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The Weibull distribution serves as a versatile tool for modelling various types of data, 
including reliability analysis, failure rates, survival analysis, and extreme value analysis. 
Specifically, in weather forecasting, the Weibull distribution is frequently used to 
represent variables such as wind speed. To examine differences in wind speed dispersion 
across different areas, the coefficient of variation proves optimal. However, when 
comparing variations across multiple areas simultaneously, the focus shifts to 
simultaneous confidence intervals (SCIs). Therefore, this paper focuses on the problem of 
constructing the SCIs for the differences of coefficients of variation derived from Weibull 
distributions. The proposed methods in this study are Bayesian approaches that utilize 
gamma and uniform prior distributions, namely the generalized confidence interval (GCI) 
and the method of variance estimate recovery (MOVER) based on the Hendricks and 
Robey interval. To assess the performance of these methods, their coverage probability, 
expected length, and standard errors were evaluated through a simulation study. The 
simulation results show that the Bayesian credible interval based on the gamma prior 
performs satisfactorily in most cases. Finally, to illustrate the SCIs, we present an example 
concerning wind speed dispersion data in Southern Thailand. 
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1. Introduction 
 

The coefficient of variation (CV) is a statistical measure that allows the comparison of variability 
between different datasets, even when they possess varying units of measurement or means. It is 
computed by dividing the standard deviation by the mean. The standard deviation represents the 
dispersion of data points around the mean, while the mean represents the average value of the 
dataset. A higher CV suggests higher relative variability, while a lower CV indicates lower relative 
variability. The CV finds applications across diverse fields such as finance, economics, engineering, 
and biology. For instance, it assists investors in assessing investment volatility relative to its average 
return, and it evaluates the relative variability of economic indicators or variables. Furthermore, it is 
commonly employed to gauge the dispersion of measurements, including body size, gene expression 
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levels, or physiological parameters. Additionally, the CV is often utilized to analyze variability or 
reliability in various manufacturing or production processes. The CV has garnered attention in both 
point and interval estimations. Numerous studies have delved into constructing confidence intervals 
(CIs) for the CV across different models. Koopmans et al., [1] introduced CIs for the CV in normal and 
log-normal models. Vangel [2] developed CIs for the CV in the normal distribution, while Payton [3] 
formulated a CI for the CV based on gamma-distributed data in the same year. Mahmoudvand and 
Hassani [4] presented two new CIs for the CV in a normal distribution. Banik and Kibria [5] examined 
the CV and its CIs for symmetric and skewed distributions. Liu [6] proposed a generalized CI for CV in 
the normal distribution, along with three empirical likelihood-based non-parametric intervals for CV 
in cases of unknown underlying distributions. In 2013, Niwitpong [7] introduced CIs for the CV of the 
log-normal model within a restricted parameter space. For two-parameter exponential distributions, 
Sangnawakij and Niwitpong [8] provided CIs for CV, and Yosboonruang et al., [9] established CIs for 
CV in the delta-lognormal distribution. From 2019 to 2020, CIs for a single CV were presented in 
several models and applied to real-world data. These encompass the inverse Gaussian distribution, 
the Weibull distribution, the delta-lognormal distribution, and the inverse gamma distribution [10-
13]. Furthermore, numerous researchers have explored different methods to expand the CIs of CVs. 
In 2012, Buntao and Niwitpong [14] introduced the generalized pivotal approach (GPA) for 
constructing CIs when dealing with lognormal distributions and the delta-lognormal distribution. 
They compared their method with the closed form method of variance estimation (CFM). Niwitpong 
[15] proposed CIs for the difference between CVs of normal distributions with bounded parameters. 
Yosboonruang et al., [16] presented CIs for the difference of two independent CVs of delta-lognormal 
distributions using Bayesian methods, the concept of fiducial generalized CI, and the standard 
bootstrap. In 2021, La-ongkaew et al., [17] employed Bayesian methods based on a gamma prior 
distribution to estimate CIs for the difference of CVs of Weibull distributions. Finally, for inverse-
gamma distributions, CIs for the difference of CVs were proposed using Bayesian methods based on 
uniform and Jeffreys' priors by Kaewprasert et al., [18]. Additionally, when dealing with multiple 
independent populations, it becomes possible to calculate the CV by constructing simultaneous 
confidence intervals (SCIs). In statistical analyses, researchers often compare multiple groups or test 
multiple hypotheses concurrently. Various techniques have been developed to construct SCIs for 
comparing CVs of different distributions. Thangjai et al., [19] introduced simultaneous fiducial 
generalized confidence intervals (SFGCIs) to ascertain differences in CVs for log-normal populations. 
Their results consistently demonstrated coverage probabilities higher than the nominal confidence 
level across all sample sizes in simulations. Extending this work, Thangjai and Niwitpong [20] 
proposed the method of variance estimates recovery (MOVER) approach and a computational 
method for constructing SCIs for differences in CVs of log-normal distributions. Their findings 
showcased the satisfactory performance of the MOVER approach across various sample sizes. For 
two-parameter exponential distributions, multiple approaches were suggested to construct SCIs for 
differences in CVs: the parametric bootstrap approach, GCI approach, and MOVER [21]. Simulation 
results indicated that the GCI approach yielded satisfactory performance across all cases, while the 
MOVER approach was preferable for large sample sizes. Yosboonruang et al., [22] focused on 
constructing SCIs for pairwise differences of CVs in the delta-lognormal populations. They employed 
three methods: fiducial generalized CI, Bayesian analysis, and the MOVER. Their findings consistently 
indicated that the Bayesian credible interval, utilizing Jeffreys' rule prior, outperformed the other 
methods in almost cases. In 2022, Puggard et al., [23] proposed SCIs for differences of CVs of multiple 
Birnbaum-Saunders distributions. They employed various methods, including percentile bootstrap, 
GCI, MOVER using the asymptotic CI (ACI) and GCI, and Bayesian method. Their results showcased 
that the GCI and MOVER based on the GCI method delivered satisfactory performances. 
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The construction of CIs for CVs has garnered significant interest in various contexts, including 
single, difference, and SCIs. Different methods have been employed to estimate these CIs, 
considering various distributions. However, no previous research has been conducted on 
constructing SCIs for the differences of CVs of Weibull distributions. Herein, we propose Bayesian 
methods using gamma and uniform priors and compare them with the GCI and MOVER methods for 
constructing SCIs for the differences of CVs of Weibull distributions. This paper is structured as 
follows: In Section 2, we provide an overview of all approaches for constructing SCIs for the 
differences of CVs of Weibull distributions. Our simulation results are presented in Section 3, 
followed by the illustration of the proposed approaches using a real wind speed example in Section 
4. Finally, we conclude with some remarks in the last section. 
 
2. Methodology 
 

The Weibull distribution is a versatile statistical tool that finds applications in various fields, such 
as medicine, economics, and social sciences. It effectively models a broad range of phenomena by 
accommodating various failure patterns and survival characteristics present in real-world data. In 
particular, it is widely used in reliability engineering and survival analysis to represent the time until 
system failure or the lifespan of individuals. Introduced by Waloddi Weibull in the 1950s, this 
distribution is continuous and is defined by Eq. (1), which describes its probability density function 
for the variable 𝑋𝑖. 
 

𝑓(𝑥𝑖𝑗 , 𝑎𝑖, 𝑘𝑖) =
𝑘𝑖

𝑎𝑖
(

𝑥𝑖𝑗

𝑎𝑖
)

𝑘𝑖−1

𝑒𝑥𝑝 [−(𝑥𝑖𝑗/𝑎𝑖)
𝑘𝑖

]         (1) 

 
where 𝑥𝑖𝑗 > 0, 𝑎𝑖 > 0, 𝑘𝑖 > 0, and 𝑖 = 1,2, . . . 𝑝,  𝑗 = 1,2, . . . , 𝑛𝑖. According to a Weibull distribution, 

𝑋𝑖 = (𝑋𝑖1, 𝑋𝑖2, . . . , 𝑋𝑖𝑛𝑖
) is the random variable of size 𝑛𝑖, 𝑎𝑖 is the scale parameter, and 𝑘𝑖  is the 

shape parameter. The scale parameter determines the location and spread of the distribution, while 
the shape parameter controls the shape of the distribution curve. Parameter estimation is carried 
out using maximum likelihood estimation, and the maximum likelihood estimators (MLEs) can be 
obtained by referencing study of Cohen [24]. The population mean and variance of 𝑋𝑖 are 
 
𝐸(𝑋𝑖) = 𝑎𝑖𝛤(1 + (1/𝑘𝑖))            (2) 
 
and 
 

𝑉𝑎𝑟(𝑋𝑖) = 𝑎𝑖
2[𝛤(1 + (2/𝑘𝑖) − (𝛤(1 + (1/𝑘𝑖))

2
]         (3) 

 
Consequently, the CV of 𝑋𝑖 can be articulated as 
 

𝐶𝑉(𝑋𝑖) = 𝜆𝑖 = √𝛤 (1 +
2

𝑘𝑖
) / (𝛤 (1 +

1

𝑘𝑖
))

2

− 1         (4) 
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Thus, the difference of two independent CVs is as follows: 
 

𝜆1 − 𝜆2 = √𝛤 (1 +
2

𝑘1
) / (𝛤 (1 +

1

𝑘1
))

2

− 1 − √𝛤 (1 +
2

𝑘2
) / (𝛤 (1 +

1

𝑘2
))

2

− 1     (5) 

 
Consider the 𝑝 parameters of interest, for 𝑖, 𝑙 = 1,2, . . . , 𝑝 and 𝑖 ≠ 𝑙, the differences of CVs are 
 

𝜆𝑖𝑙 = 𝜆𝑖 − 𝜆𝑙 = √𝛤 (1 +
2

𝑘𝑖
) / (𝛤 (1 +

1

𝑘𝑖
))

2

− 1 − √𝛤 (1 +
2

𝑘𝑙
) / (𝛤 (1 +

1

𝑘𝑙
))

2

− 1    (6) 

 
2.1 Bayesian 
 

Prior distributions play a crucial role in Bayesian statistics by allowing the incorporation of prior 
knowledge or beliefs regarding the parameters of interest before the data is observed. Through the 
amalgamation of the prior distribution with the likelihood function derived from the observed data, 
we derive the posterior distribution in Bayesian inference. 
 
𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 ∝ 𝑃𝑟𝑖𝑜𝑟 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 × 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛      (7) 
 

This updated posterior distribution effectively captures the refined beliefs concerning the 
parameters subsequent to the data consideration. In Bayesian statistics, two commonly employed 
methods for constructing CIs are the Bayesian equal-tailed interval and the HPD interval. In this 
specific case, both methods utilize a gamma prior distribution as well as a uniform prior distribution 
for establishing the SCIs for the differences of the CVs of Weibull distributions. 
 
2.1.1 Bayesian gamma prior 
 

In Bayesian statistical modelling, a gamma prior denotes the use of a gamma distribution as a 
prior distribution. The gamma distribution is commonly employed to represent positive-valued 

random variables. Let 𝑎′ is a rate parameter which corresponds to 𝑎 = (1/𝑎′)(1/𝑘). The shape and 
rate parameters of the gamma distribution can be chosen as 𝜋(𝑘)~𝑔𝑎𝑚𝑚𝑎(𝑣1, 𝑧1) and 
𝜋(𝑎′)~𝑔𝑎𝑚𝑚𝑎(𝑣2, 𝑧2) with known real numbers as hyperparameters, denoted by (𝑣1, 𝑧1, 𝑣2, 𝑧2). 
The joint posterior density function can be determined using the Bayesian approach, as illustrated 
below. 
 

𝐿(𝑎′, 𝑘|𝑥) =
𝐿(𝑥|𝑎′,𝑘)×𝜋(𝑎′|𝑘,𝑥)×𝜋(𝑘)

∫ ∫ 𝐿(𝑥|𝑎′,𝑘)×𝜋(𝑎′|𝑘,𝑥)×𝜋(𝑘) 𝑑𝑘𝑑𝑎′
∞

0
∞

0

         (8) 

 
Given that 𝐿(𝑥|𝑎′, 𝑘) is an associated likelihood function. Therefore, Eq. (9) denotes the posterior 

density function of parameters of 𝑎′ and 𝑘 given the data. 
 
𝜋(𝑎′|𝑘, 𝑥) ∝ 𝐿(𝑎′, 𝑘|𝑥)𝜋(𝑎′)𝜋(𝑘)           (9) 
 

Sometimes, the posterior density function cannot be expressed in a closed form. This is the case 
for parameter estimation in the Weibull distribution, where direct sampling is not possible. 
Therefore, alternative algorithms are necessary. Gibbs sampling proposed is a well-known Markov 
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chain Monte Carlo (MCMC) algorithm used to approximate the posterior distribution in Bayesian 
inference problems [25]. It is a powerful technique for conducting Bayesian inference on complex 
models where direct sampling from the posterior distribution is not feasible. The method enables 
iterative sampling from simpler conditional distributions. In this research, we applied the Gibbs 
sampling procedure to generate MCMC samples using an R programming software package. 
OpenBUGS (Bayesian inference Using Gibbs Sampling) is a software package designed for performing 
Bayesian analysis with MCMC methods. It offers a flexible and intuitive approach for specifying and 
fitting Bayesian statistical models. OpenBUGS, an updated version of WinBUGS, is particularly 
suitable for complex models. The software employs Gibbs sampling and the Metropolis algorithm to 
generate a Markov chain by sampling from full conditional distributions. To utilize OpenBUGS in R, it 
is necessary to have the "R2OpenBUGS" package installed, which provides an interface between R 
and OpenBUGS. The Weibull model in OpenBUGS is given as 
 

Weibullmodel <- function(){ 
  for(i in 1:n){ 
    x[i] ~ dweib(𝑘,𝑎′) 
  } 
  𝑘 ~ dgamma(𝑣1, 𝑧1) 
  𝑎′ ~ dgamma(𝑣2, 𝑧2) 
} 
inits1 <- function(){list( 𝑘 = initial value of 𝑘, 𝑎′ = initial value of 𝑎′)} 
output <- bugs(data = weibulldata, inits = inits1, parameters.to.save = c("𝑘 ","𝑎′ "), model.file = 

Weibullmodel, n.chains = 1, n.iter=20000, debug=FALSE, codaPkg=TRUE, n.burnin = 1000) 
 

Considering 𝑝 parameters of interest, for 𝑖, 𝑙 = 1,2, . . . , 𝑝 and 𝑖 ≠ 𝑙, we estimated the differences 
of CVs according to Eq. (6). Therefore, the 100(1 − 𝛼)% equal-tailed simultaneous confidence 
interval and simultaneous credible interval based on Bayesian using gamma prior distribution for 𝜆𝑖𝑙 
can be expressed as 
 
𝑆𝐶𝐼𝑖𝑙(𝐵𝑎𝑦𝑒.𝐺𝑎𝑚𝑚𝑎) = [𝐿𝑖𝑙(𝐵𝑎𝑦𝑒.𝐺𝑎𝑚𝑚𝑎), 𝑈𝑖𝑙(𝐵𝑎𝑦𝑒.𝐺𝑎𝑚𝑚𝑎)]                  (10) 

 
where 𝐿𝑖𝑙(𝐵𝑎𝑦𝑒.𝐺𝑎𝑚𝑚𝑎) and 𝑈𝑖𝑙(𝐵𝑎𝑦𝑒.𝐺𝑎𝑚𝑚𝑎) represent the lower limit and upper limit of the 

100(1 − 𝛼)% confidence and credible intervals for 𝜆𝑖𝑙. 
To construct a Bayesian equal-tailed CI, begin by arranging the posterior distribution of the 

parameter in ascending order. Then, determine the lower and upper boundaries of the interval in a 
manner that encompasses the desired probability mass. By employing this approach, the specified 
probability gets equally distributed on both sides of the interval. 

The Bayesian credible interval commonly utilized is known as the HPD interval. This interval 
represents the most densely populated region in the posterior distribution and contains the most 
probable values of the parameter. An important characteristic of this interval is that the probability 
density within it is higher compared to values outside of it. As a result, it tends to be the narrowest 
possible interval. 
 
2.1.2 Bayesian uniform prior 
 

A uniform prior distribution treats every potential value of the parameter with equal probability, 
indicating no prior information or inclination towards any specific value. Consequently, before any 
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data is observed, all values are considered equally likely. Within the scope of this subsection, we will 
consider a uniform prior distribution for both the shape and scale parameters, which are 
𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0,4) and 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0,100), respectively. For estimating the parameters based on Bayesian 
with uniform prior, the OpenBUGS software in R programming is discussed. By utilizing Eq. (6) and 
considering the prior information, an estimation was made to determine the differences in CVs for 
the 𝑝 parameters of interest. As a result, the 100(1 − 𝛼)% equal-tailed simultaneous confidence 
interval and simultaneous credible interval based on Bayesian using uniform prior distribution for 𝜆𝑖𝑙 
is 
 
𝑆𝐶𝐼𝑖𝑙(𝐵𝑎𝑦𝑒.𝑈𝑛𝑖𝑓𝑜𝑟𝑚) = [𝐿𝑖𝑙(𝐵𝑎𝑦𝑒.𝑈𝑛𝑖𝑓𝑜𝑟𝑚), 𝑈𝑖𝑙(𝐵𝑎𝑦𝑒.𝑈𝑛𝑖𝑓𝑜𝑟𝑚)]                  (11) 

 
where 𝐿𝑖𝑙(𝐵𝑎𝑦𝑒.𝑈𝑛𝑖𝑓𝑜𝑟𝑚) and 𝑈𝑖𝑙(𝐵𝑎𝑦𝑒.𝑈𝑛𝑖𝑓𝑜𝑟𝑚) represent the lower limit and upper limit of the 

100(1 − 𝛼)% confidence and credible intervals for 𝜆𝑖𝑙. 
 
2.2 GCI 
 

GCI was initially introduced by Weerahandi [26]. Let 𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑛) be random variables 
from a distribution 𝐹𝑋(𝑥, 𝜑, 𝛾), where 𝜑 is a parameter of interest, 𝛾 is a nuisance parameter 𝛾𝑖, and 
𝑥 is the observed value of random variable 𝑋. The random quantity 𝑅(𝑋; 𝑥, 𝜑, 𝛾) is the generalized 
pivotal quantity (GPQ) when it fulfils the following two conditions 

 
i. The probability distribution of 𝑅(𝑋; 𝑥, 𝜑, 𝛾) is free of all unknown parameters. 

ii. The observed value of 𝑅(𝑋; 𝑥, 𝜑, 𝛾) at 𝑋 = 𝑥 , is free of nuisance parameter. 
 

Let 𝑅 (
𝛼

2
) be the 100 (

𝛼

2
)

𝑡ℎ

quantiles of 𝑅(𝑋; 𝑥, 𝜑, 𝛾), Therefore, [𝑅 (
𝛼

2
) , 𝑅 (

1−𝛼

2
)] becomes the 

100(1 − 𝛼)% GCI for the parameter of interest. For Weibull distribution, the GPQs of 𝑘 and 𝑎 are 
provided by Krishnamoorthy et al., [27]. 𝑅(𝑘) and 𝑅(𝑎) fulfil the mentioned two conditions. For the 
shape parameter, the GPQ is given by 
 

𝑅𝑘𝑖
=

𝑘̂0𝑖

𝑘̂𝑖
∗ ,  𝑖 = 1,2, . . . , 𝑝                      (14) 

 
while the GPQ of scale parameter is given by 
 

𝑅𝑎𝑖
= (

1

𝑎̂𝑖
∗)

𝑘̂𝑖
∗

𝑘̂0𝑖 𝑎̂0𝑖,  𝑖 = 1,2, . . . , 𝑝                     (15) 

 

Let 𝑎̂𝑖 and 𝑘̂𝑖  are the MLEs of the parameters, 𝑎̂0𝑖 and 𝑘̂0𝑖  are the observed values of the 

estimators, and 𝑎̂𝑖
∗ and 𝑘̂𝑖

∗ are the MLEs based on a sample of size 𝑛𝑖  from 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(1,1). Herein, we 
developed the GCI method to establish SCIs for 𝜆𝑖𝑙. Firstly, the GPQ for estimating 𝜆𝑖 is determined 
as 
 

𝑅𝜆𝑖
= √𝛤 (1 +

2

𝑅𝑘𝑖

) / (𝛤 (1 +
1

𝑅𝑘𝑖

))

2

− 1                    (16) 
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From Eq. (6), we can derive 
 
𝑅𝜆𝑖𝑙

= 𝑅𝜆𝑖
− 𝑅𝜆𝑙

                       (17) 

 
In consequence, the 100(1 − 𝛼)% GCI simultaneous confidence interval for 𝜆𝑖𝑙 can be expressed as 
 

𝑆𝐶𝐼𝑖𝑙(𝐺𝐶𝐼) = [𝑅𝜆𝑖𝑙
(

𝛼

2
) , 𝑅𝜆𝑖𝑙

(
1−𝛼

2
)]                     (18) 

 

where 𝑅𝜆𝑖𝑙
(

𝛼

2
) be the 100 (

𝛼

2
)

𝑡ℎ

 quantiles of the distribution of 𝑅𝜆𝑖𝑙
. 

 
2.3 MOVER 
 

The technique introduced by Donner and Zou [28] allows the construction of a CI for a function 
involving two parameters, 𝜆1 − 𝜆2, defined as 
 
𝐶𝐼𝑚 = [𝐿𝑚, 𝑈𝑚]                       (19) 
 
where 
 

𝐿𝑚 = (𝜆̂1 − 𝜆̂2) − √(𝜆̂1 − 𝑙1)
2

+ (𝑢2 − 𝜆̂2)
2
                   (20) 

 
and 
 

𝑈𝑚 = (𝜆̂1 − 𝜆̂2) + √(𝑢1 − 𝜆̂1)
2

+ (𝜆̂2 − 𝑙2)
2
                   (21) 

 
Hendricks and Robey [29] provided CIs for 𝜆1 and 𝜆2 for defined as 
 

(𝑙1.ℎ𝑟 , 𝑢1.ℎ𝑟) = (𝜆̂1 − 𝑡(𝛼/2,𝑛1−1)
𝜆̂1

√2𝑛1
, 𝜆̂1 + 𝑡(𝛼/2,𝑛1−1)

𝜆̂1

√2𝑛1
)                 (22) 

 
and 
 

(𝑙2.ℎ𝑟, 𝑢2.ℎ𝑟) = (𝜆̂2 − 𝑡(𝛼/2,𝑛2−1)
𝜆̂2

√2𝑛2
, 𝜆̂2 + 𝑡(𝛼/2,𝑛2−1)

𝜆̂2

√2𝑛2
)                 (23) 

 

where 𝑡(𝛼/2,𝑛1−1) and 𝑡(𝛼/2,𝑛2−1) represent the 100 (
𝛼

2
)

𝑡ℎ

 percentile of t-distribution with 𝑛1 − 1 and 

𝑛2 − 1 degrees of freedom, respectively. To establish a CI for the difference of the CVs of Weibull 
distributions using MOVER and Hendricks and Robey's CI, we replace 𝑙1, 𝑢1, 𝑙2, and 𝑢2 with the lower 
and upper limits in Eq. (22) and Eq. (23). When 𝑝 populations are considered, the 100(1 − 𝛼)% CI 
for 𝜆𝑖 of Weibull distribution is provided again. 
 

(𝑙𝑖, 𝑢𝑖) = (𝜆̂𝑖 − 𝑡(𝛼/2,𝑛𝑖−1)
𝜆̂𝑖

√2𝑛𝑖
, 𝜆̂𝑖 + 𝑡(𝛼/2,𝑛𝑖−1)

𝜆̂𝑖

√2𝑛𝑖
)                  (24) 
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where 𝑡(𝛼/2,𝑛𝑖−1) represent the 100 (
𝛼

2
)

𝑡ℎ

 percentile of t-distribution with 𝑛𝑖 − 1 degrees of 

freedom. Therefore, the 100(1 − 𝛼)% MOVER simultaneous confidence interval for 𝜆𝑖𝑙 can be 
expressed as 
 
𝑆𝐶𝐼𝑖𝑙(𝑀𝑂𝑉𝐸𝑅) = [𝐿𝑖𝑙(𝑀𝑂𝑉𝐸𝑅), 𝑈𝑖𝑙(𝑀𝑂𝑉𝐸𝑅)]                    (25) 

 
The lower limit 𝐿𝑖𝑙(𝑀𝑂𝑉𝐸𝑅) and the upper limit 𝑈𝑖𝑙(𝑀𝑂𝑉𝐸𝑅) are represented by Eq. (26) and Eq. (27), 

respectively. 
 

𝐿𝑖𝑙(𝑀𝑂𝑉𝐸𝑅) = (𝜆̂𝑖 − 𝜆̂𝑙) − √(𝜆̂𝑖 − 𝑙𝑖)
2

+ (𝑢𝑙 − 𝜆̂𝑙)
2
                   (26) 

 
and 
 

𝑈𝑖𝑙(𝑀𝑂𝑉𝐸𝑅) = (𝜆̂𝑖 − 𝜆̂𝑙) + √(𝑢𝑖 − 𝜆̂𝑖)
2

+ (𝜆̂𝑙 − 𝑙𝑙)
2
                   (27) 

 
3. Parameter Settings and Simulation Results 
 

In this study, we compared the performance of Bayesian methods using gamma and uniform 
priors with two other methods: the GCI approach and the MOVER approach. The goal was to assess 
the performance of simultaneous confidence intervals by measuring their coverage probabilities 
(CPs), expected lengths (ELs), and standard errors (s.e.). We aimed to determine the best method by 
identifying a CP that was greater than or equal to the nominal confidence level (1 − 𝛼) of 0.95, while 
also having the smallest EL. To conduct our simulations, we executed 5,000 iterations. For the GCI 
approach, we computed the critical value using 2,500 samples. Additionally, we conducted 20,000 
replications for each parameter combination in the Bayesian methods. The specific parameter 
combinations can be found in Table 1. 
 

Table 1 
The parameter settings for the parameter combinations (𝑝 = 5) 
𝑎𝑖  𝑛𝑖  𝜆𝑖  
0.5 (205), 

(203,502),  
(202,50,1002),  
(505), 
(503,1002), 
(1005) 

(0.55), (0.52,1,22), (15), (25) 
(0.55), (0.52,1,22), (15), (25) 
(0.55), (0.52,1,22), (15), (25) 
(0.55), (0.52,1,22), (15), (25) 
(0.55), (0.52,1,22), (15), (25) 
(0.55), (0.52,1,22), (15), (25) 

2 (205),  
(203,502),  
(202,50,1002),  
(505),  
(503,1002),  
(1005) 

(0.55), (0.52,1,22), (15), (25) 
(0.55), (0.52,1,22), (15), (25) 
(0.55), (0.52,1,22), (15), (25) 
(0.55), (0.52,1,22), (15), (25) 
(0.55), (0.52,1,22), (15), (25) 
(0.55), (0.52,1,22), (15), (25) 

Note: (205) stand for (20,20,20,20,20) 
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Table 2 shows the summarized results for the sample case (𝑝) where the value is equal to 5. For 
scale parameter (𝑎𝑖) is equal to 0.5, the CPs of Bayesian credible interval based on gamma prior are 
higher than the nominal confidence level with the smallest ELs for 𝜆𝑖 = 0.5, whereas the GCI 
performed the best in the case of 𝜆𝑖 = 1 or 2. The equal-tailed simultaneous confidence interval and 
simultaneous credible interval based on Bayesian using uniform prior distribution produces yields 
unstable coverage probabilities, meaning that in certain cases, it is significantly lower than the 
confidence level, while in others, it exceeds it. Considering the larger scale parameter (𝑎𝑖 = 2), the 
Bayesian credible interval based on gamma prior still outperforms other methods when the CVs of 
each sample are equal. Furthermore, the Bayesian credible interval using uniform prior performs well 
in many cases especially when 𝜆𝑖 = 1 for 𝑛𝑖 = (503, 1002), (1005). Finally, the MOVER method 
yielded the CPs over 0.95 in all scenarios. 
 

Table 2 
The coverage probability (CP), expected length (EL) and standard errors (s.e.) of 95% of simultaneous 
confidence intervals and credible intervals for the differences of CVs Weibull distributions: 5 sample cases 
Baye.gamma-E Baye.gamma-C Baye.uniform-E Baye.uniform-C GCI MOVER 

CP 
EL (s.e.) 

CP 
EL (s.e.) 

CP 
EL (s.e.) 

CP 
EL (s.e.) 

CP 
EL (s.e.) 

CP 
EL (s.e.) 

0.9471 
4.1680 (0.3131) 

0.9778 
4.0684 (0.3001) 

0.8797 
0.3082 (0.0192) 

0.8935 
1.0196 (0.0188) 

0.9589 
8.0773 (1.1421) 

0.9987 
6.4049 (0.4154) 

0.9422 
2.3042 (0.4169) 

0.9464 
2.1427 (0.3843) 

0.1911 
0.3957 (0.0186) 

0.1927 
1.3096 (0.0186) 

0.7727 
3.7837 (0.9682) 

0.9989 
7.1408 (0.4177) 

0.9463 
1.1215 (0.0496) 

0.9661 
1.1118 (0.0488) 

0.9975 
0.4554 (0.0094) 

0.9967 
1.5110 (0.0093) 

0.9589 
0.8382 (0.0502) 

0.9998 
2.8173 (0.1367) 

0.9499 
0.4961 (0.0164) 

0.9620 
0.4933 (0.0164) 

0.9999 
0.4442 (0.0031) 

0.9998 
1.4752 (0.0030) 

0.9622 
0.3128 (0.0104) 

0.9999 
1.4600 (0.0658) 

0.9465 
2.9820 (0.2193) 

0.9677 
2.9295 (0.2109) 

0.7204 
0.1435 (0.0081) 

0.7313 
0.4761 (0.0080) 

0.9504 
4.2960 (0.5554) 

0.9994 
6.2769 (0.3428) 

0.9411 
1.9298 (0.3509) 

0.9419 
1.8152 (0.3298) 

0.1659 
0.2364 (0.0132) 

0.1669 
0.7846 (0.0131) 

0.7095 
2.6806 (0.6465) 

0.9997 
7.1143 (0.4070) 

0.9431 
0.8482 (0.0444) 

0.9550 
0.8402 (0.0437) 

0.9748 
0.2919 (0.0050) 

0.9705 
0.9699 (0.0050) 

0.9566 
0.5964 (0.0384) 

1.0000 
2.7931 (0.1124) 

0.9470 
0.3844 (0.0172) 

0.9540 
0.3819 (0.0171) 

0.9965 
0.2745 (0.0020) 

0.9963 
0.9123 (0.0020) 

0.9574 
0.2412 (0.0107) 

1.0000 
1.4608 (0.0532) 

0.9518 
2.4754 (0.2388) 

0.9651 
2.4028 (0.2257) 

0.5943 
0.0847 (0.0052) 

0.6044 
0.2811 (0.0052) 

0.9536 
3.3637 (0.5196) 

0.9999 
6.3539 (0.2940) 

0.9446 
1.8686 (0.3734) 

0.9462 
1.7491 (0.3498) 

0.1504 
0.1659 (0.0099) 

0.1511 
0.5509 (0.0099) 

0.6660 
2.6574 (0.6655) 

0.9998 
7.1329 (0.4015) 

0.9449 
0.7124 (0.0546) 

0.9511 
0.7026 (0.0533) 

0.9301 
0.2111 (0.0033) 

0.9254 
0.7017 (0.0033) 

0.9501 
0.4945 (0.0441) 

1.0000 
2.7742 (0.0964) 

0.9444 
0.3246 (0.0231) 

0.9480 
0.3214 (0.0227) 

0.9727 
0.1932 (0.0014) 

0.9727 
0.6421 (0.0014) 

0.9544 
0.2045 (0.0144) 

1.0000 
1.4498 (0.0463) 

0.9465 
2.1834 (0.0949) 

0.9647 
2.1669 (0.0937) 

0.7983 
0.1248 (0.0053) 

0.8082 
0.4142 (0.0052) 

0.9514 
2.4839 (0.1813) 

1.0000 
6.3681 (0.2759) 

0.9480 
1.2551 (0.2013) 

0.9505 
1.2182 (0.1951) 

0.1807 
0.2264 (0.0151) 

0.1815 
0.7511 (0.0150) 

0.5159 
1.3035 (0.2621) 

1.0000 
7.1386 (0.3792) 

0.9471 
0.6482 (0.0172) 

0.9562 
0.6457 (0.0171) 

0.9958 
0.2911 (0.0040) 

0.9948 
0.9676 (0.0040) 

0.9505 
0.4303 (0.0144) 

1.0000 
2.8242 (0.0889) 

0.9498 
0.2976 (0.0063) 

0.9538 
0.2965 (0.0062) 

0.9998 
0.2751 (0.0016) 

0.9997 
0.9143 (0.0016) 

0.9572 
0.1867 (0.0037) 

1.0000 
1.4691 (0.0415) 

0.9438 
1.8996 (0.1057) 

0.9572 
1.8802 (0.1039) 

0.6638 
0.0758 (0.0035) 

0.6711 
0.2517 (0.0035) 

0.9536 
2.0733 (0.1739) 

1.0000 
6.3455 (0.2507) 

0.9428 
1.2372 (0.2086) 

0.9432 
1.1988 (0.2023) 

0.1630 
0.1595 (0.0115) 

0.1638 
0.5297 (0.0114) 

0.5042 
1.2839 (0.2641) 

1.0000 
7.1051 (0.3824) 
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0.9458 
0.5709 (0.0244) 

0.9525 
0.5679 (0.0242) 

0.9742 
0.2111 (0.0027) 

0.9718 
0.7017 (0.0027) 

0.9520 
0.3796 (0.0183) 

1.0000 
2.8098 (0.0806) 

0.9470 
0.2633 (0.0103) 

0.9517 
0.2621 (0.0103) 

0.9940 
0.1936 (0.0012) 

0.9940 
0.6437 (0.0012) 

0.9523 
0.1654 (0.0063) 

1.0000 
1.4668 (0.0382) 

0.9507 
1.4433 (0.0427) 

0.9605 
1.4371 (0.0424) 

0.7443 
0.0678 (0.0025) 

0.7517 
0.2252 (0.0025) 

0.9506 
1.4401 (0.0701) 

1.0000 
6.3453 (0.1947) 

0.9481 
0.8454 (0.1298) 

0.9473 
0.8318 (0.1277) 

0.1754 
0.1562 (0.0125) 

0.1761 
0.5186 (0.0125) 

0.3090 
0.7836 (0.1440) 

1.0000 
7.1033 (0.3652) 

0.9471 
0.4454 (0.0082) 

0.9520 
0.4441 (0.0082) 

0.9959 
0.2112 (0.0022) 

0.9950 
0.7019 (0.0022) 

0.9554 
0.2912 (0.0068) 

1.0000 
2.8203 (0.0627) 

0.9474 
0.2064 (0.0033) 

0.9488 
0.2057 (0.0033) 

0.9998 
0.1939 (0.0010) 

0.9998 
0.6446 (0.0009) 

0.9541 
0.1298 (0.0018) 

1.0000 
1.4743 (0.0296) 

0.9434 
4.1880 (0.3249) 

0.9769 
4.0820 (0.3097) 

0.7944 
0.6592 (0.0739) 

0.8266 
2.1530 (0.0706) 

0.9579 
32.4703 (4.7100) 

0.9986 
6.4331 (0.4215) 

0.9410 
2.2891 (0.4133) 

0.9422 
2.1294 (0.3811) 

0.3994 
0.6433 (0.0577) 

0.3970 
2.1105 (0.0558) 

0.9339 
15.1796 (3.8777) 

0.9991 
7.1066 (0.4165) 

0.9448 
1.1178 (0.0500) 

0.9641 
1.1079 (0.0492) 

0.9685 
0.8663 (0.0300) 

0.9692 
0.8649 (0.0299) 

0.9600 
3.3392 (0.2023) 

0.9999 
2.7920 (0.1376) 

0.9414 
0.4917 (0.0162) 

0.9542 
0.4889 (0.0161) 

0.9466 
0.4923 (0.0157) 

0.9587 
1.6326 (0.0156) 

0.9567 
1.2452 (0.0412) 

1.0000 
1.4491 (0.0652) 

0.9421 
3.0155 (0.2284) 

0.9669 
2.9492 (0.2183) 

0.5482 
0.2771 (0.0294) 

0.5552 
0.9180 (0.0290) 

0.9514 
17.6846 (2.3687) 

0.9991 
6.3632 (0.3531) 

0.9448 
1.9395 (0.3530) 

0.9468 
1.8240 (0.3318) 

0.3240 
0.3586 (0.0308) 

0.3235 
1.1870 (0.0305) 

0.9286 
10.8514 (2.6304) 

0.9996 
7.1644 (0.4052) 

0.9446 
0.8495 (0.0445) 

0.9568 
0.8413 (0.0437) 

0.8984 
0.5382 (0.0149) 

0.8943 
1.7853 (0.0149) 

0.9555 
2.3930 (0.1559) 

1.0000 
2.7955 (0.1154) 

0.9450 
0.3847 (0.0175) 

0.9514 
0.3821 (0.0174) 

0.8746 
0.2979 (0.0072) 

0.8842 
0.9897 (0.0072) 

0.9558 
0.9669 (0.0437) 

1.0000 
1.4708 (0.0535) 

0.9504 
2.4541 (0.2325) 

0.9630 
2.3834 (0.2200) 

0.3831 
0.1578 (0.0176) 

0.3830 
0.5238 (0.0175) 

0.9503 
13.2440 (2.0117) 

0.9998 
6.2745 (0.2933) 

0.9438 
1.8694 (0.3744) 

0.9440 
1.7489 (0.3504) 

0.3049 
0.2505 (0.0232) 

0.3031 
0.8305 (0.0230) 

0.9154 
10.6301 (2.6696) 

0.9999 
7.0946 (0.4037) 

0.9483 
0.7131 (0.0548) 

0.9535 
0.7031 (0.0535) 

0.8223 
0.3883 (0.0095) 

0.8157 
1.2890 (0.0095) 

0.9549 
1.9803 (0.1758) 

1.0000 
2.7764 (0.0957) 

0.9488 
0.3148 (0.0289) 

0.9520 
0.3011 (0.0257) 

0.9489 
0.2928 (0.0075) 

0.9591 
1.0145 (0.0074) 

0.9501 
0.4236 (0.1454) 

1.0000 
1.4144 (0.0814) 

0.9441 
2.1732 (0.0958) 

0.9633 
2.1561 (0.0944) 

0.6043 
0.2133 (0.0154) 

0.6060 
0.7082 (0.0153) 

0.9532 
9.8572 (0.7262) 

1.0000 
6.3201 (0.2763) 

0.9481 
1.2572 (0.2022) 

0.9483 
1.2199 (0.1960) 

0.3435 
0.3221 (0.0291) 

0.3428 
1.0662 (0.0289) 

0.9078 
5.2132 (1.0489) 

1.0000 
7.1636 (0.3789) 

0.9509 
0.6490 (0.0170) 

0.9592 
0.6465 (0.0169) 

0.9686 
0.5357 (0.0126) 

0.9647 
1.7771 (0.0126) 

0.9552 
1.7396 (0.0581) 

1.0000 
2.8238 (0.0876) 

0.9477 
0.2970 (0.0063) 

0.9528 
0.2959 (0.0063) 

0.9506 
0.2979 (0.0057) 

0.9555 
0.9896 (0.0057) 

0.9506 
0.7468 (0.0148) 

1.0000 
1.4679 (0.0417) 

0.9483 
1.4437 (0.0232) 

0.9576 
1.4373 (0.0231) 

0.4725 
0.1047 (0.0031) 

0.4721 
0.1043 (0.0030) 

0.9538 
5.7487 (0.1505) 

1.0000 
6.3522 (0.0983) 

0.9464 
1.2323 (0.2071) 

0.9457 
1.1943 (0.2010) 

0.3096 
0.2270 (0.0223) 

0.3097 
0.7524 (0.0222) 

0.9131 
5.1204 (1.0480) 

1.0000 
7.0331 (0.3814) 

0.9482 
0.4449 (0.0044) 

0.9528 
0.4435 (0.0044) 

0.9644 
0.3882 (0.0039) 

0.9577 
0.3866 (0.0039) 

0.9535 
1.1637 (0.0144) 

1.0000 
2.8178 (0.0314) 

0.9480 
0.2635 (0.0103) 

0.9508 
0.2622 (0.0102) 

0.8790 
0.2067 (0.0035) 

0.8836 
0.6870 (0.0034) 

0.9515 
0.6620 (0.0253) 

1.0000 
1.4647 (0.0375) 

0.9492 
1.4396 (0.0428) 

0.9580 
1.4332 (0.0425) 

0.4779 
0.1047 (0.0055) 

0.4778 
0.3480 (0.0055) 

0.9500 
5.7291 (0.2801) 

1.0000 
6.3166 (0.1984) 

0.9444 
0.8510 (0.1312) 

0.9464 
0.8371 (0.1291) 

0.3328 
0.2146 (0.0236) 

0.3309 
0.7113 (0.0236) 

0.8766 
3.1695 (0.5833) 

1.0000 
7.1523 (0.3670) 

0.9489 0.9526 0.9637 0.9577 0.9513 1.0000 
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0.4448 (0.0082) 0.4434 (0.0082) 0.3883 (0.0071) 1.2892 (0.0072) 1.1641 (0.0275) 2.8258 (0.0625) 
0.9443 
0.2065 (0.0033) 

0.9562 
0.2058 (0.0033) 

0.9465 
0.2069 (0.0028) 

0.9485 
0.6877 (0.0028) 

0.9539 
0.5196 (0.0075) 

1.0000 
1.4718 (0.0298) 

Note: Bold means the CP greater than or equal to the nominal confidence level of 0.95 together with the smallest EL 

 
4. An Empirical Verification of the Methods 
 

Wind speeds are often modelled using the Weibull distribution because it provides a suitable fit 
for wind speed data and incorporates the varying probabilities of different wind speeds. It is 
important to recognize that wind speeds can exhibit different Weibull distributions in different 
locations due to variations in local climate conditions. Numerous statistical methods can be used to 
fit the Weibull distribution to wind speed data, and several studies have been conducted to explore 
its use for estimating wind speed parameters, which can be seen from the previous studies [30-32]. 

To conduct this research, we utilized monthly wind speed data from five provinces in southern 
Thailand during the period of 2008-2012. This data was sourced from the Meteorological Department 
of Thailand and served as an illustrative dataset. Initially, we examined the data distribution using 
the minimum Akaike information criterion (AIC), and Table 3 displays the AIC values for different 
distributions. Notably, the Weibull distribution exhibited the smallest AIC values, indicating its 
compatibility with the dataset. Furthermore, we confirmed this compatibility by conducting a Weibull 
qq-plot (Figure 1), which yielded p-values of 0.8157, 0.1107, 0.1025, 0.2761, and 0.5379. Summary 
statistics for the wind speed datasets of the five provinces in southern Thailand can be found in Table 
4. These statistics provide the number of samples, estimates of scale parameters, shape parameters, 
and the CVs for each province. Additionally, Table 5 summarizes the 95% two-sided confidence 
intervals and credible intervals for the pairwise differences of CVs. This table includes the lower (L) 
and upper (U) bounds, as well as the interval length for each method. 
 

Table 3 
The AIC measurements of the wind speed datasets collected from five provinces in 
southern Thailand 
 Distributions 

Weibull Gamma Lognormal Normal Exponential 

Prachuap Khiri Khan 137.2638 139.5352 145.2464 138.2018 208.0432 
Chumphon 97.6350 98.1604 100.3659 100.2891 165.7571 
Nakhon Si Thammarat -41.3078 36.6078 -28.3861 -41.1056 30.1138 
Songkhla 139.7312 145.5709 153.1028 140.2439 213.5767 
Pattani 68.7226 70.1450 74.6099 71.7907 125.9347 

 

  
(a) (b) 
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(c) (d) 

 
(e) 

Fig. 1. Graphs of Weibull Q-Q plot of wind speed datasets from five provinces in southern 
Thailand: (a) Prachuap Khiri Khan: (b) Chumphon: (c) Nakhon Si Thammarat: (d) Songkhla: 
(e) Pattani 

 
Table 4 
The summary statistics outline the key characteristics of the wind 
speed datasets collected from five provinces in southern Thailand 
 Parameters 

𝑛𝑖  𝑎𝑖  𝑘𝑖  𝜆𝑖  
Prachuap Khiri Khan 60 2.2936 2.9923 0.3642 
Chumphon 60 1.6187 2.9376 0.3703 
Nakhon Si Thammarat 60 0.5198 3.0339 0.3597 
Songkhla 60 2.3964 3.1376 0.3491 
Pattani 60 1.1653 2.6355 0.4081 

 
According to Table 5, the Bayesian credible intervals using gamma and uniform priors had the 

smallest length. However, the Bayesian credible interval with a gamma prior outperformed in terms 
of CP values. Therefore, when considering both CP and EL, it is recommended to use the Bayesian 
credible interval using the gamma prior to estimate the SCIs for the differences of CVs of wind speed 
data from the five provinces in southern Thailand. 
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Table 5 
The 95% confidence and credible intervals for the pairwise differences of CVs of wind speed datasets from five provinces in southern region 
 Baye.gamma-E Baye.gamma-C Baye.uniform-E Baye.uniform-C GCI MOVER 

L U L U L U L U L U L U 

(Length) (Length) (Length) (Length) (Length) (Length) 

𝜆2 − 𝜆1 -0.0918 0.0934 -0.0919 0.0932 -0.0869 0.0998  -0.0873  0.0994 -0.0888 0.1063 -0.5110 0.5259 
(0.1853) (0.1852) (0.1868) (0.1867) (0.1951) (1.0369) 

𝜆3 − 𝜆1 -0.0884 0.0910 -0.1013 -0.5202 -0.5202 0.3744 0.1737 0.3785  -0.1013 0.0888 -0.5202 0.5168 
(0.1794) (0.1790) (0.2052) (0.2048) (0.1902) (1.0371) 

𝜆4 − 𝜆1 -0.0971 0.0760 -0.1104 -0.4901 -0.4901 0.0767  -0.1063 0.0744 -0.1104 0.0781 -0.4901 0.4511 
(0.1732) (0.1725) (0.1815) (0.1807) (0.1886) (0.9413) 

𝜆5 − 𝜆1 -0.0605 0.1359 -0.0542 -0.5049 -0.5049 0.1476 -0.0490  0.1435 -0.0542 0.1477 -0.5049 0.5970 
(0.1965) (0.1952) (0.1928) (0.1925) (0.2020) (1.1020) 

𝜆3 − 𝜆2 -0.1044 0.0876 -0.1061 -0.5393 -0.5393 0.3690 0.1617 0.3681 -0.1061 0.0842 -0.5393 0.5210 
(0.1921) (0.1900) (0.2069) (0.2064) (0.1903) (1.0603) 

𝜆4 − 𝜆2 -0.1219 0.0759 -0.1225 -0.5103 -0.5103 0.0715  -0.1144 0.0713 -0.1225 0.0709 -0.5103 0.4564 
(0.1979) (0.1967) (0.1858) (0.1857) (0.1935) (0.9668) 

𝜆5 − 𝜆2 -0.0629 0.1344 -0.0619 -0.5232 -0.5232 0.1431 -0.0450 0.1486 -0.0619 0.1406 -0.5232 0.6006 
(0.1973) (0.1969) (0.1948) (0.1937) (0.2025) (1.1239) 

𝜆4 − 𝜆3 -0.1078 0.0841 -0.1038 -0.5014 -0.5014 -0.1849 -0.3872 -0.1859 -0.1038 0.0823 -0.5014 0.4656 
(0.1919) (0.1912) (0.2016) (0.2012) (0.1861) (0.9670) 

𝜆5 − 𝜆3 -0.0639 0.1417 -0.0485 -0.5141 -0.5141 -0.1163  -0.3299 -0.1189  -0.0485 0.1509 -0.5141 0.6100 
(0.2057) (0.2048) (0.2120) (0.2109) (0.1995) (1.1241) 

𝜆5 − 𝜆4 -0.0470 0.1511 -0.0367 -0.4528 -0.4528 0.1601 -0.0280 0.1599  -0.0367 0.1588 -0.4528 0.5835 
(0.1981) (0.1972) (0.1881) (0.1880) (0.1955) (1.0363) 
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5. Discussions and Conclusion 
 

La-ongkaew et al., [17] presented Bayesian approaches that relied on a gamma prior distribution 
to estimate CIs for the difference of the CVs of Weibull populations. They compared these methods 
with the GCI method, MOVER method, and bootstrap method. The results of their investigation 
demonstrated that both the Bayesian HPD-interval and the GCI method outperformed the others in 
different scenarios. Based on these methods, we extended our work to construct CIs for the 
differences of CVs of various populations simultaneously. Consequently, we employed Bayesian 
approaches constructed under the equal-tailed CIs and credible intervals using gamma and uniform 
priors to estimate SCIs for the differences of CVs of Weibull distributions. To evaluate their 
effectiveness, we compared these SCIs with the GCI method and the MOVER approach in our 
research, using criteria based on CPs, ELS, and s.e. under various scenarios. Our findings indicate that 
the Bayesian credible interval, utilizing a gamma prior distribution, is recommended for establishing 
SCIs for the differences of CVs of Weibull distributions. 

For this particular study, we chose scale parameters of 0.5 and 2. Notably, the Bayesian credible 
interval with a gamma prior approach exhibited a higher CP at 0.95 in more cases. On the other hand, 
for the GCI method, the EL and s.e. appeared to increase as the scale parameter grew larger. As we 
considered all approaches using different sample sizes, the EL and s.e. decreased as the sample size 
increased. Additionally, we conducted a more in-depth analysis of the results for different sample 
cases (𝑝 = 3, 5, or 10). The simulation outcomes for these scenarios exhibited similarities, suggesting 
that the number of sample cases does not significantly affect the construction of the CI. As a result, 
we have chosen not to include these specific results in this study. Finally, we employed monthly wind 
speed records from five provinces in southern Thailand to gauge the efficacy of the suggested 
approaches. In this instance, the Bayesian credible interval derived from the gamma prior 
demonstrated superior performance, serving as a reliable technique for estimating the SCIs related 
to differences in CVs of Weibull distributions. With knowledge of the difference in the dispersion of 
wind speed in two areas, related agencies can better understand, utilize, prepare for, and even 
predict appropriate wind speed levels. 
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