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Ultrahigh-performance cooling is one of the essential requirements in the industrial 
technology. Hence, the new heat transfer fluid, hybrid nanofluid is introduced to increase 
the thermal conductivity of fluid and investigated with various physical parameters. The 
unsteady magnetohydrodynamics (MHD) flow of Casson hybrid nanofluid through two 
surfaces in a permeable medium with chemical reaction are explored. The hybrid 
nanoparticles of Alumina (𝐴𝑙2𝑂3) and Copper (𝐶𝑢) is dispersed in the base fluid of sodium 
alginate (𝐶6𝐻9𝑁𝑎𝑂7). The discretize equations are solved using similarity transformation 
and Keller-box methods. The comparison of the current results with the published results 
for validation is conducted and discovered in proper agreement. The impacts of squeeze, 
magnetic, porous media, chemical reaction, heat sink/source, and Soret and Dufour on 
behaviour and physical quantities of flow are discussed. The graphical results show the 
squeeze of two surfaces accelerates the fluid velocity near the upper plate region. Further, 
the velocity slowing down when 𝛽 and 𝐻𝑎 increases, and it elevates as 𝐷𝑎 and 𝜙2 rises in 
the middle of channel. The increment of heat transfer rate and temperature of fluid is 
shown for increasing 𝐸𝑐, 𝛾 and 𝐷𝑢, and the opposite behaviour is discovered with raise in 
𝜙2. The fluid concentration decreases and the mass transfer rate enhances for rising 𝑆𝑟. 
The concentration enhance and rate of mass transfer reduce with the constructive 
chemical reaction, whereas contrary effects is shown for destructive chemical reaction. 
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1. Introduction 
 

Compression and decompression of fluid within two plates is known as squeezing flow. Many 
scientists have keen interest on the field of squeeze flow due to the application in hydraulic lifts, 
lubrication system and injection moulding [1]. The research on the squeeze flow of viscous fluid over 
horizontal plates is pioneered by Stefan [2]. Then, Cameron [3] continued the study by considering 
infinite plates. A new similarity variable was introduced by Wang [4] for converting Navier-Stokes 
equations to ordinary differential equations on the studies of squeeze flow of viscous fluid. Next, the 
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researches of Wang [4] was conducted by Bujurke et al., [5], Rashidi et al., [6] and Khan et al., [7] 
analytically. 

The significance of the researches on the non-Newtonian flow has been acknowledged by 
scientists due to its implementation on engineering industries. Casson fluid is known as shear 
thinning flow because of high yield stress and shear viscosity [8]. Commonly, the fluid acting as solid, 
but it starts to flow if the strong force is imposed on the fluid. The motion of pigment oil suspension 
is explored using Casson fluid model by Casson [9]. Later, Khan et al., [10] introduced the research 
on time dependent Casson fluid flow by squeezing two surfaces. Ahmed et al., [11] studied the effects 
of magnetic field on electrically conducted Casson fluid on the squeezing plates. The work from Khan 
et al., [12] was extended by Ahmed et al., [11] with addition of permeable medium. The joule 
dissipation impact on squeezing of Casson fluid flow is reviewed by Mohyud-Din et al., [13]. 

The influences of magnetohydrodynamics (MHD) on the flow is discovered in various geometrical 
models of fluid. The magnetic field exerted on the electrical conduction fluid produces the Lorentz 
force. It is often arising in the medical and engineering usages, for instance, it functions as transporter 
for magnetic drug inside the body, cyclotrons and mass spectrometer [14]. The MHD flow by 
squeezing of two plates was examined by Siddiqui et al., [15] and resolved via homotopy perturbation 
method (HPM). The similar problem is solved by Sweet et al., [16] through homotopy analytical 
method (HAM) with variation of fluid density and magnetic field. The flow of squeeze Casson fluid 
under influence of MHD was investigated by Ahmed et al., [10]. The new approximate analytical 
solution according to power series coefficients is used by Al-Saif and Jasim [17] to solve the similar 
problems. The flow on the porous medium is important in the such as thermal energy storage, 
nuclear reactors oil extraction, geothermal energy recovery and plasma studies [18]. The impacts of 
MHD on squeezing Casson flow across permeable medium was explored by Khan et al., [12]. The slip 
condition on squeezing MHD of Casson flow over permeable medium was done by Qayyum et al., 
[19]. Later, Sobamowo et al., [20] discovered squeezing Casson nanofluid flow on permeable media 
under magnetic field impacts via Tiwari and Das model.  

The application of heat transfer fluid in various thermal devices is acknowledged by engineers 
and researchers such as hydraulic analysis of microchannels and pool boiling heat transfer [21]. 
Conventional fluids have low capability of thermal transfer due to lack of thermal conductivity. 
Hence, an advanced heat transfer fluid called nanofluid was pioneered by Choi and Eastman [22] by 
disperse the nanoparticles in the base fluid. Later, the advanced in nanotechnology industry led to 
the innovation of thermal transfer fluid named hybrid nanofluid. The diffusion of two type of particles 
in the conventional fluid is discovered by many researchers because of its ability in enhancing the 
heat properties of nanofluid. The experiment on hybrid nanofluid were done by Turcu et al., [23] and 
Jana et al., [24] to observe its impact on the thermal conductivity. The production of hybrid nanofluid 
of Cu-Al2O3/H2O by Suresh et al., [25] is done by thermochemical technique.  

Hybrid nanofluid is implemented in many heat transfer usages, for instances improving the 
coolant performance in vehicle engines, microchips and nuclear power system, and delivery of nano-
drug for medical treatment [26,27]. Many scientists have done the researches on hybrid nanofluid 
flow using various geometric models. The MHD flow of Cu-Al2O3/H2O hybrid nanofluid across a 
porous stretched plate with suction impact is explored by Devi and Devi [28]. High concentration of 
nanoparticle volume fraction raises the heat transfer in the flow. Upreti et al., [29] studied the 
entropy generation of carbon nanotubes (CNTs) on hybrid nanofluid over rotating horizontal 
squeezed plates. The presence of joule dissipation, heat source/sink and radiative thermal flux were 
analysed. Waini et al., [30] examined the MHD hybrid nanofluid flow past a porous sensor of squeeze 
surface. The mixed convective squeeze of hybrid nanofluid flow and non-linear radiative heat transfer 
past two disks was analysed by Nisar et al., [31]. The magnetized ferroparticles is used in the base 
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fluids of ethylene glycol and water. The MHD squeeze flow of hybrid nanoparticles of Fe3O4 and MoS2 
in the influence of heat sink/source is investigated by Salehi et al., [32]. The conventional fluids of 
ethylene glycol and water are considered. Khashi’ie et al., [33] explored the effects of 
suction/injection on MHD flow of hybrid Cu-Al2O3/H2O nanofluid over the lower stretching squeezed 
surface. Wahid et al., [34] investigated the impacts of radiative thermal transfer on MHD hybrid 
nanofluid flow across a porous vertical surface. The squeezing flow and radiative thermal transfer of 
copper and alumina hybrid nanoparticles on water-based fluid with joule dissipation and variable 
viscosity was reviewed by Famakinwa et al., [35]. For Casson hybrid nanofluid, the magnetic flow at 
a stagnation points and thermal transfer across stretched plate was discovered by Alghamdi et al., 
[36]. Kamis et al., [37] examined the thermal transfer of the fluid across porous stretched surface 
with suction impact. Then, Jyothi et al., [38] investigated the squeeze flow of Casson hybrid nanofluid 
with heat sink/source and thermophoresis. Noor et al., [39] discovered the influences of chemical 
reaction and heat sink/source on squeeze MHD flow of sodium alginate-based Jeffrey hybrid 
nanofluid in porous medium with thermal radiation.  

The studies of the double diffusion or thermal and mass transfer through fluid flow are important 
in many practical applications such as in the field of air pollution, disposal of nuclear waste and 
petroleum reservoirs [40]. It is discovered that the process of double diffusion is more complex 
caused by the driving potentials of thermal and mass fluxes occurs simultaneously. Soret effect or 
thermo-diffusion is a heat flux produced due to temperature gradient. Besides, Dufour effect or 
diffusion-thermo is a mass flux produced due to concentration gradient. Dufour and Soret terms are 
considered in the energy and concentration equations, respectively. In general, the impacts of Dufour 
and Soret are not measured because the order of magnitude is not significant based on Fourier and 
Fick’s laws. However, the effects are discovered when the density of particles at fluid surface is lower 
than the ambient fluid [41]. The researches on the influences of Soret and Dufour on hybrid nanofluid 
flow are explored in various geometry. For Casson nanofluid, Rafique et al., [42] explored the 
numerical solution of MHD flow across a non-linear inclined plate with Soret and Dufour, radiation, 
Brownian, thermophoresis, and heat sink/source impacts. Bidemi and Ahamed [43] examined the 
effects of radiation, heat sink/source, and Dufour and Soret on unsteady magnetic flow through an 
inclined plate through porous medium using Buongiorno model. Sekhar et al., [44] discovered the 
MHD flow on inclined stretched surface in the presence of Brownian, radiation, heat sink/source, 
Soret and Dufour, and chemical reaction. Noor et al., [45] discussed the MHD squeeze Casson 
nanofluid flow for the presence of chemical reaction, porous medium, thermal radiation, and joule 
dissipation. Later, the prior study was extended by Noor et al., [46] by examining the heat sink and 
source in the Jeffrey flow. The prior work is continued by Noor et al., [47] for the study of thermal 
radiation and Dufour and Soret impacts on Jeffrey flow on squeezed plates. For Casson hybrid 
nanofluid, Hafeez et al., [48] studied the MHD flow through porous medium over a vertical melting 
surface with Dufour and Soret, Joule heating and viscous dissipation effects. Further, Reddy et al., 
[49] reported the influences of Soret and Dufour, thermal radiation and magnetic field on hybrid 
Al2O3-Cu based Ethylene glycol nanofluid across a moving thin needle. Deepika et al., [50] analysed 
the MHD mixed convection flow of Casson hybrid nanofluid on a porous stretching plate with Soret 
and Dufour, and heat source/sink impacts.  

Based on literature review, several studies on the squeeze of nanofluid flow over two surfaces 
are discovered. The review highlights that limited study are conducted on the squeezing flow for 
Casson hybrid nanofluid. The thermal and mass transfer of squeezing flow of Casson hybrid nanofluid 
with the effects of magnetic, porosity, heat sink/source, Soret and Dufour are not discovered yet. 
Hence, the unsteady magnetohydrodynamics flow of Casson hybrid nanofluid through two squeezed 
surfaces in permeable medium is investigated in this study. The heat and mass transfer analysis with 
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the influences of heat sink/source, chemical reaction and Soret and Dufour are observed. Copper and 
alumina are taken as hybrid nanoparticles with sodium alginate as the conventional fluid. 

The potential application of this study is implemented for the modelling of fluid with hybrid 
nanoparticles as a coolant in the radiator. The large radiator is used to maximize the cooling effects 
on the engine, which cause high energy is required to maintain the system. Hence, the 
implementation of hybrid nanofluid is potentially useful in the modelling of small size of radiator and 
it has presented a good outcome in energy saving and emission reduction. Furthermore, the 
influence of magnetic field is examined in the flow. It is discovered that the conversion of kinetic 
energy of particles into a voltage enhances by applying magnetic field and plasma conductivity. The 
presence of chemical reaction in the mathematical model is to investigate the coolant in a nuclear 
reactor. It is used to remove heat from the nuclear reactor engine and transfer the heat to electrical 
generators and the environment. 

The present study explores the following research questions 
 

i. How do the mathematical models for MHD Casson hybrid nanofluid in the problem of 
unsteady squeezing flow through a porous medium can be formulated? 

ii. How does the combined effects of heat sink/source, chemical reaction, and Soret and 
Dufour will affect the heat and mass transfer characteristics of the fluid flow? 

iii. How to develop a programming code in MATLAB software to find the numerical solutions 
of the problems? 

 
2. Mathematical Formulation 

 
Consider the unsteady MHD flow of Casson hybrid nanofluid in permeable medium with chemical 

reaction, Soret and Dufour, and heat sink/source. The geometrical model presents the squeeze flow 
of Casson hybrid nanofluid across two surfaces. As illustrated in Figure 1, the length between two 

surfaces is 𝑦 = ±ℎ(𝑡) = ±𝑙(1 − 𝛼𝑡)
1

2. The external force with velocity, 𝑣𝑤(𝑡) =
𝜕ℎ(𝑡)

𝜕𝑡
 is exerted on 

the both surfaces. It moves further when 𝛼 < 0 and moves closer when 𝛼 > 0 until 𝑡 = 1 𝛼⁄ . The 

magnetic field is induced vertically at the lower surface, 𝐵(𝑡) = 𝐵0(1 − 𝛼𝑡)−1 2⁄  [51]. The mixture of 
two type of hybrid nanoparticles, which are alumina and copper in the conventional fluid of Casson 
fluid are analysed.  

 

 
Fig 1. Geometry model of squeeze flow of hybrid nanofluid 

 

 
Fig 1. Geometry model of squeeze flow of hybrid nanofluid 
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Table 1 [52] and Table 2 [53] demonstrate the correlations on thermophysical properties and 
values for hybrid nanofluid. 

 
 
Table 1 
Correlations on thermophysical properties of hybrid nanofluid 
Properties Hybrid nanofluid 

Dynamic viscosity (𝜇) 
𝜇ℎ𝑛𝑓

𝜇𝑓
=

1

(1 − 𝜙ℎ𝑛𝑓)
2.5 

Density (𝜌) 𝜌ℎ𝑛𝑓 = (1 − 𝜙ℎ𝑛𝑓)𝜌𝑓 + 𝜙𝐴𝑙2𝑂3
𝜌𝐴𝑙2𝑂3 + 𝜙𝐶𝑢𝜌𝐶𝑢 

Heat capacity (𝜌𝐶𝑝) (𝜌𝐶𝑝)ℎ𝑛𝑓 = (1 − 𝜙ℎ𝑛𝑓)(𝜌𝐶𝑝)𝑓 + 𝜙𝐴𝑙2𝑂3(𝜌𝐶𝑝)𝐴𝑙2𝑂3
+ 𝜙𝐶𝑢(𝜌𝐶𝑝)𝐶𝑢 

Electrical conductivity (𝜎) 
𝜎ℎ𝑛𝑓

𝜎𝑓
=

[
 
 
 (
𝜙𝐴𝑙2𝑂3

𝜎𝐴𝑙2𝑂3 + 𝜙𝐶𝑢𝜎𝐶𝑢
𝜙ℎ𝑛𝑓

) + 2𝜎𝑓 + 2(𝜙𝐴𝑙2𝑂3
𝜎𝐴𝑙2𝑂3 + 𝜙𝐶𝑢𝜎𝐶𝑢) − 2𝜙ℎ𝑛𝑓𝜎𝑓

(
𝜙𝐴𝑙2𝑂3𝜎𝐴𝑙2𝑂3 + 𝜙𝐶𝑢𝜎𝐶𝑢

𝜙ℎ𝑛𝑓
) + 2𝜎𝑓 − (𝜙𝐴𝑙2𝑂3𝜎𝐴𝑙2𝑂3 + 𝜙𝐶𝑢𝜎𝐶𝑢) + 𝜙ℎ𝑛𝑓𝜎𝑓 ]

 
 
 

 

Thermal conductivity (𝑘) 
𝑘ℎ𝑛𝑓

𝑘𝑓
=

[
 
 
 (
𝜙𝐴𝑙2𝑂3

𝑘𝐴𝑙2𝑂3 + 𝜙𝐶𝑢𝑘𝐶𝑢
𝜙ℎ𝑛𝑓

) + 2𝑘𝑓 + 2(𝜙𝐴𝑙2𝑂3
𝑘𝐴𝑙2𝑂3 + 𝜙𝐶𝑢𝑘𝐶𝑢) − 2𝜙ℎ𝑛𝑓𝑘𝑓

(
𝜙𝐴𝑙2𝑂3𝑘𝐴𝑙2𝑂3 + 𝜙𝐶𝑢𝑘𝐶𝑢

𝜙ℎ𝑛𝑓
) + 2𝑘𝑓 − (𝜙𝐴𝑙2𝑂3𝑘𝐴𝑙2𝑂3 + 𝜙𝐶𝑢𝑘𝐶𝑢) + 𝜙ℎ𝑛𝑓𝑘𝑓 ]

 
 
 

 

 
Table 2 
Thermophysical values for the properties of nanoparticles and 
base fluid 
Properties 𝐶𝑢 𝐴𝑙2𝑂3 Sodium alginate (𝐶6𝐻9𝑁𝑎𝑂7) 

𝜌  8933 3970 989 
𝐶𝑝  385 765 4175 
𝜎 5.96 × 107 3.69 × 107 0.07 
𝑘 400 40 0.6367 
𝑃𝑟 − − 6.5 

 
The continuity, momentum, energy and concentration equations of Casson hybrid nanofluid 

based on the fluid flow at boundary region are [54]. 
 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                (1) 

 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
=

𝜇ℎ𝑛𝑓

𝜌ℎ𝑛𝑓
(1 +

1

𝛽
)
𝜕2𝑢

𝜕𝑦2
−

𝜎ℎ𝑛𝑓𝐵(𝑡)
2

𝜌ℎ𝑛𝑓
𝑢 −

𝜇ℎ𝑛𝑓

𝜌ℎ𝑛𝑓
(1 +

1

𝛽
)

𝜑

𝑘1(𝑡)
𝑢        (2) 

 

𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝑘ℎ𝑛𝑓

(𝜌𝐶𝑝)ℎ𝑛𝑓

𝜕2𝑇

𝜕𝑦2
+

𝜇ℎ𝑛𝑓

(𝜌𝐶𝑝)ℎ𝑛𝑓
(1 +

1

𝛽
) [4 (

𝜕𝑢

𝜕𝑥
)
2

+ (
𝜕𝑢

𝜕𝑦
)
2

]         (3) 

+
𝑄(𝑡)

(𝜌𝐶𝑝)ℎ𝑛𝑓
 +

𝐷𝑚𝑘𝑇

𝐶𝑠𝐶𝑝

𝜕2𝐶

𝜕𝑦2
   

 
𝜕𝐶

𝜕𝑡
+ 𝑢

𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷𝑚

𝜕2𝐶

𝜕𝑦2
+

𝐷𝑚𝑘𝑇

𝑇𝑚

𝜕2𝑇

𝜕𝑦2
− 𝑘𝑐(𝑡)𝐶.          (4) 

 
The correlated boundary conditions are [54] 

 

𝑢 = 0 𝑣 = 𝑣𝑤 =
𝜕ℎ(𝑡)

𝜕𝑡
  =  𝑤 𝐶 = 𝐶𝑤  at 𝑦 = ℎ(𝑡)          (5) 
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𝜕𝑢

𝜕𝑦
= 0 𝑣 = 0 

𝜕𝑇

𝜕𝑦
= 0 

𝜕𝐶

𝜕𝑦
= 0  at 𝑦 = 0.           (6) 

 
The discretization of ordinary differential equations (ODEs) from partial differential equations 

(PDEs) are done by applying similarity variables as follows [55] 
 

𝑢 =
𝛼𝑥

2(1−𝛼𝑡)
𝑓′(𝜂)     𝑣 = −

𝛼𝑙

2√(1−𝛼𝑡)
𝑓(𝜂)     𝜂 =

𝑦

𝑙√(1−𝛼𝑡)
      𝜃 =

𝑇

𝑇𝑤
     𝜙 =

𝐶

𝐶𝑤
                   (7) 

 
Substitute the similarity variables Eq. (7) into equations Eq. (2), Eq. (4) and Eq. (9), the non-

dimensional ODE forms are 
 
𝜇ℎ𝑛𝑓

𝜇𝑓

𝜌𝑓

𝜌ℎ𝑛𝑓
(1 +

1

𝛽
)𝑓𝑖𝑣 − 𝑆(𝜂𝑓′′′ + 3𝑓′′ + 𝑓′𝑓′′ − 𝑓𝑓′′′) −

𝜎ℎ𝑛𝑓

𝜎𝑓

𝜌𝑓

𝜌ℎ𝑛𝑓
𝐻𝑎2𝑓′′ 

−
𝜇ℎ𝑛𝑓

𝜇𝑓

𝜌𝑓

𝜌ℎ𝑛𝑓
(1 +

1

𝛽
)

1

𝐷𝑎
𝑓′′ = 0                         (8) 

 

(𝜌𝐶𝑝)𝑓

(𝜌𝐶𝑝)ℎ𝑛𝑓

𝑘ℎ𝑛𝑓

𝑘𝑓

1

𝑃𝑟
𝜃′′ + 𝑆(𝑓𝜃′ − 𝜂𝜃′) +

(𝜌𝐶𝑝)𝑓

(𝜌𝐶𝑝)ℎ𝑛𝑓

𝛾𝜃 

+
𝜇ℎ𝑛𝑓

𝜇𝑓

(𝜌𝐶𝑝)𝑓

(𝜌𝐶𝑝)ℎ𝑛𝑓
𝐸𝑐 [(1 +

1

𝛽
) [(𝑓′′)2 + 4𝛿2(𝑓′)2]] + 𝐷𝑢𝜙′′ = 0         (9) 

 
1

𝑆𝑐
𝜙′′ + 𝑆(𝑓𝜙′ − 𝜂𝜙′) + 𝑆𝑟𝜃′′ − 𝑅𝜙 = 0                      (10) 

 
with the non-dimensional boundary conditions [56] 
 
𝑓(𝜂) = 1 𝑓′(𝜂) = 0 𝜃(𝜂) = 1 𝜙(𝜂) = 1   at  𝜂 = 1.                  (11) 
 
𝑓(𝜂) = 0 𝑓′′(𝜂) = 0 𝜃′(𝜂) = 0 𝜙′(𝜂) = 0 at  𝜂 = 0                   (12) 

 
The physical terms in the dimensionless equations are denoted by [57] 

 

𝑆 =
𝛼𝑙2

2𝜈𝑓
    𝐻𝑎 = 𝑙𝐵0√

𝜎

𝜌𝑓𝜈𝑓
    𝐷𝑎 =

𝑘0
𝜑𝑙2

    𝛿 =
𝑙

 
(1 − 𝛼𝑡)1 2⁄     𝑃𝑟 =

𝜈𝑓

𝛼𝑓
    𝐸𝑐 =
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𝛾 =
𝑄0𝑙

2
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    𝐷𝑢 =
𝐷𝑚𝑘𝑇
𝑐𝑠𝑐𝑝𝜈𝑓

𝐶𝑤
 𝑤

     𝑆𝑟 =
𝐷𝑚𝑘𝑇
 𝑚𝜈𝑓

 𝑤
𝐶𝑤

     𝑆𝑐 =
𝜈𝑓

𝐷𝑚
    𝑅 =

𝑎𝑘2𝑙
2

𝜈𝑓
. 

 
3. Numerical Procedure 

 
The nonlinear ordinary differential Eq. (8) to Eq. (10) with associated boundary conditions Eq. (11) 

and Eq. (12) are solved numerically using implicit finite difference scheme known as Keller-box 
method. This method is an unconditionally stable and succeed in obtaining the accurate results. It is 
also recommended to be used in solving the nonlinear parabolic problems. The four steps involved 
to obtain the numerical results are as follows:  
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i. The ordinary differential equations are reduced to a system of first order equations.  
ii. The first order system is discretized to obtain the equations in the finite difference form 

by using central difference scheme.  
iii. The nonlinear equations are linearized using Newton’s method and then written in matrix-

vector form.  
iv. Finally, the linear system can be solved via block tri-diagonal elimination technique.  

 
4. Results and Discussion 

 
The main objective of study is to examine the behaviour of velocity, temperature, and 

concentration of Casson hybrid nanofluid under the effects of 𝑆, 𝐷𝑎, 𝛽, 𝐻𝑎, 𝜙2, 𝐸𝑐, 𝑆𝑟, 𝐷𝑢,  𝛾 and 
𝑅. The Keller box techniques is implemented to solve the similarity Eq. (8) to Eq. (10) with boundary 
conditions Eq. (11) and Eq. (12). The computation and graphical outputs are conducted using MATLAB 
software. The suitable step size, ∆𝜂 = 0.01 and width of boundary layer, 𝜂∞ = 1 is applied to attain 
the accurate and proper results. The computation in MATLAB is ended once the difference of 
previous and current outputs approaches to 0.00001 [58]. The results obtained using current 
technique is validated by comparing the values of wall shear stress with Naduvinamani and Shankar 
[41] and Jyothi et al., [38] as displayed in Table 3. 
 

Table 3 
Numerical outputs of −𝑓′′(1) for 𝑆 with 𝛽 → ∞, 𝐷𝑎 → ∞, 𝐻𝑎 = 𝐸𝑐 =
𝛿 = 𝑆𝑟 = 𝐷𝑢 = 𝛾 = 𝑅 = 𝜙2 = 0 and  𝑆𝑐 = 𝑃𝑟 =  1 
−𝑓′′(1) 
𝑆 Naduvinamani and Shankar [39] Jyothi et al., [36] Present outputs 

−1.0 2.170090 2.170090 2.170255 
−0.5 2.617403 2.617403 2.617512 
0.01 3.007133 3.007133 3.007208 
0.5 3.336449 3.336449 3.336504 
2.0 4.167389 4.167389 4.167412 

 
The graphical outputs under the effects of 𝑆 𝛽 𝐻𝑎 𝐷𝑎 and 𝜙2 on velocity of fluid are presented 

in Figure 2 to 6. It is noteworthy that squeeze number, 𝑆 indicates the motion of two plates. For 𝑆 >
0, both plates move nearer one another, while the plates moves away when 𝑆 < 0. The fluid velocity 
decelerating nearby lower plates, 𝜂 < 0.45, whereas it accelerating in the area at middle plates, 𝜂 ≥
0.45 for 𝑆 > 0 as displayed in Figure 2. In contrary, the velocity increasing at 𝜂 < 0.45, while it 
declining at 𝜂 ≥ 0.45 when 𝑆 < 0. According to the behaviour of fluid velocity, the fluid flow across 
the medium at the faster rate caused by compressing of both plates. Meanwhile, the velocity 
declining due to high resistance in the broader channel encountered by the flow.  
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Fig. 2. Influences of 𝑆 on 𝑓′(𝜂) 

 
Figure 3 shows the velocity slowing down when 𝜂 ≤ 0.5, and it elevating when 𝜂 > 0.5  for 

increment of 𝛽. The intermolecular forces within nanoparticles strengthen with the presence of 𝛽, 
which resulting the velocity decelerates nearby the lower plate.  
 

 
Fig. 3. Influences of 𝛽 on 𝑓′(𝜂) 

 
Figure 4 depicts the velocity decreases when 𝜂 ≤ 0.5, whereas it raises when 𝜂 > 0.5  with boost 

in 𝐻𝑎. The induction of magnetic field on the lower plate result in the fluid velocity decelerates due 
to resistance on the flow boost with the impact of Lorentz force.  
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Fig. 4. Influences of 𝐻𝑎 on 𝑓′(𝜂) 

 
Figure 5 portrays the velocity rising when 𝜂 ≤ 0.5, while it slowing down at 𝜂 > 0.5 for rises 𝐷𝑎. 

The enhancement of Darcy number enhances the permeability of medium, which lead to increase 
the fluid flow through the medium.  
 

 
Fig. 5. Influences of 𝐷𝑎 on 𝑓′(𝜂) 

 
The velocity enhances when 𝜂 ≤ 0.5 and it dropping when 𝜂 > 0.5 for rising 𝜙2 as shown in 

Figure 6. The velocity reduces in the middle of channel with addition of nanoparticles. It is discovered 
that the fluid cannot flow rapidly due to the stronger collision of fluid particles and nanoparticles.  
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Fig. 6. Influences of 𝜙2 on 𝑓′(𝜂) 

 
Figure 7 to 11 depicts the impacts of 𝐸𝑐 𝛾 𝜙2, 𝑆𝑟 and 𝐷𝑢 on fluid temperature. The temperature 

in Figure 7 increases as 𝐸𝑐 rises. It implies kinetic energy and heat induced by the motion of 
nanoparticles in fluid enhances for elevates 𝐸𝑐.  
 

 
Fig. 7. Influences of 𝐸𝑐 on 𝜃(𝜂) 

 
Figure 8 demonstrates the temperature drops with enhance in heat absorption (𝛾 < 0)  while it 

elevates for rising the heat generation (𝛾 > 0). The transfer of heat energy from fluid to the plates 
increasing, which causing the fluid temperature decreases. Meanwhile, the heat sink raises the 
thermal energy in the fluid and thus, enhancing the temperature of fluid.  
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Fig. 8. Influences of 𝛾 on 𝜃(𝜂) 

 
Figure 9 presents the deceleration of temperature when 𝜙2 elevates because the volume fraction 

of nanoparticles promotes the fluid thermal conductivity. Therefore, the rate of thermal transfer 
from the fluid to surfaces enhances, which result in dropping of fluid temperature.  
 

 
Fig. 9. Influences of 𝜙2 on 𝜃(𝜂) 

 
Figure 10 illustrates the temperature in the flow boosts for increasing 𝑆𝑟. Soret number is inverse 

proportional to the kinematics viscosity. It indicates that the increment of 𝑆𝑟 reduce the viscosity in 
the flow region, which weaken the resistance encountered in the fluid. Hence, it accelerating the 
kinetic energy of nanoparticles and increase the fluid temperature.  
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Fig. 10. Influences of 𝑆𝑟 on 𝜃(𝜂) 

 
Figure 11 discovers the temperature boosts when 𝐷𝑢 rises because the kinematic viscosity in the 

flow drops, which resulting the resistance decrease and kinetic energy of particles elevates in the 
fluid.   

 

 
Fig. 11. Influences of 𝐷𝑢 on 𝜃(𝜂) 

 
The influences of 𝑆𝑟, 𝐷𝑢 𝜙2 and 𝑅 on concentration are shown in Figures 12 to 15. The 

concentration reduces as observed in Figure 12 for increasing 𝑆𝑟. It is noticed that the transfer of 
mass in the fluid to the upper surface rises due to the presence of thermal diffusion or Soret effect.  
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Fig. 12. Influences of 𝑆𝑟 on 𝜙(𝜂) 

 
Figure 13 portrays the concentration declines with elevate in 𝐷𝑢. The generation of energy flux 

caused by concentration differences enhances result from the effect of Dufour parameter. It has 
caused the fluid concentration drops due to the increment of temperature in the flow region.  
 

 
Fig. 13. Influences of 𝐷𝑢 on 𝜙(𝜂) 

 
Figure 14 shows the concentration increasing when 𝜙2 elevates due to the fluid viscosity 

escalates with high volume fraction of nanoparticles. 
Figure 15 displays the decrease in concentration for destructive chemical reaction, 𝑅 > 0, while 

it enhancing for constructive chemical reaction, 𝑅 < 0. The increment of constructive reaction 
promotes the chemical reaction rate, whereas adverse effect is examined in destructive reaction. 
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Fig. 14. Influences of 𝜙2 on 𝜙(𝜂) 

 

 
Fig. 15. Influences of 𝑅 on 𝜙(𝜂) 

 
The effects of 𝐻𝑎 and 𝐷𝑎 on wall shear stress are illustrated in Figure 16. The skin friction 

increasing when 𝐻𝑎 boosts, while it declining as 𝐷𝑎 rises. It is caused by the Lorentz force in flow 
escalates with raise in 𝐻𝑎 and therefore, it enhances the friction force close to the plates.  In contrast, 
the flow moving rapidly close to the plate for increasing the permeability of medium. Hence, the skin 
friction at the boundary area decelerates due to the friction force in the flow decreases. 

Figure 17 illustrates the increment of Nusselt number when 𝐷𝑢 and 𝛾 elevates. The ratio of 
convective and conductive thermal transfer is denoted by Nusselt number. The fluid temperature 
escalates because the generation of heat flux boost with higher 𝐷𝑢 and 𝛾 values. It indicates that the 
thermal convection is greater than conduction, which lead to the convective thermal transfer and 
Nusselt number increases. 
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Fig. 16. Effect of 𝐻𝑎 and 𝐷𝑎 on (𝑅𝑒𝑥)

1 2𝐶𝑓𝑥 

 

 
Fig. 17. Effect of 𝐷𝑢 and 𝛾 on (𝑅𝑒𝑥)

1 2𝑁𝑢𝑥 

 
Figure 18 shows the Sherwood number increases for 𝑅 > 0 and it decreasing for 𝑅 < 0. 

Sherwood number is the ratio of convection and diffusion mass transfer. The constructive reaction 
(𝑅 < 0) promotes the fluid concentration, which result in the diffusive mass transfer increasing. 
Hence, it indicates that the convective mass transfer and Sherwood number drops in the flow. The 
contrary behaviour is noticed on destructive chemical reaction (𝑅 > 0) caused by low fluid 
concentration. Consequently, the Sherwood number increases due to the convective mass transfer 
in fluid more dominant. Furthermore, the Sherwood number elevates with raise in 𝑆𝑟. The reduction 
of fluid concentration in Figure 12 highlights that the diffusive mass transfer drops when 𝑆𝑟 increases. 
Sherwood number is inversely proportional to mass transfer by diffusion. Thus, it concludes that the 
increase in 𝑆𝑟 promotes the convective mass transfer and boosts the Sherwood number in the fluid 
flow. 
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Fig. 18. Effect of 𝑆𝑟 and 𝑅 on (𝑅𝑒𝑥)

1 2𝑆ℎ𝑥. 

 
4. Conclusions 

 
In this study, the impacts of Soret and Dufour on squeezing MHD flow Casson hybrid nanofluid 

through permeable medium with heat sink/source and chemical reaction was analysed. The resulting 
equations are discretized using Keller-box technique by developing the algorithm in MATLAB. The 
present outputs are compared with prior outputs from selected papers and shown in good 
agreement. The physical behaviours and quantities of the flow were affected by different values of 
𝑆, 𝐷𝑎, 𝛽, 𝐻𝑎, 𝜙2, 𝐸𝑐, 𝑆𝑟, 𝐷𝑢,  𝛾 and 𝑅. The main results of Casson hybrid nanofluid according to the 
discussions are concluded as 

i. The acceleration of axial velocity occurs when the surfaces is squeezing (𝑆 > 0) and it 
decelerating when the surfaces is separating (𝑆 < 0) near the upper plate.  

ii. The velocity of fluid decreasing in the middle of channel as 𝛽 and 𝐻𝑎 elevates, and it 
increasing when 𝐷𝑎 and 𝜙2 rises. 

iii. The wall shear stress escalates for rises of 𝐻𝑎, while it reduces for enhancing 𝐷𝑎. 
iv. The heat transfer rate and temperature of fluid boosts as 𝐸𝑐, 𝛾 and 𝐷𝑢 increases, and the 

contrary behaviour is shown for enhancing 𝜙2.  
v. The fluid concentration declines and the mass transfer rate enhances with elevate in 𝑆𝑟. 

vi. The fluid concentration elevates, while the convective mass transfer declining when 𝑅 <
0. The adverse behaviour of fluid is observed for 𝑅 > 0. 

For future works, it is recommended to further this study by investigating the ternary hybrid 
nanofluid in the flow. The importance of ternary nanoparticles is acknowledged as it improves the 
thermal performance of nanofluid at low cost. The implementation of ternary hybrid nanofluid as a 
coolant in thermal based devices is important because it has result in energy saving and emission 
reduction. 
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