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The flow of fluid with mas transfer is an important phenomenon in the industries and 
nature. A new scheme for formulating the Caputo time fractional model for the flow of 
Brinkman-type fluid between the plates was introduced using the generalized Fick’s law. 
Within a channel, the free convection flow of the electrically conducted Brinkman-type 
fluid was considered. The governing equations were solved by the techniques of Fourier 
sine and the Laplace transform. In terms of the special function, namely, the Mittag-
Leffler function, final solutions were obtained. To explain the conceptual arguments of 
the embedded parameters, separate plots are represented in figures. It is worth noting 
that for increasing the values of the Brinkman-type fluid parameter, the velocity profile 
decreases. 
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1. Introduction 
 

Because of its flexible and special properties, fractional calculus has evolved tremendously 
nowadays. The non-integer derivatives of all the orders are solved utilizing fractional calculus 
techniques. Fractional calculus has a history of around three centuries. Fractional calculus is a 
versatile and vital method to explain many processes, including memories [1, 2]. In recent years, 
fractional calculus has been used for many applications in different areas, such as electrochemistry, 
ground-level water distribution, electromagnetism, elasticity, diffusion, and heat stream conduction 
[3-5]. Many researchers use the fractional derivatives approach for the flow problems, like Ali, et al., 
[6] and Ali, et al., [7]. Another approach of fractional derivatives is Caputo-Fabrizio fractional 
derivatives [8] which are also termed a derivative with a non-singular kernel in the literature. The 
numerical and analytical solvers use this approach for different phenomena in real life. For different 
situations and analyses, CF derivatives are widely used, like Ali, et al., [9], Fetecau, et al., [10], and 
Sheikh, et al., [11]. The modern concept of fractional derivatives using the generalized exponential 
functions (Mittag Leffler function) was created in 2016 by Atangana and Baleanu [12]. The kernel of 
integral associated with that derivative is nonlocal and non-singular. Atangana and Koca [13] used 
the modern concept of a fractional derivative to a simple non-linear system to demonstrate the 
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presence and uniqueness of a solution for the problem. Afterward, some authors used a fractional 
derivative of Atangana-Baleanu in their study, for instance, Sheikh et al., [14, 15]. 

In the manufacturing and scientific fields, the physical properties of non-Newtonian fluids 
strongly affect [16-22]. Moreover, in magnetohydrodynamic (MHD) flows, heat transfer effects 
include a wide variety of applications from geosciences to engineering and the chemical sciences field 
[23-25]. Non-Newtonian fluids demonstrate a complex process that ultimately needs to be described 
and represented by mathematical modeling. In a porous medium or clay water contact, this 
phenomenon of non-Newtonian flow becomes much more complex [18, 19]. Darcy [26] identified 
the theoretical analysis and the respective mathematical model of the viscous fluid flow through a 
medium containing pore. In general, Darcy's implemented law can describe the flows passing over a 
low permeable region. But Darcy's law is not practical and applicable to fluids that move through a 
medium with high porosity, so Brinkman's model [27] is valid and suitable for such liquids. Extensive 
research has been done using the Brinkman model on fluid flow through a porous medium. Using the 
Brinkman-type fluid model, many researchers have presented their studies, for example, Ali, et al., 
[28], Jan, et al., [29], Aamina, et al., [30], Ali, et al., [31]. 

This article considers the unsteady MHD flow of Brinkman-type fluid with mass transfer, keeping 
in mind the above discussion. Using the Caputo time-fractional derivative, the governing equations 
are translated into fractional PDEs. With the joint applications of the Laplace and Fourier sine 
transformations technique, the equations are solved. 
 
2. Mathematical Modelling 
 

We considered Brinkman-type fluid motion in a vertical channel. It is assumed that the flow is in 
the x  -axis direction, while the y -axis is taken perpendicular to the plates. With ambient 

concentration 
1

C , both the fluid and plates are at rest when 0t . At 0
+

=t , the plate at =y d  starts 

to move with velocity ( )Uh t  in its own plane. At y d= , the rate of concentration at the plate rose 

over time t  to ( ) ( )
1 2 1
+ −C C C g t . 

The free convection flow of fluid of the Brinkman-type, along with the mass transfer, is regulated 
by the following partial differential equations [30] 
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with the initial and boundary conditions 
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Introducing the following dimensionless variables 
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Gm C C  is the mass Grashof number, 
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3. Fractional Model 
 

The generalized laws of Fourier and Fick are utilized as follow to establish a fractional model for 
the convective part of the referred flow problem 
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C  is the time fractional operator developed by Caputo [32] and is described as [6] 
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t is the singular Power law kernel. Furthermore, 
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here .L is the Laplace transform, (.) is the Dirac’s delta function and s is the Laplace transform 

parameter. 
Using the above properties and the second form Eq. 10, it is convenient to show that 
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Utilizing the definition of Caputo time fractional operator form Eq. (10), Using Eqs. (6 and 9) we 

arrived at 
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We recalled the time fractional integral operator to get the finest form for the last two equations 
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This is the inverse operator of the derivative operator ( ).C
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 . Using the properties from Eq. (11) we 

have 
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Using the property, 
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4. Solution of the Problem 
4.1 Concentration Field 
 
Using the following transformation  
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Eq. (18) takes the form 
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With the corresponding initial and boundary conditions as 
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Applying the Laplace and Fourier sine transform, we get 
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Inverting the integral transformations of Eq. (22), we have 
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The final solution for the concentration equation is 
 

( ) ( ) ( ), , ,      =  + g                       (24) 

 
4.2 Velocity Profile 
 
Applying the Laplace and Fourier transform to Eq. (5) using Eq. (8) we arrived at 
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Inverting the Laplace and Fourier sine transformations the final solution is 
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here ( )H  is the unit step function and ( ), .a bE is the Matage-Leffler function [33]. 

 
5. Sherwood Number 
 

The gradient of mass concentration is termed as Sherwood number. In nondimensional form 
Sherwood number is given by 
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6. Results and Discussion 
 

In this analysis, we address the unsteady flow of Brinkman-type fluid in a vertical channel. Figures 
demonstrated the effect of different embedded parameters on the velocity and concentration 
profiles.  

The influence of fractional parameter α has been shown in Figure 1. From this figure, the fluid 
velocity is the increasing function of the fractional parameter. The memory effects are also clearly 
shown in this figure. All the physical parameters are kept constant and only the fractional parameter 
is variated. Four different lines are drawn for different values of the fractional parameter for a fixed 
value of time. Form this figure we can say that while fixing all the physical parameter constant we 
can obtain different values for velocity to adjust our results with the experimental data, this 
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phenomenon cannot be addressed in classical models due to the absence of memory effect. The 
variations in velocity profile due to change in Brinkman-type fluid parameter are depicted in Figure 
2. From this figure, exciting results are obtained. The velocity decreases with increasing values of the 

material parameter  B . Physically, the increase in this parameter means the increase in the porosity 
of the media, through which the fluid flow. The influence of fractional α parameter on the 
concentration profile is shown in Figure 3. The figure shows that the concentration increasing 
function of the fractional parameter.  

 

 
Fig. 1. Variations in velocity profile against   if ( ) 0 =h for 

different values of  when 2 = , 0.5B = , 15Gm = , 5Sc =

and 1.5M =  
 

 
Fig. 2. Variations in velocity profile against   if ( ) 0 =h for 

different values of  B
 when 2 = , 0.5 = , 15Gm = , 5Sc =

and 1.5M =  
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Fig. 3. Variations in Concentration profile against   for different 

values of   when 2 = and 5Sc =  

 
7. Conclusion and Future Directions 
 

The fractional Brinkman-type fluid model is developed using a new methodology in this research. 
The Laplace and Fourier transformation methods are used to solving the problem. The results 
produced are drawn up and displayed in tables. The main findings of this analysis are 

 
i. The new transformation is more reliable for the solution of the fractional model. It is easier 

to solve the fractional model using this transformation. 
ii. This transformation reduces the computational time for finding the exact solutions to such 

problems. 
iii. The velocity reduces with higher values of Brinkman-type fluid parameter. 
iv. For various values of  , variations in all three profiles are shown. It is important to note here 

that we have different lines in the graph for fixed time values. This result demonstrates the 
fluid's memory effect, which the integer-order model cannot be seen. 

 
This work may be extended for other Newtonian and non-Newtonian flow situations and with 

other modern fractional approaches. Moreover, Heat and Mass transfer can be considered together 
in the same flow problem. 
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