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An analysis is discussed of the heat and mass transfer for micropolar nanofluid in 
presence of natural convection from a spherical body with magneto-hydrodynamic 
(MHD) effects. The constant wall temperature boundary condition is also studied. By 
employing proper similarity transformations, the governing equations are converted 
into a set of partial differential equations (PDEs) with the used boundary conditions, 
which can then be solved numerically via the efficient Keller-box implicit numerical 
finite difference method. The numerical results of impacts of the controlling 
parameters on heat transfer physical quantities have been presented, tabular and 
graphically, by MATLAB symbolic software. Comparisons of the current study results to 
previously published results show good agreement, indicating that our numerical 
computations are legitimate and accurate. Increasing nanoparticle volume fraction is 
observed to depress local skin friction, Nusselt number, and angular velocity while the 
reverse effects are observed for velocity and temperature. 
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1. Introduction 
 

The analysis of steady laminar boundary-layer flow over a solid sphere surface that is subjected 
to various boundary conditions in quiescent/moving fluid continues to invigorate the interest of 
researchers due to applications in industrial and manufacturing environments. Some of these 
industrial applications of boundary layer flow on a solid sphere include the turbocharged ball 
bearing in automotive, the spherical storage tanks, and packed beds in a chemical reactor. Abbas et 
al., [1] discussed the boundary layer flow over a solid sphere considering the impacts of thermal 
radiation Prandtl number and mixed convection. The mechanism of boundary layer flow with a 
semipermeable sphere to describe the Happel and Kuwabara cell models through an 
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incompressible fluid has been investigated by Madasu [2]. Mohamed et al., [3] presented a dust 
nanoparticles model around an isothermal sphere to calculate the heat flux of nanofluids by natural 
convection through the bvp4c numerical technique. They found an excellent correlation between 
the model predictions and experimental data. A numerical model, water-based spherical shape 
nanoparticle with magnetohydrodynamic (MHD), for effective thermal conductivity of nanofluids 
was developed by Jenifer et al., [4]. They have shown that the vanishing skin friction is delayed by 
enhancing the mixed convection in both steady and unsteady fluid flow cases. Rodriguez et al., [5] 
investigated free-stream turbulence natural convective heat transfer flow from the sphere. It was 
found that the drag coefficient and the Nusselt number are increased with turbulence interruption 
and momentum transfer is also increased from the surrounding fluid and energizes the separated 
shear layer. As a result, the recirculation zone shrinks, increasing the heat transfer from the sphere 
and therefore increasing the Nusselt number in the rear zone of the sphere. As turbulence intensity 
rises, a greater amount of cooler fluid is entrained from the surrounding environment, which 
results in a quicker rate of temperature depreciation at higher levels. 

Nanofluids are fluids containing nanoparticles, objects with a size of around 100 nanometers. A 
base fluid contains colloidal suspensions of nanoparticles engineered into these fluids. Metal or 
metal oxide nanoparticles are typically used in nanofluids. Metal oxides (CuO, TiO2, Al2O, SiO2), 
nitrides (SiN, AIN), carbides (SiC), or nonmetals (carbon nanotubes, graphite) are also commonly 
used. There are also lubricants, bio-fluids and polymer solutions that serve as base fluids. In 
general, nanofluids contain 5% or more nanoparticles to gain an advantage over their base fluid 
properties. Nanofluids have unique features that could make them useful in several heat transfer 
applications, such as hybrid engines, fuel cells, pharmaceuticals, and microelectronics. As compared 
to the base fluid, they are more thermally conductive and have a higher convective heat transfer 
coefficient. Researchers have shown that average thermal conductivity boosts vary from 15% to 
40% above the basic fluid. Other mechanisms include particle agglomeration, nanoparticle size, 
volume fraction, particle shape/surface area, temperature and liquid layering on the nanoparticle-
liquid interface, which attributed to the increase in performance. The development of energy-
efficient heat transfer fluids is hindered by a lack of thermal conductivity. The poor heat transfer 
qualities of common heat transfer fluids including water, ethylene glycol, and motor oil severely 
limit the heat transfer capabilities of these materials. The thermal conductivities of metals, in 
contrast to these fluids, can be up to three times higher than those of these fluids. As a result, it is 
naturally desirable to combine the two substances to produce a heat transfer medium that has the 
behavior and thermal properties of fluid but the thermal properties of a metal. Choi and Eastman 
[6] was the pioneer one to use the term nanofluid to describe manufactured colloids made of 
nanoparticles scattered in a base fluid. In recent years, the improvement of the nanofluid system in 
the transmission of heat has piqued the interest of researchers and industry representatives from a 
wide range of disciplines including manufacturing, automotive, and electronics [7-18]. The thermal 
conductivity behavior of colloidal suspension has been studied by a large number of researchers, 
and the results have been published several times [19,20]. Zhang et al., [21] evaluated the influence 
of a three-stage time-varying process on the water-based SiO2 nanofluid across the boundary layer. 
The heat and mass transfer investigation under the impact of micropolar nanofluid flow in two 
parallel plates rotating system by using Adams and explicit Runge–Kutta scheme was considered by 
Awan et al., [22], and produced the numerical solution of the modelled problem. Recently, Habib et 
al., [23] worked on the impacts of motile microorganisms and non-linear geometry through thermal 
radiation micropolar based nanofluids. 

The existence of ions and the presence of iron in many physiological fluids cause them to 
conduct electricity (e.g. hemoglobin in red blood cells). Electrical and magnetic fields have an effect 
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on such fluids. MHD natural convection in the presence of an external magnetic field with water-
based nanofluid was studied by Ali et al., [24]. Here, the author develops the governing partial 
differential equations with a two-component non-homogeneous model and applied Galerkin finite 
element method to obtain the solution of the models. The simulation outcome shows that the heat 
transfer rate can be maximized with a suitable combination of governing parameters and minimize 
the entropy generation as well which are in rational agreement with those of previous literature. 
Alwawi et al., [25] investigated the free convection flow of Sodium Alginate nanofluid about a solid 
sphere. The experiment outcome was compared to the other nanoparticles of Sodium Alginate 
based Casson nanofluid and the result show that the (GO)- Sodium Alginate based Casson nanofluid 
has the highest velocity profiles, local Nusselt number and local skin friction. Anwar et al., [26] 
examined the unsteady Casson nanofluid on an infinite vertical plate with ramped wall conditions 
and MHD flow which incorporates the heat injection/suction and thermal radiation flux. The result 
shows that the radiative flux leads to an upsurge in the flow while the magnetic field decelerates 
the flow compared to other existing methods. Under the effect of inclined uniform magnetic field, 
Sheremet et al., [27] analyze the result of MHD natural convection in a square porous cavity. The 
study deduced that viscosity parameters increase will likely leads to the convective flow 
intensification and heat transfer enhancement in addition to intensifying other essential of Rayleigh 
number with high values. Armaghani et al., [28] studied the entropy generation of Al2O3 water 
alumina nanofluid around of T- shaped baffled cavity and Miroshnichenko et al., [29] investigated 
the MHD natural convection under the effect of uniform magnetic field of various orientations in a 
partially open trapezoidal cavity filled with a CuO nanofluid. More so, the heat transfer and MHD 
natural convection flow was considered in a laterally heated enclosure with an off-centred partition 
by Kahveci and Öztuna [30]. Later on, Son and Park [31] investigated the two-dimensional laminar 
natural convection in a uniform magnetic field applied in the horizontal direction in an inversely 
heated rectangular enclosure with an insulated square block. In the presence of a chemical 
reaction, Motsa and Shateyi [32] investigated the Soret and Dufour effects on steady MHD natural 
convection flow over a semi-infinite moving vertical plate. For more details see references [33-43]. 

In the current work a mathematical model is developed for natural convection around a solid 
sphere which would predict the behavior of a micropolar nanofluid flow of magnetic field is 
imposed through a two-dimensional heat and mass transfer channel under prescribed wall 
temperature. The spherical rheological model is employed to investigate the micropolar nanofluid. 
It would be interesting to note that the study explored the action of magnetic parameter; 
microrotation, and nanoparticle volume fraction parameters on heat transmission-related physical 
quantities through examining the natural convection flow of a micropolar nanofluid as a host for 

Aluminum Al  and Iron oxide Fe3O4 nanoparticles are shown graphically and discussed. This was 
considered in two different types of base liquids specifically, Sodium Alginate, and kerosene oil on a 
sphere. This was considered in two different types of base liquids specifically, Sodium Alginate, and 
kerosene oil on a solid sphere. The Keller box method was employed for the numerical 
approximation of the governing model through MATLAB symbolic software for local skin friction, 
Nusselt number, linear velocity, angular velocity and temperature on the boundary layer surface of 
the solid sphere. The numerical results are investigated and compared with previous published data 
[36,37]. To understand how MHD biomimetic blood pumps work and how nano-scale robots move 
water in biomedical devices, the study by Swalmeh et al., [44] could be useful. 
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2. Problem Description 
 

Suppose we have a steady state laminar 2D incompressible free convection flow of  Sodium 
Alginate and kerosene oil around a sphere of radius a, in the presence of aluminum Al and Iron 
oxide Fe3O4 nanoparticles immersed inside them, and considering the constant surface 
temperature 𝑇𝑤 , in addition to imposing a magnetic force with strength 𝐵0

2 as indicated in Figure 1. 
refers to the gravity vector, and (𝑥̅, 𝑦̅) coordinates measured along the circumference of the solid 
sphere starting from 𝑥̅ ≈ 0 and measured normal to the surface of the sphere, respectively. At the 
start, the temperature of both micropolar nanofluid and spheres are equal. Instantaneously, they 
are growing to a temperature𝑇𝑤 > 𝑇∞, the surrounding temperature of the liquids which keeps 
fixed. 
 

 
Fig. 1. Configuration model and coordinate system 

 
Depending on the above assumptions, Tiwari and Das [45] model, magnetic effects, and the 

micropolar equations, we can construct the following dimensional governing equations [45-50] 
 
𝜕(𝑟̅𝑢)

𝜕𝑥̅
+

𝜕(𝑟̅𝑣̅)

𝜕𝑦̅
= 0,             (1) 

 

𝜌𝑛𝑓 (𝑢̅  
𝜕𝑢

𝜕𝑥̅
+ 𝑣̅

𝜕𝑢

𝜕𝑦̅
) = (𝜇𝑛𝑓 + 𝜅) ( 

𝜕2𝑢

𝜕𝑥̅2
) + (𝛽)𝑛𝑓 g (𝑇 − 𝑇∞) sin

𝑥̅

𝑎
+ 𝜅𝑣̅

𝜕𝐻̅

𝜕𝑦̅
− 𝜎𝑛𝑓𝐵0

2𝑢̅    (2) 

 

𝑢̅  
𝜕𝑇

𝜕𝑥̅
+ 𝑣̅  

𝜕𝑇

𝜕𝑦̅
 = 𝛼𝑛𝑓 ( 

𝜕2𝑇̅

𝜕𝑦̅2 )            (3) 

 

𝜌𝑛𝑓𝑗 (𝑢̅  
𝜕𝐻̅

𝜕𝑥̅
+ 𝑣̅

𝜕𝐻̅

𝜕𝑦̅
) =  −𝜅 (2𝐻̅ +  

𝜕𝑢

𝜕𝑦̅
) + ∅𝑛𝑓

𝜕2𝐻̅

𝜕𝑦̅2         (4) 

 
subject to [40] 
 
𝑢̅ = 0, 𝑣̅ = 0, 𝑇 =  𝑇𝑤, as 𝑦̅ = 0,
𝑢̅ → 0, 𝑇 → 𝑇∞, , as 𝑦̅  →  ∞,

           (5) 

 

where (𝑢̅, 𝑣̅) indicate the velocity components along in 𝑥̅, and 𝑥̅, 𝑦̅ directions, 𝑗 = 𝑎2𝐺𝑟−1/2, 𝑦̅ is 

micro-inertia density, ∅𝑛𝑓 = (𝜇𝑛𝑓 +
𝜅

2
) 𝑗 is the spin gradient viscosity. 𝐻̅ indicates the angular 

velocity, T symbolizes the temperature, and 𝜅 refers to vortex viscosity.ρ, μ, α, σ, and β, indicate 
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density, viscosity, thermal diffusivity, electrical conductivity, and thermal expansion coefficient. The 
subscripts s, f, nf symbolize the nanoparticles, base fluid and nanofluid. The properties of nanofluid 
are (see Alkasasbeh et al., [50]) 
 

(𝛽)𝑛𝑓 = (𝜒 (𝛽)𝑠 + (1 − 𝜒)(𝛽)𝑓 ), (𝜇)𝑛𝑓 =  𝜇𝑓 ( 1 −  𝜒)2.5⁄ ,

(𝜌𝑐𝑝)𝑛𝑓 = (𝜒 (𝜌𝑐𝑝)𝑠 + (1 − 𝜒)(𝜌𝑐𝑝)𝑓 ), (𝛼)𝑛𝑓 = 𝑘𝑛𝑓 ( 𝜌𝑐𝑝 )𝑛𝑓⁄ ,

(𝜌)𝑛𝑓 = (𝜒( 𝜌)𝑠 + (1 − 𝜒)(𝜌)𝑓 ),
 𝑘𝑛𝑓

𝑘𝑓
=

( 𝑘𝑠+2 𝑘𝑓 )−2 𝜒 (  𝑘𝑓−  𝑘𝑠 )

( 𝑘𝑠+2 𝑘𝑓 ) + 𝜒(  𝑘𝑓−  𝑘𝑠 )
, 𝜎𝑛𝑓 = 1 +

3(
 𝜎𝑠
 𝜎𝑓

−1)𝜒

(
 𝜎𝑠
 𝜎𝑓

+2 )−𝜒( 
 𝜎𝑠
 𝜎𝑓

−1 )

   (6) 

 
where 𝜒, 𝑘, and ( 𝜌𝑐𝑝 ) refer to the nanoparticle volume fraction, thermal conductivity, and heat 

capacity. In order to non-dimensionlization process, introducing the following dimensionless 
variables (see Alwawi et al., [48]) 
 

𝑟 = ( 
𝑟̅

𝑎
 ) , 𝑥 = ( 

𝑥̅

𝑎
 ) , 𝑦 = (𝐺𝑟)(1 4⁄ ) ( 

𝑦̅

𝑎
 ), 𝜃 =

𝑇 – 𝑇∞

𝑇𝑤−  𝑇∞
, 𝑢 = (𝐺𝑟)(−1 2⁄ ) ( 

𝑎𝑢

𝑣𝑓
 ),

 𝑣 = (𝐺𝑟)(−1 4⁄ )  ( 
𝑎𝑣̅

𝑣𝑓
 ) , 𝐻 = (𝐺𝑟)(−3/4) ( 

𝑎2

𝑣𝑓
 )𝐻̅

     (7) 

 

Here, the Grashof number is represented by Gr =g (𝛽)𝑓(𝑇𝑤 − 𝑇∞) 𝑎3/𝑣𝑓
2, 𝑟̅(𝑥̅) 𝑎sin (𝑥̅/𝑎) 

indicates the radial distance from the symmetrical axis to the surface of the sphere. After 
substituting nanofluid properties (6) and dimensionless variables (7) in Eq. (1) to Eq. (5), and then 
utilizing the boundary approximations, which are Grashof number Gr → ∞, which can be 
characterized as the alternative expressions: (1/Gr) →0, we neglected the terms that contain (1/Gr), 
which goes to 0. We get the following dimensionless model [51] 
 

𝑢 
𝜕𝑟𝑢

𝜕𝑥
+ 𝑣 

𝜕𝑟𝑢

𝜕𝑦
= 0             (8) 

 

𝑢 
𝜕𝑢

𝜕𝑥
+ 𝑣 

𝜕𝑢

𝜕𝑦
=  

𝜌𝑓

𝜌𝑛𝑓
(𝐷(𝜒) + K) ( 

𝜕2𝑢

𝜕𝑦2
 ) +  

1

𝜌𝑛𝑓
((1 − 𝜒) 𝜌𝑓 + 𝜒

𝜌𝑠𝛽𝑠

𝛽𝑓
) 𝜃 sin 𝑥 +

𝜌𝑓

𝜌𝑛𝑓
𝐾

𝜕𝐻

𝜕𝑦
−

𝜌𝑓

𝜌𝑛𝑓
M𝑢   (9) 

 

𝑢 
𝜕𝜃

𝜕𝑥
+ 𝑣 

𝜕𝜃

𝜕𝑦
 =

1

Pr
 (

𝑘𝑛𝑓/𝑘𝑓

(1−𝜒) +𝜒
(𝜌𝑐𝑝)𝑠

(𝜌𝑐𝑝)𝑓

) ( 
𝜕2𝜃

𝜕𝑦̅2
 ),                    (10) 

 

𝑢 
𝜕𝐻

𝜕𝑥
+ 𝑣

𝜕𝐻

𝜕𝑦
 =  −

𝜌𝑓

𝜌𝑛𝑓 
 K ( 2𝐻 +

𝜕𝑢

𝜕𝑦
 ) +  

𝜌𝑓

𝜌𝑛𝑓 
 (𝐷(𝜒) +

K 

2
) ( 

𝜕2𝐻

𝜕𝑦2 ).                 (11) 

 

where 𝐷(𝜒) = (1 − 𝜒)−2.5, Pr =  
𝑣𝑓

𝛼𝑓
 is the Prandtl number, K =  

𝜅

𝜇𝑓
 is micro-rotation parameter 

M =  
𝜎𝑓𝐵0

2𝑎2

𝜌𝑓𝑣𝑓𝐺𝑟1/2 is magnetic parameter.  

 
The conditions (5) convert to 
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𝑢 = 0, 𝑣 = 0, 𝜃 = 1, 𝐻 =
1

2

𝜕𝑢

𝜕𝑦
 as 𝑦 = 0,

𝑢 → 0, 𝜃 → 0, 𝐻 → 0 as 𝑦 →  ∞.
                    (12) 

In order to transform the above system (8) to (12) to PDEs, introduced the following 
transformation [52-54] 
 
𝜓 = 𝑥𝑟(𝑥) 𝑓( 𝑥, 𝑦 ), 𝜃 = 𝜃( 𝑥, 𝑦 ), 𝐻 = 𝑥 ℎ( 𝑥, 𝑦 ),                   (13) 
 
where 𝜓 is the stream function which given by the following relation 
 

𝑢 =
1

𝑟

𝜕𝜓

𝜕𝑦
, and 𝑣 =

1

𝑟

𝜕𝜓

𝜕𝑥
,                      (14) 

 
Consequently, Eq. (8) to Eq. (11) turn into 
 
𝜌𝑓

𝜌𝑛𝑓
(𝐷(𝜒) + 𝐾 )

𝜕3𝑓

𝜕𝑥3
+ (1 + 𝑥𝑐𝑜𝑡𝑥) 𝑓

𝜕2𝑓

𝜕𝑥2
− (

𝜕𝑓

𝜕𝑦
)

2

+ 
1

𝜌𝑛𝑓
( 𝜒 𝜌𝑠(𝛽𝑠/𝛽𝑓) + ( 1 − 𝜒) 𝜌𝑓)𝜃

sin 𝑥

𝑥
+

𝜌𝑓

𝜌𝑛𝑓
K ( 

𝜕ℎ

𝜕𝑦
 ) −

𝜌𝑓

𝜌𝑛𝑓

𝜎𝑓

𝜎𝑛𝑓
M𝑓′ = 𝑥 ( 

𝜕𝑓

𝜕𝑦
 

𝜕2𝑓

𝜕𝑥𝜕𝑦
−  

𝜕𝑓

𝜕𝑥

𝜕2𝑓

𝜕𝑦2)                   (15) 

 
1

Pr
 (

𝑘𝑛𝑓/𝑘𝑓

( 1− 𝜒)+𝜒 (𝜌𝑐𝑝)𝑠 / (𝜌𝑐𝑝)𝑓
) ( 

𝜕2𝜃

𝜕𝑦2 ) + (1 + 𝑥𝑐𝑜𝑡𝑥)𝑓
𝜕𝜃

𝜕𝑦
= 𝑥 ( 

𝜕𝑓

𝜕𝑦
 
𝜕𝜃

𝜕𝑥
−  

𝜕𝑓

𝜕𝑥

𝜕𝜃

𝜕𝑦
),               (16) 

 
𝜌𝑓

𝜌𝑛𝑓 
 (𝐷(𝜒) +

K 

2
) ( 

𝜕2ℎ

𝜕𝑦2 ) + (1 + 𝑥𝑐𝑜𝑡𝑥)𝑓 
𝜕ℎ

𝜕𝑦
− 

𝜕𝑓

𝜕𝑦
ℎ −

𝜌𝑓

𝜌𝑛𝑓 
 K (2ℎ +

𝜕2𝑓

𝜕𝑦2) = 𝑥 ( 
𝜕𝑓

𝜕𝑦
 
𝜕ℎ

𝜕𝑥
−  

𝜕𝑓

𝜕𝑥

𝜕ℎ

𝜕𝑦
), (17) 

 
subject to 
 

𝑓 =  
𝜕𝑓

𝜕𝑦
= 0, 𝜃 = 1, ℎ = −(1 2⁄ )

𝜕2𝑓

𝜕𝑦2  as 𝑦 = 0,

𝜕𝑓

𝜕𝑦
→ 0, 𝜃 → 0, ℎ → 0 as 𝑦 →  ∞.

                   (18) 

 
In this paper, our focus on two physical quantities specifically, the local skin friction coefficien Cf 

and Nusselt number Nu which can be expressed as 
 

𝐶𝑓 = 𝐺𝑟−1/4  (𝐷(𝜒) +  
𝐾

2
 ) 𝑥

 𝜕2𝑓

𝜕𝑦2
 (𝑥, 0), 𝑁𝑢 = −𝐺𝑟1/4  

𝑘𝑓

𝑘𝑛𝑓
 (

𝜕𝜃

𝜕𝑦
) (𝑥, 0)                (19) 

 
3. Results and Discussion 
 

The Discussion section that should describe the relationships and generalizations shown by the 
results and discuss the significance of the results, making comparisons with previously published 
work. It may be appropriate to combine the Results and Discussion sections into a single section to 
improve clarity. 

In this work, a used method to approximate the analytical solution to our problem is called the 
Keller box method. This method has proven its ability and effectiveness for more than three 
decades in dealing with issues related to boundary layers. Firstly, the implicit finite difference 
method is used to reduce these equations to the first order; the central differences method is 
employed to attain the differences equations. Next, the differences equations are linearized by 
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Newton’s method and presented in a matrix-vector form. The resulting linear system is solved by 
applying the block tri-diagonal elimination technique. Finally, this technique is programmed via 
MATLAB program codes to get the new numerical results as tables and figures. For more details on 
this method, see the references [44,55-57]. 

Graphic outcomes were analyzed and discussed for the effects of magnetic parameter (M > 0) 
micro rotation parameter (K= 0.1, 0.2, 0.3) and volume fraction (χ = 0.1, 0.15, 0.2) on Nusselt 
number, local skin friction, temperature, velocity and angular velocity. Table 1 illustrates Thermo-
physical properties of employed nanoparticles with based fluid. 
 

Table 1 
Thermo-physical properties of used nanoparticles with based fluid [44] 

 Based fluids Nanoparticles 
Physical 
properties 

Kerosene Oil  Sodium 
Alginate 

Al Fe3O4 

k (W/mK) 0.145 0.6376 237 80.4 
ρ(kg/m3) 783 989 2701 5180 
Cp (J/kgK) 2090 4175 902 670 
β × 10−5/K 99 99 2.31 20.6 
σs(Sm-1) 5×10−11 2.6 × 10−4 3.5x107 1.12 x105 

 
In order to verify and confirm the validity of the results, they were compared with the results 

published in the previous literature, where they achieved an excellent match, see Table 2 and Table 
3. 
 

Table 2 
Comparison of the outcomes for Nu at Pr = 7, χ = 0, M = 0, and K = 0 

x Huang and Chen [36] Nazar and Amin [37] Swalmeh et al., [47] Present  

0 0.9581 0.9595 0.9582 0.9590 
(1/18)𝜋 0.9559 0.9572 0.9561 0.9566 
(1/9)𝜋 0.9496 0.9506 0.9497 0.9498 
(1/6)𝜋 0.9389 0.9397 0.9391 0.9395 
(2/9)𝜋 0.9239 0.9243 0.9241 0.9240 
(5/18)𝜋 0.9045 0.9045 0.9046 0.9044 
(1/3)𝜋 0.8858 0.8801 0.8806 0.8826 
(7/18)𝜋 0.8518 0.8510 0.8519 0.8537 
(4/9)𝜋 0.8182 0.8168 0.8188 0.8173 
(1/2)𝜋 0.7792 0.7792 0.7798 0.7790 

 
Table 3 
Comparison of the outcomes for Cf at Pr = 7, χ = 0, M = 0, and K = 0 

x Huang and Chen [36] Nazar and Amin [37] Swalmeh et al., [47] Present  

0  0.0000 0.0000 0.0000 0.0000 
(1/18)𝜋 0.0876 0.0875 0.0877 0.0877 
(1/9)𝜋 0.1737 0.1735 0.1739 0.1739 
(1/6)𝜋 0.2566 0.2563 0.2569 0.2567 
(2/9)𝜋 0.3350 0.3345 0.3354 0.3353 
(5/18)𝜋 0.4075 0.4068 0.4079 0.4076 
(1/3)𝜋 0.4727 0.4715 0.4729 0.4731 
(7/18)𝜋 0.5293 0.5380 0.5294 0.5396 
(4/9)𝜋 0.5762 0.5745 0.5773 0.5768 
(1/2)𝜋 0.6123 0.6103 0.6129 0.6131 
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We start by studying the effect of changing main parameters: magnetic parameter M, micro 

rotation parameter K, and volume fraction χ on Nusselt number Nu and local skin friction Cf, in 
Figure 2 to Figure 7. Firstly, the increasing the magnetic parameter leads to decreasing both the 
Nusselt number Nu as seen in Figure 2 and the local skin friction Cf as seen in Figure 3. The 
investigated inverse relation between the magnetic parameter M and Nusselt number may refer to 
Grashof number Gr, the common factor between them. Gr has a direct relation with Nusselt 
number Nu and reverse relation with M (see Eq. (23)). 

Second, the increment of the micro rotation parameter causes a decrement in the Nusselt 
number values of the micropolar nanofluid as illustrated in Figure 4. In Figure 5 the opposite has 
happened with local skin friction and micro rotation parameter K, As the values of K increase the 
skin friction curves are getting raised up to higher values. 

Third, growing the volume fraction χ influence is reducing the curves of Nusselt number Nu 
(Figure 6) and local skin friction Cf (Figure 7). It is notice in previous figures that the micropolar fluid 
suspended by Al nanoparticles always has the higher values of Nusselt number and local skin 
friction as compared with the same micropolar fluid suspended by Fe3O4 nanoparticle. 

The last thing that could be observed in this category of figures (Figure 2 to Figure 7) that if we 
use a Kerosene oil as a base fluid in the mixture of micropolar nanofluids its Nusselt number 
quantity results keep superior through all the conditions of changing the parameters M, K, and χ  
over the results of the micropolar mixture with sodium Alginate base fluid, which means at this 
case the heat transfers to the solid sphere by convection is more than it by conduction and the skin 
friction quantity between the Kerosene oil nanofluid mixture and the solid sphere is lower as 
compared with sodium Alginate nanofluid mixture the possible reason that explains this sole 
superiority for Kerosene oil is the low value of its thermal conductivity (see Table 1) which effect on 
Nu (see Eq. (23)). 
 

 

 

 
Fig. 2. Variation of Nusselt number for different 
values of x and M 

 Fig. 3. Variation of local skin friction for different 
values of x and M 
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Fig. 4. Variation of Nusselt number for different 
values of x and K 

 Fig. 5. Variation of local skin friction for different 
values of x and K 

 

 

 

 
Fig. 6. Variation of Nusselt number for different 
values of x and χ 

 Fig. 7. Variation of local skin friction for different 
values of x and χ 

 
Figure 8 to Figure 16 exhibit the impact of magnetic parameter M, micro rotation parameter K, 

and volume fraction χ on temperature, velocity, and angular velocity field. It’s found that there is a 
negative correlation between magnetic parameter M and both velocity, and angular velocity field, 
while the correlation between magnetic parameter and temperature is positive (see Figure 8 to 
Figure 10). 

Figure 11, Figure 12 and Figure 13 plotted the relation between micro rotation parameter K and 
the other physical quantities: temperature, velocity, and angular velocity field. The direct relation 
between them is clear, the increment of K leads to growing up each individual mentioned quantity. 

Finally, the variance of temperature, velocity, and angular velocity field due to changing the 
volume fraction is investigated in Figure 14, Figure 15, and Figure 16. Temperature and velocity 
react directly to the increment of χ by scaling the curves up. However, the angular velocity behaves 
inversely proportional to χ as shown in Figure 16. In this category, an interesting note worth 
mention in magnetite Fe3O4 nanoparticles as compared with Aluminum Al nanoparticle, the 
micropolar fluid containing Fe3O4 nanoparticle has the lower values of all the physical quantities 
that investigated in this study except the temperature profile quantity. Fe3O4 Sodium Alginate 
micropolar nanofluid has the highest values through the changing of all parameters M, K, and χ, and 
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this may attribute to the physical properties of especially Fe3O4 the low value of its effective 
thermal conductivity as seen in Table 1. 
 

 

 

 
Fig. 8. Variation of temperature for different 
values of y and M 

 Fig. 9. Variation of velocity for different values of y 
and M 

 

 

 

 
Fig. 10. Variation of angular velocity field for 
different values of y and M 

 Fig. 11. Variation of Temperature for different 
values of y and K 

 

 

 

 
Fig. 12. Variation of velocity for different values 
of y and K 

 Fig. 13. Variation of angular velocity field for 
different values of y and K 
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Fig. 14. Variation of temperature for different 
values of x and χ 

 Fig. 15. Variation of velocity for different values 
of y and χ 

 

 
Fig. 16. Variation of angular velocity field for different 
values of y and χ 

 
4. Conclusions 
 

The current chapter explored the action of the magnetic parameter M, microrotation 
parameter K, and volume fraction χ on the following physical quantities: Nusselt number, local skin 
friction, temperature, velocity, and angular velocity field through free convection flow of a 
micropolar nanofluid of (Al) and (Fe3O4) in two different types of base fluids specifically, Sodium 
Alginate, and kerosene oil on a solid sphere of radius. The points below concluded 

 
i. Kerosene oil as a base micropolar fluid with Al nanoparticle (Al- Kerosene oil) has the 

upper values of Nusselt number through each parameter variation in this study and 
that’s mean the heat transfer by convection is the maximum at this case. while the 
Kerosene oil gains the lower values of the rest physical quantities such as local skin 
friction Cf temperature, velocity, and angular velocity field as compared to sodium 
alginate.  

ii. Adding the magnetite (Fe3O4) nanoparticle to the base micropolar fluids leads to getting 
the highest curves of temperature that varies with y and any other parameters such as 
M, K, and χ, as a comparison with adding Al nanoparticle to the same fluids. 
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iii. Increasing the magnetic parameter M causes an increment in the temperature and 
decrement in Nusselt number Nu, local skin friction, velocity, and angular velocity field. 

iv. Raising values of the micro rotation parameter reflects on raising: Nusselt number Nu, 
local skin friction, velocity, angular velocity field, and decreasing temperature. 

v. When the volume fraction of nanoparticles increases, both quantities of temperature 
and velocity, increase and the quantities of Nusselt number Nu and Angular velocity field 
decrease.  

vi. The influences of studied parameters on the physical quantities can be summarized as 
shown in Table 4. 

 
Table 4 
Summary of the relation between the examined parameters and physical quantities 
 Nu Cf 𝜃(0, 𝑦) 𝑓′(0, 𝑦) ℎ(0, 𝑦) 

M↑ ↓ ↓ ↑ ↓ ↓ 
K↑ ↓ ↑ ↑ ↑ ↑ 
χ↑ ↓ ↓ ↑ ↑ ↓ 
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