
 
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 88, Issue 2 (2021) 93-105 

93 
 

 

Journal of Advanced Research in Fluid Mechanics 

and Thermal Sciences 

 

Journal homepage: 
https://semarakilmu.com.my/journals/index.php/fluid_mechanics_thermal_sciences/index 

ISSN: 2289-7879 

 

Influence of Boundary Roughness on Magnetohydrodynamic Kelvin-
Helmholtz Instability in Couple-stress Fluid 

 

Priya M. Gouder1, Praveen I. Chandaragi2,*, Krishna B. Chavaraddi3, G. B. Marali2 

  
1 Department of Mathematics, KLE’S Dr. M. S. Sheshgiri College of Engineering and Technology, Belagavi-590008, Karnataka, India 
2 Department of Mathematics, KLE Technological University, Hubli-580031, Karnataka, India 
3 Department of Mathematics, S.S. Government First Grade College and P.G. Studies Center, Nargund-582207, Karnataka, India 
  

ARTICLE INFO ABSTRACT 

Article history: 
Received 6 August 2021 
Received in revised form 23 September 2021 
Accepted 25 September 2021 
Available online 29 October 2021 

The Kelvin-Helmholtz instability (KHI) occurs at the interface amongst two fluids, 
which are in relative motion with a common boundary. The growth rate of waves 
occurs whenever the relative velocity is greater as compared with the critical relative 
velocity. In the present paper, the influence of boundary roughness on KHI under the 
impact magnetic field in a couple-stress fluid layer bounded by a rigid surface at the 
lower side and upper side by a fluid saturated porous layer. Using suitable surface 
and boundary conditions, we have derived the dispersion relation and results are 
depicted graphically. As observed in presence of sharp interface, magnetic field 
exhibits stabilizing effect however, destabilizing effect is shown by the buoyancy 
force on KHI. Also, noted that the growth rate of interface reduces, as there is a rise 
in roughness parameter value. 
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1. Introduction 
 

The basic instabilities affecting an interface between two-fluid systems, is KHI. One of the ideal 
situations is where one layer of heavier fluid underlying another of lighter fluid when both are 
flowing horizontally with different velocities in same direction. Helmholtz [1] and Thomson [2] 
developed this theory, which has developed as a standard foundation for fluid mechanics and basic 
theory of instabilities over the composite fluid layers as established in numerous studies. Lamb [3], 
Turner [5], Kundu [8] and Scorer [11] are few books to cite. Comparing to any other type of fluid 
instability, the investigations carried out into this instability is perhaps with far more depth. 

A huge literature is generated, due to the significance of KHI in parallel flows occurring in 
laboratory, astrophysical or geophysical systems that were known many years back. In 
hydrodynamics, the study of KHI has a vast history especially with analysis of basic linear stability 
related to magneto-hydrodynamic (MHD) KHI was considered from earlier [4]. Presently, there is a 
developing literature for nonlinear evolution magentohydrodynamic KHI starting from various 
possible initial configurations, in two dimensions mostly in the earlier evolution stages. It is seen 
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that strong magnetic fields due to their tension stabilize the KHI. Recently, it is emphasized that the 
significant potential for considerable weaker fields to transform the nonlinear unsteadiness i.e., to 
alter the consequent flow. 

Malik and Singh [7] at the interface of two superposed Ferro fluids, which were moving parallel 
to the common interface with uniform speeds under a tangential magnetic field, carried out the 
investigation of nonlinear KH properties of (2+1) dimensional wave propagating packets. Derived 
nonlinear equation manages the growth of the interface amplitude. KHI is very commonly observed 
among environmental fluids, which are simultaneously subjected to the stabilization because of 
density stratification and destabilization due to velocity shear [9]. Under the influence of a 
tangential magnetic field on nonlinear KH instability, El-Dib [10] has analyzed the consequences of a 
time-dependent acceleration. By keeping the main objective as; the evolution of KHI can be 
reduced by using porous layer, a simple theory is established based on Stokes and lubrication 
approximations is applied, which follows Babchin et al., [6] and Rudraiah et al., [12]. Bhatia and 
Sharma [13] examined the permeability effects due to porous medium and surface tension on KHI 
on a two-fluid system which are superposed and viscous under uniform vertical magnetic field. The 
fluid considered in the above studies is Newtonian fluid. 

Electrorheological KHI of a fluid sheet by considering the gravitational steadiness of an 
electrified Maxwellian fluid is deliberated by El-Dib and Matoog [14]. On the interfaces of the fluid 
sheet, surface charges were produced by the field. In this study, the weak significances of 
viscoelastic fluids are considered for mathematical simplification due to the complexity of the 
problem. 

In recent years, significant effort is put to understand the occurrence of couple-stress effects 
with fluid saturated porous media in non-Newtonian fluid flow. This field is of special interest as 
there are many applications in various fields. Such as, to improve oil recovery competency from 
water flooding projects in oil reservoir with displacing non-Newtonian fluids by mobility control. 
Understanding the effect of couple-stress in case of displaced and displacing non-Newtonian fluids 
in an oil displacement mechanism has become essential. The parallel flow moving through porous 
media for the fluids having different viscosity, density and elasticity are involved in most of the 
technological processes. These flows are observed in chemical industry particularly in packed bed 
reactors, petroleum engineering, boiling in porous media etc. The interface may become unstable 
due to a significant rise in the resistance on the flow, resulting into dry out in boiling porous media 
due to flooding in counter current packed chemical reactors. Similar to this, in petroleum 
production these discontinuities yield to emulsion formation. Therefore, in above processes to 
analyze the limiting operation situations we should have the knowledge of onset of instability 
conditions. 

In the two-dimensional system immersed in presence of uniform horizontal magnetic field Khan 
et al., [15] discuss KHI in two superposed highly viscous conducting liquids of uniform densities by 
taking into deliberation of surface tension effects. The porosity, viscosity and surface tension 
effects are found to show stabilizing impact on the evolution of unstable mode, whereas a 
destabilization on the system by streaming velocity is exhibited. 

On the basis of two simple models related to exchange of energy occurring amongst the 
superposed fluids, Joshi et al., [16] investigated the root cause of KHI. In determination of minimal 
relative speed causing the instability is due to surface tension and density of fluids. In case of 
dielectric and ferro-fluids, the volume force employed by magnetic and electric field gradients is 
also discussed. Chandrashekara and Rudraiah [17] concerned with the study of the 
Electrorheological Kelvin-Helmholtz Instability (EKHI) at the interface between a poorly conducting 
couple stress fluid saturated porous layer which is in relative motion with a poorly conducting 
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couple stress fluid in a thin shell in the presence of a transverse electric field and laser radiation. 
Chavaraddi et al., [18] deliberated the impact of boundary roughness on KHI in couple-stress fluid 
layer. Effects due to surface roughness in the existence of magnetic field on KHI are investigated 
[19]. 

Discontinuity of a two fluid system which are immiscible, non-viscous, superposed, counter 
streaming, electrically conducting with lower fluid layer heavier than the upper fluid layer in 
presence of magnetic field is numerically considered by Sharma and Gupta [20]. Using linear theory 
by normal mode analysis, accurate solutions for stress free bounding surfaces related to eigen-
value problem were obtained. On the evolution of the unsteady perturbation of the physical 
system, the significance of velocity and magnetic field of streaming fluids is examined. Magnetic 
field has found to have insignificant stabilizing effect whereas a great extent of stabilization is due 
to velocity of the counter-streaming fluids. The magnetic field effects on KHI in a couple-stress fluid 
layer bounded below by a rigid surface and above by a porous layer is analyzed by Chavaraddi et al., 
[21]. 

The stability of pressure-driven parallel shear flow in a horizontal layer of couple stress fluid 
saturated porous medium is investigated using a classical linear stability theory by Shankar et al., 
[22]. A modified Orr-Sommerfeld equation is derived and solved numerically using the Chebyshev 
collocation method. Shankar et al., [23] have conducted to analyze the influence of a uniform 
horizontal magnetic field on the stability of buoyancy driven parallel shear flow in a differentially 
heated vertical layer of an electrically conducting couple stress fluid; a type of non-Newtonian fluid. 
Within the framework of linear stability theory, the resulting complex generalized eigenvalue 
problem is solved numerically using the Chebyshev collocation method with QZ algorithm. 

KHI of a parallel shear flow system consisting of hyperbolic tangent velocity profile at high 
Reynolds number is simulated Liu et al., [24]. In the study, fluid with low viscosity, which is perfectly 
conducting is considered. There is a variation in strength of applied magnetic field from weak to 
strong. On the shear flow with short wave perturbations, author observed that magnetic field has a 
stabilizing influence, due to two parts: splitting impact arising from transverse magnetic pressure 
and impact due to anti-bonding magnetic tension. Shankar et al., [25] discussed the effect of a 
uniform vertical magnetic field on the stability of pressure-driven flow of an electrically conducting 
non-Newtonian fluid in an isothermal channel is numerically investigated using the Chebyshev 
collocation method. It is found that increasing M has a stabilizing effect on the system while an 
increase in the couple stress parameter shows two-fold deeds. Recently, in the work of Naveen 
Kumar et al., [26], the effect of Coriolis force is explored on convective instability of a doubly 
diffusive incompressible couple stress fluid layer with gravity acting downward. The implication of 
couple stresses on each of the aforementioned anomalies is clearly brought out. Very recently 
Farahani et al., [27] investigated the effect of magnetic field on temperature field and nanofluid 
using finite volume method. Also, the impact of streamwise steps and cavities geometry on 
supersonic turbulent boundary layer is presented by Ch’ng et al., [28]. This study involved a 
parametric numerical study carried out  using computational fluid dynamics(CFD) software package 
ANSYS FLUENT 19.2 for providing a qualitative  insight  into  the  TBL  and  flow  field distortions  
caused by periodic  surface  roughness  elements  in  the  form of  steps  and  cavities  under Mach 
3.0 flow conditions. 

In the present paper, the influence of boundary roughness on KHI in existence of magnetic field 
in couple-stress is studied. This paper is planned as: In Section 2, basic equations along with 
Maxwell’s equations is established. In Section 3, equations are non-dimensionalized by following 
Stokes and lubrication approximations. By applying suitable surface and boundary conditions the 
dispersion relation is obtained in Section 4. In addition, the cut off wave number, maximum wave 
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number as well as corresponding maximum growth rate are found. As observed in graphical 
representations, some important interpretations are discussed in last section.  
 
2. Mathematical Formulation 
 

The physical arrangement of the problem is represented in Figure 1. A thin target shell is 
considered in the form of a thin film with h as unperturbed thickness (Region-1) occupied with an 

incompressible, electrically poorly conducting, viscous, less dense fluid with density f bounded by 

a rigid surface at lower side y=0. An incompressible poorly conducting viscous more dense fluid 

bounded above the light fluid with density p  saturating a dense porous layer with large extent in 

comparison with h the shell thickness. The x- co-ordinate and y - co-ordinate spans respectively the 

vertical and horizontal directions. The interface existing at y=h is symbolized by ),( tx . Obviously, 

when the boundary between the fluids is flat then 0 =  at y=h. The fluid is supposed to be non-

Newtonian, electrically conducting, viscous as well as incompressible with velocity vector, 

1 ( , )q u v= . p  is slip parameter at the interface and ( )f p   represents fluid viscosity (porous 

medium). The stress-gradient is ( )p fg  = − which is associated with acceleration due to gravity. 

The disturbed boundary ),( tx  is in the y-direction. 

 

 
Fig. 1. Physical Configuration 

 
The basic equations associated with clear fluid layer (Region-1) and which are related with 

porous layer (Region-2) given as follows: 
 
Region-1: 
 

1. 0q =               (1) 

 

( )
2 4

1
1 1 1 1 1 0 1 1
. ( )

f f
p

q
q q q q J B

t
    +  
 

+  = − − +  
 

      (2) 

 
Maxwell’s Equations: 
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1 1
1 1 1 1 1,. 0, 0,

DB
E H E H J

t t

 
 =  =  = −  = +

 
      (3) 

 
Auxiliary equations: 
 

1 0 1 1 0 1 1 1 1 1 1 1, , [ ]D E B H J B E q B B  = =  = +            (4) 

 
Region-2: 
 

1
1

f

pk
Q

x


= −


              (5) 

To simplify basic equations Stokes and lubrication assumptions and electro hydrodynamic 
approximations are considered as follows [13]: 
 

(i) For the liquid considered, the electrical conductivity  is insignificantly small, 
 i.e., 1.   

 

(ii) The film thickness h is much lesser in comparison with thickness H of the denser liquid lying 
on the film. 
i.e., .h H  
 

(iii) The surface elevation  is supposed to be small as compared with the film thickness h. 
i.e., .h   
 

(iv) The Strauhal number S in Eq. (2), is insignificantly small. 

i.e., 1
UT

L
S =   

 
The above equations are non-dimensionalized using the following, 
 

1 1
,1 12 2 2

, , , , ,
/ / / /f f f f

p Qu v t x y
u v p Q t x y

h h h h h h h        

      = = = = = = =      (6) 

 
By using the assumptions and approximations as specified above, also by assuming that more 

dense fluid in the porous layer is practically static caused by creeping flow approximation and using 
Eq. (6) in the Eq. (1) and Eq. (2), we get, 
 
Region 1: 
 

0
u v

x y
=
 

+
 

             (7) 

 
2 4

2 4

2 21

0
0

p

x y y

u u
M M u

  
= − +

  
− −           (8) 
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1
0

p

y


= −


              (9) 

 
Region 2: 
 

1
1 2

1

p

p
Q

x


= −


                        (10) 

 
3. Dispersion Relation 
 

Firstly, the velocity distribution is obtained from Eq. (8) to find the dispersion relation, by 
applying the boundary and surface conditions given as follows: 
 

(i) Roughness condition: 

0
u

u at y
y




− = =


                     (11) 

 
(ii) Beaver-Joseph slip condition: 

1
( ) 1

p p B

u
u Q at y

y
= −


− =


 (also 1, By u u= = )                 (12) 

 
(iii) Kinematic condition: 

v
t


=


 at 1y =                       (13) 

 
(iv) Dynamic condition: 

2

21
1

1
p

B x





= − −

  
at 1y = .                    (14) 

 
The solution of Eq. (8) applying the surface and boundary conditions as given above is 
 

1 1 2 1 3 2 4 2 2
( ) ( ) ( ) ( )

P
u C Cosh y C Sinh y C Cosh y C Sinh y

M
   

 
= + + + − 
 

                (15) 

 

where 1 ,
p

P
x


=
  

 

,
2

411
2

0

2

0

2
2

1
M

MM−+
=  ,

2

411
2

0

2

0

2
2

2
M

MM−−
=

 
 

),()( 1111  CoshSinha pp+=  ),()( 1112  SinhCosha pp+=

 ),()( 2223  CoshSinha pp+=  ),()( 2224  SinhCosha pp+=
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),( 1

2

15  Cosha =  ),( 1

2

16  Sinha =  ),( 2

2

27  Cosha = ),( 2

2

28  Sinha =  

 

,
1

21
M

b = ,
1

22

p

p

M
b




−=  

 
2

2 2 8 4 6 2 1 8 2 6

1 3 2 2 3 2 2

1 3 8 4 7 1 2 2 7 3 6 1 2 4 5 1 8 2 1 6 2 5 1 2 4 6 2 8

[ ( ) ( )]1
,

[ ( ) ( ) ( ) ( )] ( )( )

P b a a a a b a a
C

a a a a a a a a a a a a a a a a a a a a

   

        

− − −
=

− + − + − + − + − −  

 

2

2

2 2 2 3 2 2
{ [ ( ) ( )] [ ( ) ( ) ]}7 5 5 51 1 3 8 4 2 1 8 4 2 1 2 2 1 1 8

,
3 2 2 3 2 2

[ ( ) ( ) ( ) ( )] ( )( )7 7 5 51 3 8 4 1 2 2 3 6 1 2 4 1 8 2 1 6 2 1 4 6 2 8

P b a a a a a a a a b a a a
C

a a a a a a a a a a a a a a a a a a a a

       

        

− − − + − − −
=

− + − + − + − + − −  

 

3

2
[ ( ) ( )]1 1 2 8 4 6 2 1 8 2 6

,
3 2 2 3 2 2

[ ( ) ( ) ( ) ( )] ( )( )7 7 5 51 3 8 4 1 2 2 3 6 1 2 4 1 8 2 1 6 2 1 2 4 6 2 8

P b a a a a b a a
C

a a a a a a a a a a a a a a a a a a a a

   
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− − − −
=

− + − + − + − + − −  

 

4

2 2 3 2 2 2
{ [ ( ) ( )] [ ( ) ( ) ]}7 5 7 51 1 2 4 6 2 1 6 2 2 1 1 2 1 1 6

3 2 2 3 2 2
[ ( ) ( ) ( ) ( )] ( )( )7 7 5 51 3 8 4 1 2 2 3 6 1 2 4 1 8 2 1 6 2 1 2 4 6 2 8

.
P b a a a a a a a a b a a a

C

a a a a a a a a a a a a a a a a a a a a

       

        

− + − − − − −
=

− + − + − + − + − −

  

 
By integrating Eq. (7) from y = 0 to y = 1 and using Eq. (15), we obtain 
 

2 4

12 4

1

1
(1)v

x B x

   
= +  

  
                      (16) 

 

where 31 2 4
1 1 1 2 2 2

1 1 2 2

1
( ) [ ( ) 1] ( ) [ ( ) 1]

CC C C
Sinh Cosh Sinh Cosh

M
   

   
 = + − + + − − . 

 
Using Eq. (16) and Eq. (14), then Eq. (13), reduces to 
 

2 4

12 4

1

1

t x B x

     
= +  

   
 .                      (17) 

 
Let us consider the solution of Eq. (17) given by Eq. (18) in the subsequent form to examine n 

i.e., growth rate of the interface with periodic perturbation. 
 

{ }( ) i x nty e  +=                        (18) 

 
here ( )y  is perturbation amplitude of the interface and  is the wave number. 

 
Let us substitute Eq. (18) in Eq. (17), the dispersion relation is obtained in the form 
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2
2

1

1n
B

 
= −  

 
.                       (19) 

 

where 
1

 = −
 

 
Also, Eq. (19) is represented as 
 

b an n v= −                         (20) 

 

where 
2 2

1

1
3

bn
B

 
= − 

 
, 

2

1

1
B


 

=  − 
 

, 

2

1

1 3
1

3
av

B

 −  
= −  

  
. 

 
By setting n = 0 in Eq. (19), ct  the cut-off wavenumber is obtained as 

 

1ct
B=                         (21) 

 
since and are different from zero. 

 

From Eq. (19), by setting 0=






n
 the value of m i.e., maximum wavenumber is established as 

 

1

22

ct

m

B
= =                        (22) 

 
The value of nm i.e., corresponding maximum growth rate is expressed as 
 

1

4m
n

B
=                          (23) 

 

In similar way by using 1

2m

B
= , we get 

 

1

12

B
nbm =                         (24) 

 
Therefore, maximum growth rate is given by 
 

3
m

m
bm

G
n

n
= =  .                       (25) 
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The evolution rate represented by Eq. (19) is calculated by taking different values of the 
parameter. The results are depicted through graphs in Figure 2 to Figure 6. 
 
4. Results and Discussion 
 

In this present work, the influence of boundary roughness on KHI in presence of magnetic field, 
which is occurring in couple-stress fluid layers bounded below by a rigid boundary and above by a 
porous layer is analyzed. Computations to investigate growth rate at the interface were executed 
for various fluid properties corresponding to Hartmann number M, roughness 

parameter , couple-stress parameter M0, porous parameter, p  and Bond number, 
1B at 

different wavenumbers. Graphs were plotted for non-dimensionalized evolution rate n of the 
perturbation corresponding to the values of  the non-dimensionalized wavenumber, only for 
certain cases. In agreement with the dispersion relation, all perturbed values raise exponentially in 
case of linear stage given by Eq. (19). The boundary between the layers at this stage attains a 
sinusoidal shape with small amplitude. 

Based on the problem related to two-layer channel flow, the role of magnetic field is studied 
and it is demonstrated that either stabilization or destabilization can be obtained. For a rise in the 
values of Hartmann number M it represents growth rates in conditions for which magnetic field 
sows’ stabilization effect corresponding to a wide range of wavenumbers as depicted in Figure 2, 

where 
3

1 00.1, 4, 0.02 , 3.3 10 , 0.3p p B M   −= = = =  = . Notice that as the values of M are 

increased from 5 to 50 there is a decrease in maximum growth rate. 
 

 
Fig. 2. Variations of Hartman Number 

 
Growth rate versus the wavenumber is depicted in Figure 3 with fixed the value 

3

10.1, 5, 4, 0.02, 3.3 10p pM B   −= = = = =   for different values of M0. As there is a rise in 

couple-stress parameter value results into decrease in maximum growth rate this is due to the 
action of the body couples related to the system. 
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Fig. 3. Variations of Couple-Stress parameter 

 

We have considered 
3

00.1, 0.3, 4, 3.3 10 , 5p pM M   −= = = =  =
 
in our sample calculations, 

and variations in Bond number
1B . It is observed from Figure 4 that as Bond number, 

1B  is 

decreased from 0.04 to 0.01, there is a decrease in critical wavenumber and maximum growth rate. 
As Bond number and surface tension are inversely related so, an increase in surface tension results 
into decrease in the growth rate and therefore interface tends to attain stability. 
 

 
Fig. 4. Variations of Bond number 

 
The effects of porous properties on the instability are investigated by using following input 

values. The values of the parameters 
3

0 10.3, 0.1, 0.02, 3.3 10 , 5pM B M  −= = = =  =  are fixed 

and vary the value of p. Figure 5 depicts consequences of the calculations, shows that as value of 

porous parameter p is increased from 20 to 100, corresponds to an increase in critical wavelength 
and decrease in the maximum growth rate, hence exhibits stabilization. This occurs due the 
resistance offered to the fluid by the solid particles corresponding to the porous layer. 
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Fig. 5. Variations of Porous Parameter 

 

 
Fig. 6. Variations of Roughness Parameter 

 
In order to analyze boundary roughness effects, other parameter values are fixed as 

1 00.1, 4, 0.02, 0.3, 5p p B M M = = = = =  and roughness parameter ratio  is varied. It is noted 

that as the value of  increases, correspondingly evolution of the interface reduces. This occurs as 
to overcome the resistance offered by the boundary roughness a part of kinetic energy is 
transformed into potential energy.  
 
5. Conclusions 
 

Linear stability analysis of a two-fluid flow system in a channel is carried out for the fluids which 
are non-Newtonian possessing various fluid properties. The system under consideration is applied 
to magnetic field normal to their interface. The equations of motion were derived and then 
linearized as there occurs an interaction between the couple-stress and hydrodynamic problems at 
the fluid interface through the stress balance. By the normal mode technique, we calculated the 
growth rate of the perturbation and analyzed changes in growth rate as a function of non-

dimensionalized parameters 0 1, , , , .pM M B   From this study, we conclude that an increase in the 

values of 0, , ,pM M   , the evolution of the interface reduces and the perturbed system tends to 

attain stability. However, by decreasing the value of the Bond number, 
1B  the growth rate 

decreases and system becomes more stable. 
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