

        (7) 

 

where   is the similarity variable, Re /=x fU x v  refer to Reynolds number, ( )f  and ( )   

indicates the non–dimensional stream function and temperature respectively. 
By substitute Eq. (5), Eq. (6) and Eq. (7) into Eq. (2) and Eq. (3), the following nonlinear systems 

of ordinary differential equations were obtained: 
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       (8) 

 

          (9) 

 
By respecting to Eq. (4), the boundary conditions obtained were as follow: 
 

 at  

,  as                      (10)  
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[18,27]. 

The discussions of numerical results are based on the skin friction coefficient, fC  at the surface 

of the plate and local Nusselt number, xNu  which are defined as: 
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where  w  refer to the wall skin friction and wq  refer to the heat flux from the plate which given by: 
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By substitute Eq. (7) and Eq. (12) into Eq. (11), the solutions obtained were as follow: 
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3. Method of Solution 
 

The nonlinear Eq. (8) and Eq. (9) cannot be solved analytically. The relatively robust computer 
algebra software Maple 20 is used to derive numerical solutions subject to the boundary conditions 
(10). This software uses a fourth-fifth order Runge–Kutta–Fehlberg method as default to solve 
boundary value problems numerically using the dsolve command. 

The results of the current study were compared to the results of a previous study that employed 
the identical boundary condition to demonstrate the dependability of the numerical results produced 
and the consistency of the investigation. From Table 2, we can see that the data produce has a good 
agreement with the previous researchers. 
 

Table 2 

Comparison result of ( )0  for different values of Biot number, 
xBi  when

0, 0,  Pr 0.72,  0,  0.5 = = = =xM Gr  and 0 =  

xBi  0,  Pr 0.72,  0,  0= = = =xM Gr K  0,  Pr 0.72,

0.5,  0

= =

= =x

M

Gr K
 

Bataller Aziz Ishak et al., Ramesh et 
al., 

Present Ramesh et 
al., 

Present 

0.05 0.1446 0.1447 0.1446 0.1446 0.144660 0.1388 0.138810 
0.1 - 0.2528 0.2527 0.2527 0.252756 0.2386 0.238622 
0.2 0.4035 0.4035 0.4035 0.4035 0.403520 0.3774 0.377434 
0.4 - 0.5750 0.5750 0.5750 0.575012 0.5398 0.539854 
0.6 0.6699 0.6699 0.6699 0.6699 0.669914 0.6337 0.633763 
0.8 - 0.7302 0.7301 0.7301 0.730168 0.6954 0.695454 
1.0 0.7718 0.7718 0.7718 0.7718 0.771821 0.7392 0.739209 
5 - 0.9441 0.9441 0.9441 0.944173 0.9323 0.932320 
10 0.9712 0.9713 0.9712 0.9712 0.971285 0.9648 0.964825 

 

4. Results and Discussion 
 

The effect of various physical parameters on velocity, temperature, skin friction, and Nusselt 
number is presented using graphs and tables. For the base fluids, water and kerosene, the Prandtl 
numbers are taken to be 6.2 and 21, respectively. We fit the nondimensional values as follows for 

numerical computation, 90 =  , 1=M , 0.1 = , 0.1=xGr  and 0.1=xBi  unless otherwise 

mentioned. In this study, 0 = 0 =  denotes the static plate, 0   denotes moving plate against 
the flow and 0   denotes moving plate together with the flow. 

Figure 2 to Figure 6 shows how velocity and temperature profiles change with different values of 

,  ,  ,    xM Gr  and xBi . While the numerical value of skin friction coefficient and Nusselt number for 

Fe3O4-water and Fe3O4-kerosene are shown in Table 3 and Table 4. 
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(a) (b) 

Fig. 2. Effects of 𝛼 on (a) velocity profiles and (b) temperature profiles 

 
Figure 2(a) and Figure 2(b) depict the effects of   on the velocity and temperature profiles of 

Fe3O4-water and Fe3O4-kerosene magnetic nanofluids for 0.2 = − , 0 = and 0.2 =  . It shows that 
  has different influences on velocity and temperature profiles. For all three plate circumstances, 
as   increase the velocity profile increases while the temperature profile decreases. When 90 , =   

it corresponds to transverse magnetic field. As shown in Table 3 and Table 4, the skin friction 
coefficient and Nusselt number rise as   increases. In all states of plate, Fe3O4-kerosene has a 
greater skin friction coefficient than Fe3O4-water. However, at 0.2 = −  specifically at 0 =   and 
45 , Fe3O4-kerosene has a lower Nusselt number than Fe3O4-water. 
 

  
(a) (b) 

Fig. 3. Effects of M  on (a) velocity profiles and (b) temperature profiles 
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Figure 3(a) and Figure 3(b) illustrates the impact of M on velocity and temperature profiles at 
three different states of vertical plate. The strengthening in M  causes the increasing in the velocity 
profiles while decreasing in the temperature profiles. The nanoparticles are generally arranged in 
order as the magnetic field increases. The magnetic field pushes the nanofluid, which is decelerated 
by the viscous force. This counteracts the viscous effects. As a result, as M  is increased, the 
nanofluid's velocity increases, and the thickness of the momentum boundary layer decreases. 

0M = indicates the absence of magnetic field. For 0.2 = − , the temperature of Fe3O4-kerosene is 
initially higher than Fe3O4-water until at particular value  , the opposite characteristic occurs. M  

has a significant impact on skin friction coefficient and Nusselt number, as shown in Table 3 and Table 
4. It occurs in all states of plate. 
 

  
(a) (b) 

Fig. 4. Effects of   on (a) velocity profiles and (b) temperature profiles 

 
The velocity profile decreased as  increased, as seen in Figure 4(a), due to the significant 

frictional force between the magnetic nanoparticles and the plate surface. Momentum boundary 
layer increase for all cases. As shown in Figure 4(b),  , on the other hand, improves the temperature 

profile by increasing the temperature as the magnetic nanoparticles collide with the plate's surface. 
The enhancement of magnetic nanofluids thermal conductivity is linked to the delicacy of the width 
of the thermal boundary layer by  . To put it another way, the higher the thermal conductivity of a 

fluid, the higher the thermal diffusivity. A lower temperature gradient is caused by a higher value of 
thermal diffusivity. As a result, thermal boundary layer increases. This finding is consistent with the 
experimental findings described in a study by Xuan and Li [32]. Table 3 and Table 4 show that the skin 
friction coefficient and Nusselt number for both of Fe3O4-water and Fe3O4-kerosene rise as   

increases. At 0.2 = − , Fe3O4-water has a higher skin friction coefficient than Fe3O4-kerosene, 
whereas at 0 =  and 0.2 = , the converse is true. In all vertical plate states, Fe3O4-kerosene has 
greater value of Nusselt number than Fe3O4-water. 
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(a) (b) 

Fig. 5. Effects of xGr  on (a) velocity profiles and (b) temperature profiles 

 

The effects of xGr  on the velocity profiles is depicted in Figure 5(a). The velocity increased as xGr  

rose. Increases in xGr , on the other hand, diminish the temperature profiles, as shown in Figure 5(b). 

Because of the growing buoyancy effect on the magnetic nanofluids, the thickness of the momentum 

and thermal boundary layer decreases as the value of xGr  increases. The rate of thermal diffusion 

within the boundary layer is slowed by the intensity of buoyant force. As shown in Table 3, increases 

in xGr  increase the value of skin friction coefficient. The skin friction coefficient of Fe3O4-kerosene is 

the lowest when compared to Fe3O4-water at 0.2 = . Table 4 demonstrates that as xGr  increases, 

the Nusselt number increases only slightly, and the moving plate with flow has the maximum Nusselt 
number (Fe3O4-kerosene). 
 

  
(a) (b) 

Fig. 6. Effects of xBi  on (a) velocity profiles and (b) temperature profiles 
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Based on Figure 6(a), xBi positively influences the velocity profiles in both mixtures of magnetic 

nanofluids. From the Table 3, the highest value of skin friction coefficient can be seen for the case of 

0.2 = −  (Fe3O4-water). The effect of xBi  on temperature diffusion is seen in Figure 6(b). Here 

→xBi  means a constant in the case of surface temperature. It's worth noting that as xBi  rises, so 

does the temperature profile. xBi  stands for the ratio of the hot fluid edge's convection resistance 

to the cold fluid edge's convection resistance over the surface. Furthermore, because hot fluid 

thermal resistance is proportional to fh , increasing values of xBi  coincides with a decrease in fluid 

edge convection. As a result, the thermal boundary layer's width increases. The heat transfer rate at 
the plate surface increases, as indicated in Table 4, especially in the case of 0.2 =  (Fe3O4-kerosene). 
 

Table 3 
Variation in skin friction coefficient at different dimensionless parameters for Fe3O4-water and Fe3O4-
kerosene 
  M xGr  

  xBi  Skin Friction Coefficient 

Fe3O4-water Fe3O4-kerosene 

  = -0.2   = 0   = 0.2   = -0.2   = 0   = 0.2 

0  1 0.1 0.1 0.1 0.4412  0.4636 0.43363  0.4548  0.4575 0.4293  
45  1.0546  0.9177 0.76471  1.0587   0.9141  0.7616 
70  1.3506  1.1551 0.94777 1.3533  1.1521 0.9451 
90  1.4290 1.2187 0.99728 1.4315 1.2158  0.9947 
90  0 0.1 0.1 0.1 0.4412 0.4636 0.4336 0.4548 0.4575 0.4393 

1 1.4290 1.2187 0.9973 1.4315 1.2158 0.9947 
2 1.9774 1.6676 1.3410 1.9790 1.6654 1.3479 
3 2.4045 2.0199 1.6289 2.4056 2.0180 1.6272 

90  1 0.1 0.1 0.1 1.4280 1.2177 0.9964 1.4315 1.2158 0.9947 
0.5 1.4525 1.2362 1.0109 1.4476 1.2271 1.0029 
1 1.4825 1.2590 1.0290 1.4675 1.2410 1.0130 
2 1.5407 1.3039 1.0648 1.5061 1.2685 1.0331 

90  1 0.1 0 0.1 1.2383 1.0489 0.8529 1.2357 1.0464 0.8507 
0.05 1.3279 1.1287 0.9207 1.3277 1.1295 0.9222 
0.1 1.4288 1.1287 0.9973 1.4315 1.2233 1.0029 
0.2 1.6748 1.4377 1.1836 1.6841 1.4517 1.1995 

90  1 0.1 0.1 0.1 1.4290 1.2187 0.9973 1.4315 1.2233 1.0029 
0.5 1.4448 1.2321 1.0088 1.4418 1.2306 1.0085 
3 1.4645 1.2509 1.0265 1.4579 1.2446 1.0205 
10 1.4703 1.2569 1.0328 1.4636 1.2504 1.0263 
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   Table 4 
   Variation of Nusselt number at different dimensionless parameters for Fe3O4-water and Fe3O4-kerosene 

  M xGr  
  xBi

 
Nusselt number 

Fe3O4-water Fe3O4-kerosene 

  = -0.2   = 0   = 0.2   = -0.2   = 0   = 0.2 

0  1 0.1 0.1 0.1 0.0974 0.1060 0.1097 0.10421  0.11716 0.12096 
45  0.10504 0.1084 0.11065  0.11513  0.11926   0.1216 
70  0.10658 0.1092 0.11103  0.11692  0.11990  0.12186  
90  0.10690 0.1094 0.11112 0.11728 0.12005 0.12192 
90  0 0.1 0.1 0.1 0.0974 0.1060 0.1097 0.1172 0.1172 0.1210 

1 0.1069 0.1094 0.1111 0.1200 0.1200 0.1219 
2 0.1086 0.1103 0.1116 0.1209 0.1209 0.1223 
3 0.1094 0.1108 0.1120 01213 0.1213 0.1225 

90  1 0.1 0.1 0.1 0.0765 0.0784 0.0796 0.1200 0.1200 0.12192 
0.5 0.0766 0.0784 0.07963 0.1201 0.12007 0.12193 
1 0.0767 0.0784 0.07965 0.1201 0.12009 0.12194 
2 0.0768 0.0785 0.07968 0.1201 0.1201 0.12196 

90  1 0.1 0 0.1 0.0874 0.0892 0.0905 0.0928 0.0928 0.0941 
0.05 0.0968 0.0989 0.1005 0.1060 0.1060 0.1076 
0.1 0.1069 0.1094 0.1111 0.1205 0.1205 0.12235 
0.2 0.1291 0.1325 0.1349 0.1542 0.1542 0.1568 

90  1 0.1 0.1 0.1 0.1069 0.1094 0.1111 0.1205 0.1205 0.12235 
0.5 0.3441 0.3705 0.3914 0.4590 0.4590 0.4871 
3 0.6420 0.3798 0.8264 1.1087 1.1087 1.2863 
10 0.7311 0.8593 0.9791 1.3836 1.3834 1.6706 

 
5. Conclusions 
 

By focusing on five different dimensionless parameters and involving two different types of 
magnetic nanofluids which are Fe3O4-water and Fe3O4-kerosene, the current study examines the 
effects of convective boundary conditions and the presence of a magnetic field on the behaviour of 
magnetic nanofluids by free convection flow passing over a different state of moving vertical plate. 
The following conclusion can be drawn based on the graphical and numerical results obtained: 

i. The velocity profiles for both magnetic nanofluids increase as the value of  , M , xGr , and 

xBi  increases, except  .  

ii. The temperature profiles for both magnetic nanofluids decrease as the value of  , M , and 

xGr  increases, except  and xBi . 

iii. The value of skin friction coefficient and Nusselt number increases as the value of all 
dimensionless parameter increases. 

iv. The skin friction coefficient of a moving plate against the flow is the maximum for all states 
of vertical plate, whereas the Nusselt number for a moving plate with magnetic nanofluids 
flowing is the highest. 

v. Fe3O4-kerosene magnetic nanofluids have the highest heat transfer rate at the surface 
compared to Fe3O4-water in all states of vertical plate. 

 
For future work, this model can be extended to hybrid nanofluids and different geometries 

configuration. 
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