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The current analytical study is concerned with studying the impact of Cattaneo-Christov 
heat flux of an incompressible flow which obeys Carreau nanofluid inside a symmetric 
channel in the existence of the porous medium. The impacts of couple stress, heat 
generation absorption, joule heating, couple stress viscous dissipation with Soret as 
well as Dufour numbers are all presumed. Long wavelength and law Reynold’s number 
approximations are utilized for solving the governing system of equations. 
Furthermore, the traditional perturbation method together with the homotopy 
perturbation technique (HPM) are applied to obtain the resultant solutions of these 
equations. The different physical parameters on velocity, temperature and 
nanoparticles concentration distributions are illustrated through a set of graphs. It is 
found that the elevate in the slip velocity parameter dwindle the velocity. Meanwhile, 
the rise in the value of thermal relaxation time parameter led to decay the temperature 
of the fluid. Over and above, enhancing the nano Biot number value caused an 
enrichment in the concentration of nanofluid. 
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1. Introduction 
 
     Heat transfer phenomenon results from difference of temperature between two different kinds 
of bodies. Among the applications of transmission of mass and heat are the formation of 
polyethylene and papers, conduction of heat in tissues, crystals growth, cooling of nuclear reactors, 
castings of metals, cooling of metallic sheet in the cooling bath, latent heat storage, and biomedical 
aspects including drug targeting and other applications [1-4]. Heat transfer processes were first 
explored by Fourier [5] whose work revealed that energy profile is parabolic in nature. Afterward, 
Cattaneo [6] modified Fourier’s law by adding the thermal relaxation time factor so that the heat is 
transferred in the thermal wave form with a finite speed. Subsequently, Christov [7] developed the 
model of Cattaneo, which is called the Cattaneo–Christov heat flux model.  Numerous research works 
were conducted to analyze the impacts of Cattaneo-Christov heat flux [8-19]. 
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Nanofluids are instrumental in a wide variety of industrial and technological devices as well as 
engineering applications, of which the most significant are heat exchanger, fuel cells, cooling of 
electronic devices, development of chemical and biosensors, and hybrid power engine, etc. These 
fluids are mainly utilized to modulate thermal conductivity and heat transfer in such a way as to 
achieve the better. Given the importance of these several important applications, many researchers 
have paid considerable attention to the study of nanofluids [20-32]. 

The peristaltic transport of non-Newtonian nanofluid has been instrumental in biomedical 
engineering. Peristaltic flow is regarded as a method of fluid transport, which is induced by a 
progressive wave of area contraction or expansion along the flexible walls of a channel. Transport of 
blood in vessels, industrial pumping, and driving urine from the kidneys to the bladder are among 
the uses of these flows. Fluid trapping and material reflux are two interesting phenomena related to 
peristaltic flows. The peristaltic flow mechanism has become a major concern of numerous 
researchers [33-38]. 

Based on the previous literature, it is found that no study has paid attention to the influences of 
peristaltic nanofluid flow together with the Cattaneo-Christov heat flux model. Moreover, further 
terms which are associated with Brownian motion and thermophoresis impacts, and which appear 
under the theory of Cattaneo–Christov are missing in the previous studies. Furthermore, the 
influence of Cattaneo- Christov heat flux with the peristaltic nanofluid flow was not addressed in the 
preceding studies, excluding Eldabe et al., [39] where Cattaneo-Christov double diffusion 
effectiveness on non-Newtonian nanofluid peristaltic influx was investigated. Thus, the essential 
motivation of this analytical study focusses on studying the influence of the Cattaneo-Christov heat 
flux model as well as couple stress on nanofluid peristaltic flow through a symmetric channel. The 
impacts of heat generation, the permeability of the medium, Soret and Dufour effects, viscous 
dissipation and chemical reaction are also imposed. Moreover, the influence of slip condition for the 
distributions of the axial velocity is considered. Furthermore, the convective condition for 
distributions of nanofluid concentration is also presumed. The mathematical intricacy of this study 
can be alleviating by utilizing the presumptions of long wavelength and low Reynolds number. The 
resultant non-linear equations are analytically disbanded by applying the conventional perturbation 
method together with HPM. The influences of assorted physical parameters on the various 
distributions are analyzed numerically and displayed through a set of graphs. 

 
2. Mathematical Formulation  
 

The nanofluid peristaltic influx in a symmetric horizontal channel of width 2𝑎0 is imposed.  The 
system of Cartesian coordinate (𝜁1, 𝜉1) in the fixed frame is utilized. The 𝜁1 −axis is hypothesized to 
be in the wave prevalence orientation, whereas 𝜉1 −axis is vertical to it. The channel’s walls are 
deemed to be of resilient kind. Sinusoidal waves of protracted wavelength 𝜆0 travelling with a fixed 
speed 𝑐𝑑 over the channel’s walls generate the flow. The lower wall is kept at a temperature 𝑇0

𝑒, and 
nanoparticles phenomena 𝑓0

𝑛. The upper wall is kept at a temperature 𝑇1
𝑒, and nanoparticles 

phenomena 𝑓1
𝑛. The physical model is graphed as seen in Figure 1. 
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Fig. 1. Diagram of fluid influx 
 

The equation of the surface written as 
                                    

𝜉1 = ±𝐻0(𝜁1, 𝑡) = ± [𝑎0 + 𝑏0 𝑠𝑖𝑛
2𝜋

𝜆0

(𝜁1 − 𝑐𝑑𝑡)]                                                                                      (1) 

                                     
The Carreau fluid Cauchy stress tensor 𝜏𝑐  may be introduced as [35] 

                                                    

𝜏𝑐  = - P𝑒 I + 𝜇𝑠(𝜍
⋅
) 𝐴1c                                                                                                                                        (2) 

                                       

𝜇𝑠(𝜍
⋅
) = 𝜇𝑠∞ + (𝜇𝑠0 − 𝜇𝑠∞) [1 + (𝛤1

𝑐𝜍
⋅
)
2
]

𝑛𝑐−1
2

                                                                                             (3) 

                                                        

𝜍
⋅
= √

1

2
𝛩𝑐                                                                                                                                                               (4) 

                                                          

𝛩𝑐 = 𝑡𝑟(𝐴1𝑐
2 )                                                                                                                                                        (5) 

                                                  

 𝐴1c = (𝛻𝑄) + (𝛻𝑄)
𝑇

                                                                                                                                       (6) 

 

The shear thinning fluid is obtained for (0 < 𝑛𝑐 < 1), whilst it’s observed that the fluid behavior 
is the same as the shear thickening when (𝑛𝑐 > 1). Finally, for 𝑛𝑐 = 1, or for 𝛤1

𝑐 = 1 the fluid is 
reduced to the Newtonian case. Thus, by using different values of the Carreau fluid power index 𝑛𝑐, 

several various fluids can be examined. Consider the case when 𝜇𝑠∞ = 0,  and 𝛤1
𝑐𝜍

⋅
≪ 1. 
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Thus, the viscosity of the Carreau fluid model may be rewritten as follows 
                                        

𝜇𝑠(𝜍
⋅
) = 𝜇𝑠0 [1 + (𝛤1

𝑐𝜍
⋅
)
2
]

𝑛𝑐−1
2

                                                                                                                         (7) 

 
Now, the transformations between the fixed frame (𝜁1, 𝜉1)and the wave frame (𝜁, 𝜉)which 

moves with the speed 𝑐 are represented as follows 
    
𝜁 = 𝜁1 − 𝑐𝑑𝑡, 𝜉 = 𝜉1, 𝑞𝜁(𝜁, 𝜉) = 𝑄𝜁1

(𝜁1, 𝜉1; 𝑡) − 𝑐𝑑 

 
𝑞𝜉(𝜁, 𝜉) = 𝑄𝜉1

(𝜁1, 𝜉1; 𝑡), 𝑇
𝑒(𝜁, 𝜉) = 𝑇𝑒(𝜁1, 𝜉1; 𝑡)                                                                                         (8) 

 
𝑓𝑛(𝜁, 𝜉) = 𝑓𝑛(𝜁1, 𝜉1; 𝑡) 
  

where,  (𝑄𝜁1
, 𝑄𝜉1

)  are the ingredients of the velocity components in stationary frame. Whereas 

(𝑞𝜁 , 𝑞𝜉) are in the moving frame. The conducting fluid is permeated by an imposed magnetic field 

𝐵0, which acts in 𝑧 − axis direction i.e., 𝐵 = (0,0, 𝐵0).  For low-Reynolds magnetic field, the induced 
magnetic field and external electric field are neglected. 

Following [33,34,39], the polarization voltage isn’t taken into our consideration (i.e., the total 
electric field is vanishing 𝐸𝑙 = 0). Thus, the current density 𝐽1 may be expressed as follows 

                              

𝐽1 = 𝜎𝑐 (𝑄 ∧ 𝐵)                                                                                                                                                   (9) 

 
Energy equation can be expressed as 

 

(𝜌𝑐)𝑠

𝑑𝑇𝑒

𝑑𝑡
= −𝛻 ⋅ 𝑞𝐻 + (𝜌𝑐)𝑛 [𝐷𝑁(𝛻𝑇𝑒 ⋅ 𝛻𝑓𝑛) +

𝐷𝐻

𝑇0
𝑒 (𝛻𝑇𝑒 ⋅ 𝛻𝑇𝑒)] + (𝜏𝐶𝑜𝑢𝑝𝑙𝑒 ⋅ 𝛻𝑄)

𝐶𝑜𝑢𝑝𝑙𝑒

+ 𝑅𝐺(𝑇𝑒 − 𝑇0
𝑒) +

𝐷𝑁𝐾𝐻

𝐶𝑒𝑛
𝛻2𝑓𝑛                                                                                            (10) 

                                                                                                                                  
2.1 Cattaneo – Christov Heat Influx Model 
  

Cattaneo – Christov heat inflow model may be defined as [8, 10, 11, 39] 
           

𝑞𝐻 + 𝜆𝐻 [
𝜕𝑞𝐻

𝜕𝑡
+ 𝑄 ⋅ 𝛻𝑞𝐻 − 𝑞𝐻 ⋅ 𝛻𝑄 + (𝛻 ⋅ 𝑄) 𝑞𝐻]

= −𝐾1
𝑒𝛻𝑇𝑒                                                              (11) 

 
which is the generalized Fourier’s law. In case (𝜆𝐻 = 0), the classical Fourier’s heat flux law of 

diffusion is retained. For the incompressible fluid, we have (𝛻 ⋅ 𝑄 = 0). Thus, Eq. (11) can be 

rewritten as follows 
                         

𝑞𝐻 + 𝜆𝐻 [
𝜕𝑞𝐻

𝜕𝑡
+ 𝑄 ⋅ 𝛻𝑞𝐻 − 𝑞𝐻 ⋅ 𝛻𝑄] = −𝐾1

𝑒𝛻𝑇𝑒                                                                                     (12) 
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3. The Equations that Govern the Fluid Motion 
 

After applying Eq. (8), these equations may be expressed as follows 
 

𝜕𝑞𝜁

𝜕𝜁
+

𝜕𝑞𝜉

𝜕𝜉
= 0                                                                                                                                                   (13) 

 

𝜌𝑠 (𝑞𝜁  
𝜕𝑞𝜁

𝜕𝜁
+ 𝑞𝜉  

𝜕𝑞𝜁

𝜕𝜉
)

= −
𝜕𝑃𝑒

𝜕𝜁
+

𝜕𝜏𝜁𝜁
𝑐

𝜕𝜁
+

𝜕𝜏𝜁𝜉
𝑐

𝜕𝜉
− (𝜎𝑐𝐵0

2 +
𝜇𝑠0

𝐾1
𝑝)𝑞𝜁 − 𝜂1

𝑐 (
𝜕4𝑞𝜁

𝜕𝜁4
+ 2

𝜕4𝑞𝜁

𝜕𝜁2𝜕𝜉2
+

𝜕4𝑞𝜁

𝜕𝜉4
)     (14) 

                 

𝜌𝑠 (𝑞𝜁  
𝜕𝑞𝜉

𝜕𝜁
+ 𝑞𝜉  

𝜕𝑞𝜉

𝜕𝜉
)

= −
𝜕𝑃𝑒

𝜕𝜉
+

𝜕𝜏𝜉𝜁
𝑐

𝜕𝜁
+

𝜕𝜏𝜉𝜉
𝑐

𝜕𝜉
− (𝜎𝑐𝐵0

2 +
𝜇𝑠0

𝐾1
𝑝)𝑞𝜉 − 𝜂1

𝑐 (
𝜕4𝑞𝜉

𝜕𝜁4
+ 2

𝜕4𝑞𝜉

𝜕𝜁2𝜕𝜉2
+

𝜕4𝑞𝜉

𝜕𝜉4
)     (15) 

                                                                                                                                                                                      

(𝜌𝑐)𝑠 (𝑞𝜁  
𝜕𝑇𝑒

𝜕𝜁
+ q𝜉  

𝜕𝑇𝑒

𝜕𝜉
) + 𝜆𝐻𝛯𝐻

= 𝐾1
𝑒 (

𝜕2𝑇𝑒

𝜕𝜁2
+

𝜕2𝑇𝑒

𝜕𝜉2
) +

𝐷𝑁𝐾𝐻

𝐶𝑒𝑛
(
𝜕2𝑓𝑛

𝜕𝜁2
+

𝜕2𝑓𝑛

𝜕𝜉2
)

+ (𝜌𝑐)𝑛 [𝐷𝑁 (
𝜕𝑇𝑒

𝜕𝜁

𝜕𝑓𝑛

𝜕𝜁
+

𝜕𝑇𝑒

𝜕𝜉

𝜕𝑓𝑛

𝜕𝜉
) +

𝐷𝐻

𝑇0
𝑒 ((

𝜕𝑇𝑒

𝜕𝜁
)
2

+ (
𝜕𝑇𝑒

𝜕𝜉
)
2

)] + 𝑅𝐺(𝑇𝑒 − 𝑇0
𝑒)

− 𝜂1
𝑐

(

 
 

2
𝜕𝑞𝜁

𝜕𝜁

𝜕3𝑞𝜁

𝜕𝜁3
+ 2

𝜕𝑞𝜁

𝜕𝜁

𝜕3𝑞𝜁

𝜕𝜉2𝜕𝜁
+ 2

𝜕𝑞𝜉

𝜕𝜉

𝜕3𝑞𝜉

𝜕𝜉𝜕𝜁2
+ 2

𝜕𝑞𝜉

𝜕𝜉

𝜕3𝑞𝜉

𝜕𝜉3

+
𝜕𝑞𝜁

𝜕𝜉

𝜕3𝑞𝜁

𝜕𝜉3
+

𝜕𝑞𝜁

𝜕𝜉

𝜕3𝑞𝜉

𝜕𝜁3
+

𝜕𝑞𝜉

𝜕𝜁

𝜕3𝑞𝜁

𝜕𝑦3
+

𝜕𝑞𝜉

𝜕𝜁

𝜕3𝑞𝜉

𝜕𝜁3
)

 
 

+ 𝜎𝑐𝐵0
2(𝑞𝜁

2 + 𝑞𝜉
2)                                                                                                                   (16) 

 

𝑞𝜁  
𝜕𝑓𝑛

𝜕𝜁
+ q𝜉  

𝜕𝑓𝑛

𝜕𝜉
= 𝐷𝑁 (

𝜕2𝑓𝑛

𝜕𝜁2
+

𝜕2𝑓𝑛

𝜕𝜉2
) + (

𝐷𝐻

𝑇0
𝑒 +

𝐷𝑁𝐾𝐻

𝑇𝑚
𝑒 ) [

𝜕2𝑇𝑒

𝜕𝜁2
+

𝜕2𝑇𝑒

𝜕𝜉2
] − 𝐾0

𝑛(𝑓𝑛 − 𝑓0
𝑛)       (17) 

                                                                                                                                                                                   
where,    
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𝛯𝐻 = (𝜌𝑐)𝑠 [𝑞𝜁
2
𝜕2𝑇𝑒

𝜕𝜁2
+ 2𝑞𝜁𝑞𝜉

𝜕2𝑇𝑒

𝜕𝜁𝜕𝜉
+ 𝑞𝜉

2 𝜕2𝑇𝑒

𝜕𝜉2
+ (𝑞𝜁

𝜕𝑞𝜁

𝜕𝜁
+ 𝑞𝜉

𝜕𝑞𝜁

𝜕𝜉
)

𝜕𝑇𝑒

𝜕𝜉

+ (𝑞𝜁

𝜕𝑞𝜉

𝜕𝜁
+ 𝑞𝜉

𝜕𝑞𝜉

𝜕𝜉
)

𝜕𝑇𝑒

𝜕𝜉
] −

𝐷𝑁𝐾𝐻

𝐶𝑒𝑛
(𝑞𝜁 (

𝜕3𝑓𝑛

𝜕𝜁3
+

𝜕3𝑓𝑛

𝜕𝜁𝜕𝜉2
) + 𝑞𝜉 (

𝜕3𝑓𝑛

𝜕𝜉3
+

𝜕3𝑓𝑛

𝜕𝜉𝜕𝜁2
))

− 2𝜎𝑐𝐵0
2 (𝑞𝜁

2
𝜕𝑢

𝜕𝜁
+ 𝑞𝜁𝑞𝜉 (

𝜕𝑢

𝜕𝜉
+

𝜕𝑣

𝜕𝜁
) + 𝑞𝜉

2 𝜕𝑣

𝜕𝜉
)

− (𝜌𝑐)𝑛

[
 
 
 
 
 
𝐷𝑁 ((

𝜕𝑇𝑒

𝜕𝜉
(𝑞𝜁

𝜕2𝑓𝑛

𝜕𝜁𝜕𝜉
+ 𝑞𝜉

𝜕2𝑓𝑛

𝜕𝜉2
) +

𝜕𝑓𝑛

𝜕𝜉
(𝑞𝜁

𝜕2𝑇𝑒

𝜕𝜁𝜕𝜉
+ 𝑞𝜉

𝜕2𝑇𝑒

𝜕𝜉2
)))

+2
𝐷𝐻

𝑇0
𝑒 (

𝜕𝑇𝑒

𝜕𝜁
(𝑞𝜁

𝜕2𝑇𝑒

𝜕𝜁2
+ 𝑞𝜉

𝜕2𝑇𝑒

𝜕𝜁𝜕𝜉
) +

𝜕𝑇𝑒

𝜕𝜉
(𝑞𝜁

𝜕2𝑇𝑒

𝜕𝜁𝜕𝜉
+ 𝑞𝜉

𝜕2𝑇𝑒

𝜕𝜉2
))

]
 
 
 
 
 

− 𝑅𝐺 (𝑞𝜁  
𝜕𝑇𝑒

𝜕𝜁
+ 𝑞𝜉  

𝜕𝑇𝑒

𝜕𝜉
) −                                                                                            

𝜂1
𝑐

(

 
 
 
 
 
 
 
 
 

2𝑞𝜁
𝜕2𝑞𝜁

𝜕𝜁2

𝜕3𝑞𝜁

𝜕𝜁3 + 2𝑞𝜉
𝜕2𝑞𝜁

𝜕𝜁𝜕𝜉

𝜕3𝑞𝜁

𝜕𝜁3 + 2𝑞𝜁
𝜕𝑞𝜁

𝜕𝜁

𝜕4𝑞𝜁

𝜕𝜁4 + 2𝑞𝜉
𝜕𝑞𝜁

𝜕𝜁

𝜕4𝑞𝜁

𝜕𝜉𝜕𝜁3 + 2𝑞𝜁
𝜕2𝑞𝜁

𝜕𝜁2

𝜕3𝑞𝜁

𝜕𝜁𝜕𝜉2

+2𝑞𝜁
𝜕𝑞𝜁

𝜕𝜁

𝜕4𝑞𝜁

𝜕𝜉2𝜕𝜁2 + 2𝑞𝜉
𝜕2𝑞𝜁

𝜕𝜁𝜕𝜉

𝜕3𝑞𝜁

𝜕𝜁𝜕𝜉2 + 2𝑞𝜉
𝜕𝑞𝜁

𝜕𝜁

𝜕4𝑞𝜁

𝜕𝜁𝜕𝜉3 + 2𝑞𝜁
𝜕2𝑞𝜉

𝜕𝜁𝜕𝜉

𝜕3𝑞𝜉

𝜕𝜉𝜕𝜁2 + 2𝑞𝜁
𝜕𝑞𝜉

𝜕𝜉

𝜕4𝑞𝜉

𝜕𝜉𝜕𝜁3

+2𝑞𝜉
𝜕2𝑞𝜉

𝜕𝜉2

𝜕3𝑞𝜉

𝜕𝜉𝜕𝜁2 + 2𝑞𝜉
𝜕𝑞𝜉

𝜕𝜉

𝜕4𝑞𝜉

𝜕𝜉2𝜕𝜁2 + 2𝑞𝜁
𝜕2𝑞𝜉

𝜕𝜁𝜕𝜉

𝜕3𝑞𝜉

𝜕𝜉3 + 2𝑞𝜁
𝜕𝑞𝜉

𝜕𝜉

𝜕4𝑞𝜉

𝜕𝜁𝜕𝜉3 + 2𝑞𝜉
𝜕2𝑞𝜉

𝜕𝜉2

𝜕3𝑞𝜉

𝜕𝜉3

+2𝑞𝜉
𝜕𝑞𝜉

𝜕𝜉

𝜕4𝑞𝜉

𝜕𝜉4 + 𝑞𝜁
𝜕2𝑞𝜁

𝜕𝜁𝜕𝜉

𝜕3𝑞𝜁

𝜕𝜉3 + 𝑞𝜁
𝜕𝑞𝜁

𝜕𝜉

𝜕4𝑞𝜁

𝜕𝜁𝜕𝜉3 + 𝑞𝜉
𝜕2𝑞𝜁

𝜕𝜉2

𝜕3𝑞𝜁

𝜕𝜉3 + 𝑞𝜉
𝜕𝑞𝜁

𝜕𝜉

𝜕4𝑞𝜁

𝜕𝜉4 + 𝑞𝜁
𝜕𝑞𝜁

𝜕𝜉

𝜕4𝑞𝜉

𝜕𝜁4

+𝑞𝜉
𝜕2𝑞𝜁

𝜕𝜉2

𝜕3𝑣

𝜕𝜁3 + 𝑞𝜉
𝜕𝑞𝜁

𝜕𝜉

𝜕4𝑞𝜉

𝜕𝜁3𝜕𝜉
+ 𝑞𝜁

𝜕3𝑞𝜁

𝜕𝜉3

𝜕2𝑞𝜉

𝜕𝜁2 + 𝑞𝜁
𝜕𝑞𝜉

𝜕𝜁

𝜕4𝑞𝜁

𝜕𝜁𝜕𝜉3 + 𝑞𝜉
𝜕2𝑞𝜉

𝜕𝜁𝜕𝜉

𝜕3𝑞𝜁

𝜕𝜉3 + 𝑞𝜉
𝜕𝑞𝜉

𝜕𝜁

𝜕4𝑞𝜁

𝜕𝜉4

+𝑞𝜁
𝜕2𝑞𝜉

𝜕𝜁2

𝜕3𝑞𝜉

𝜕𝜁3 + 𝑞𝜁
𝜕𝑞𝜉

𝜕𝜁

𝜕4𝑞𝜉

𝜕𝜁4 + 𝑞𝜉
𝜕2𝑞𝜉

𝜕𝜁𝜕𝜉

𝜕3𝑞𝜉

𝜕𝜁3 + 𝑞𝜉
𝜕𝑞𝜉

𝜕𝜁

𝜕4𝑞𝜉

𝜕𝜁3𝜕𝜉 )

 
 
 
 
 
 
 
 
 

          (18)  

    
The stream function 𝜓(𝑥, 𝑦) can be introduced as follows: 

                  

𝑞𝜁 =
𝜕𝛹𝑠

𝜕𝜉
 𝑎𝑛𝑑  𝑞𝜉 = −

𝜕𝛹𝑠

𝜕𝜁
                                                                                                                           (19) 

 
The dimensionless variables are introduced as:  
 

𝑊𝑒
𝑐 =

𝛤1
𝑐𝑐𝑑

𝑎0
, 𝜁∗ =

𝜁

𝜆0
, 𝜉∗ =

𝜉

𝑎0
, 𝛿1 =

𝑎0

𝜆0
, 𝜀0 =

𝑏0

𝑎0
, 𝜓𝑠

∗ =
𝛹𝑠

𝑐𝑑𝑎0
, 𝛤𝐻 =

𝑐𝑑𝜆𝐻

𝑎0
, 𝑅𝑒𝑛 =

𝜌𝑠𝑐𝑑𝑎0

𝜇𝑠0
, 𝑃𝑚

∗

=
𝑃𝑒𝑎0

2

𝜆0𝑐𝑑𝜇𝑠0
, 60∘ 

 

𝐻0
∗ =

𝐻0

𝑎0
, 𝑣𝑠 =

𝜇𝑠0

𝜌𝑠
, 𝜃𝐸 =

𝑇𝑒 − 𝑇0
𝑒

𝑇1
𝑒 − 𝑇0

𝑒 , 𝐹𝑁 =
𝑓𝑛 − 𝑓0

𝑛

𝑓1
𝑛 − 𝑓0

𝑛 , 𝐵𝑚1 =
𝐿𝑛1𝑎0

𝐷𝑁
, 𝐵𝑚2 =

𝐿𝑛2𝑎0

𝐷𝑁
, 𝑃𝑟𝑎 =

𝑐𝑠𝜇𝑠0

𝐾1
𝑒  

 

𝐵𝑟𝑘 = 𝐸𝑐𝑘𝑃𝑟𝑎, 𝛾𝑐
2 =

𝜇𝑠0𝑎0
2

𝜂1
𝑐 , 𝑆𝑜𝑟 =

𝐷𝑁𝐾𝐻(𝑇1
𝑒 − 𝑇0

𝑒)

𝑣𝑠𝑇𝑚
𝑒 (𝑓1

𝑛 − 𝑓0
𝑛)

,𝑀𝐹
2 =

𝜎𝑐𝐵0
2𝑎0

2

𝜇𝑠0
, 𝐷𝐴𝑟 =

𝐾1
𝑝

𝑎0
2 , 𝑅𝑐𝑟 =

𝐾0
𝑛𝑎0

2

𝑣𝑓
       (20) 

 

𝑆𝑐ℎ =
𝑣𝑠

𝐷𝑁
, 𝜏𝑠

𝑛 =
(𝜌𝑐)𝑛

(𝜌𝑐)𝑠
, 𝑁𝑡ℎ =

𝜏𝑠
𝑛𝐷𝑇(𝑇1

𝑒 − 𝑇0
𝑒)

𝑣𝑠𝑇0
𝑒 , 𝐷𝑓 =

𝐷𝑁𝐾𝐻(𝑓1
𝑛 − 𝑓0

𝑛)

𝑐𝑛𝑣𝑠𝐶𝑒𝑛(𝑇1
𝑒 − 𝑇0

𝑒)
, 𝑁𝑏𝑟 =

𝜏𝑠
𝑛𝐷𝑁(𝑓1

𝑛 − 𝑓0
𝑛)

𝑣𝑠
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𝛽1
𝑠 =

𝛽∗

𝑎0
, 𝛽𝐻 =

𝑅𝐺𝑎0
2

𝐾1
𝑒𝑐𝑠

, 𝐸𝑐𝑘 =
𝑐𝑑

2

𝑐𝑠(𝑇1
𝑒 − 𝑇0

𝑒)
, 𝜏𝜉𝜉

𝑐∗ =
𝑎0

𝑐𝑑𝜇𝑠0
𝜏𝜉𝜉 , 𝜏𝜁𝜉

𝑐∗ =
𝑎0

𝑐𝑑𝜇𝑠0
𝜏𝜁𝜉 , 𝜏𝜁𝜁

𝑐∗ =
𝑎0

𝑐𝑑𝜇𝑠0
𝜏𝜁𝜁 

                                                                                                                                                                                                            
     By differentiating Eq. (14) w.r.to y and Eq. (15) w.r.to x then subtract the results to eliminate the 
pressure. After that utilize the approximations of the long wavelength (𝛿1 << 1)with low Reynolds 
number (𝑅𝑒𝑛 ≪ 1), and substituting from Eq. (19) and (20) into Eq. (13)-(18). Thereafter, for 
facilitating star marks are disregarded. Thus, the dimensionless differential equations become 
  

𝑅𝑒𝑛𝛿1 (𝜓𝑠𝜉

𝜕3𝜓𝑠

𝜕𝜁𝜕𝜉2
− 𝜓𝑠𝜁

𝜕3𝜓𝑠

𝜕𝜉3
)

= −
1

𝛾𝑐
2

𝜕6𝜓𝑠

𝜕𝜉6
+

𝜕4𝜓𝑠

𝜕𝜉4
− (𝑀𝐹

2 +
1

𝐷𝐴𝑟
)
𝜕2𝜓𝑠

𝜕𝜉2
+

3(𝑛𝑐 − 1)

2
𝑊𝑒

𝑐2 (
𝜕2𝜓𝑠

𝜕𝜉2
)

2
𝜕4𝜓𝑠

𝜕𝜉4

+
6(𝑛𝑐 − 1)

2
𝑊𝑒

𝑐2 (
𝜕3𝜓𝑠

𝜕𝜉3
)

2
𝜕2𝜓𝑠

𝜕𝜉2
                                                                                                                   (21) 

 
𝜕2𝜃𝐸

𝜕𝜉2

= 𝑅𝑒𝑛𝑃𝑟𝑎𝛿1 (𝜓𝑠𝜉

𝜕𝜃𝐸

𝜕𝜁
− 𝜓𝑠𝜁

𝜕𝜃𝐸

𝜕𝜉
) − 𝑃𝑟𝑎𝑁𝑏𝑟 (

𝜕𝜃𝐸

𝜕𝜉
) (

𝜕𝐹𝑁

𝜕𝜉
) − 𝑃𝑟𝑎𝑁𝑡ℎ (

𝜕𝜃𝐸

𝜕𝜉
)
2

− 𝑃𝑟𝑎𝛽𝐻𝜃𝐸

−
𝐵𝑟𝑘

𝛾𝑐
2

𝜕2𝜓𝑠

𝜕𝜉2

𝜕4𝜓𝑠

𝜕𝜉4
− 𝑀𝐹

2𝐵𝑟𝑘 (
𝜕𝜓𝑠

𝜕𝜉
)

2

− 𝐷𝑓𝐵𝑟𝑘

𝜕2𝐹𝑁

𝜕𝜉2

− 𝛿1𝛤𝐻

[
 
 
 
 
 
 
 
 
 
 𝑃𝑟𝑎𝑁𝑏𝑟 (𝜓𝑠𝜉 (

𝜕𝐹𝑁

𝜕𝜉

𝜕2𝜃𝐸

𝜕𝜁𝜕𝜉
+

𝜕𝜃𝐸

𝜕𝜉

𝜕2𝐹𝑁

𝜕𝜁𝜕𝜉
) − 𝜓𝑠𝜁 (

𝜕𝐹𝑁

𝜕𝜉

𝜕2𝜃𝐸

𝜕𝜉2
+

𝜕𝜃𝐸

𝜕𝜉

𝜕2𝐹𝑁

𝜕𝜉2
)) +

2𝑃𝑟𝑎𝑁𝑡ℎ (𝜓𝑠𝜉

𝜕𝜃𝐸

𝜕𝜉

𝜕2𝜃𝐸

𝜕𝜁𝜕𝜉
− 𝜓𝑠𝜁

𝜕𝜃𝐸

𝜕𝜉

𝜕2𝜃𝐸

𝜕𝜉2
) + 𝑃𝑟𝑎𝛽𝐻 (𝜓𝑠𝜉

𝜕𝜃𝐸

𝜕𝜁
− 𝜓𝑠𝜁

𝜕𝜃𝐸

𝜕𝜉
) +

2𝑀𝐹
2𝐵𝑟𝑘 ((

𝜕𝜓𝑠

𝜕𝜉
)
2 𝜕2𝜓𝑠

𝜕𝜁𝜕𝜉
− 𝜓𝑠𝜁𝜓𝑠𝜉

𝜕2𝜓𝑠

𝜕𝜉2
) + 𝐷𝑓𝐵𝑟𝑘 (𝜓𝑠𝜉

𝜕3𝐹𝑁

𝜕𝜁𝜕𝜉2
− 𝜓𝑠𝜁

𝜕3𝐹𝑁

𝜕𝜉3
)

+
𝐵𝑟𝑘

𝛾𝑐
2

(𝜓𝑠𝜉 (
𝜕4𝜓𝑠

𝜕𝜉4

𝜕3𝜓𝑠

𝜕𝜁𝜕𝜉2
+

𝜕2𝜓𝑠

𝜕𝜉2

𝜕5𝜓𝑠

𝜕𝜁𝜕𝜉4
) − 𝜓𝑠𝜁 (

𝜕3𝜓𝑠

𝜕𝜉3

𝜕4𝜓𝑠

𝜕𝜉4
+

𝜕2𝜓𝑠

𝜕𝜉2

𝜕5𝜓𝑠

𝜕𝜉5
))

]
 
 
 
 
 
 
 
 
 
 

               (22) 

                                                                                                                                               
𝜕2𝐹𝑁

𝜕𝜉2
= 𝑅𝑒𝑛𝑆𝑐ℎ𝛿1 (𝜓𝑠𝜉

𝜕𝐹𝑁

𝜕𝜁
− 𝜓𝑠𝜁

𝜕𝐹𝑁

𝜕𝜉
) − (𝑆𝑜𝑟𝑆𝑐ℎ +

𝑁𝑡ℎ

𝑁𝑏𝑟
)
𝜕2𝜃𝐸

𝜕𝜉2
+ 𝑅𝑐𝑟𝑆𝑐ℎ𝐹𝑁                                  (23) 

 
The convenient boundary conditions may be expressed as [33,35,39] 
 

𝜓𝑠𝜉 = −1 − 𝛽1
𝑠 (𝜓𝑠𝜉𝜉 + (

𝑛𝑐 − 1

2
)𝑊𝑒

𝑐2(𝜓𝑠𝜉𝜉)
3
) , 𝜓𝑠𝜉𝜉𝜉 = 0, 𝜃𝐸 = 0,

𝜕𝐹𝑁

𝜕𝑦
− 𝐵𝑚1𝐹𝑁 = 0     

𝑎𝑡 𝜉 = −1 − 𝜀0 𝑠𝑖𝑛 2𝜋𝜁                                                                                                                                  (24)  
       
 𝜓𝑠 = 0 at 𝜉 = 0                                                                                                                                                 (25) 
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𝜓𝑠𝜉 = −1 − 𝛽1
𝑠 (𝜓𝑠𝜉𝜉 + (

𝑛𝑐 − 1

2
)𝑊𝑒

𝑐2(𝜓𝑠𝜉𝜉)
3
) , 𝜓𝑠𝜉 = −1, 𝜓𝑠𝜉𝜉𝜉 = 0, 𝜃𝐸 = 1,

𝜕𝐹𝑁

𝜕𝜉
+ 𝐵𝑚2(𝐹𝑁 − 1)

= 0 
 
at 𝜉 = 1 + 𝜀0 𝑠𝑖𝑛 2𝜋𝜁                                                                                                                                      (26) 
 
4. Methodology of Solution 
4.1 Regular Perturbation Technique 
 

In accordance with the mechanism of conventional perturbation, the outcomes are expanded in 
terms of the wave number 𝛿 as   

 
𝛥 = Δ0 + 𝛿1𝛥1 + 𝛿1

2 𝛥2 +⋅⋅⋅⋅⋅⋅⋅⋅⋅                                                                                                                    (27) 
 
where, 𝛥 points out to any one of these distributions  𝑞𝜁, 𝜃𝐸  𝐹𝑁 

 
4.2 Homotopy Perturbation Method (HPM) 
 

HPM can be applied to make another approximate solution for these equations after utilizing 
(27). According to HPM [33,34,39-44], we suppose that 𝑞𝜁0, 𝜃𝐸0 and 𝐹N0 have the solution of the form 

                                      
𝛴0= Σ00+ 𝑃𝐻 𝛴01+ P𝐻

2 𝛴02 +⋅⋅⋅⋅⋅⋅⋅⋅⋅                                                                                                               (28) 
                                                  
where, 𝛴 refers to any one of these distributions  𝑞𝜁0, 𝜃𝐸0 with𝐹N0. 

The linear operators may be represented as 
                                   

𝐿1(𝑞𝜁) =
𝜕6𝑞𝜁

𝜕𝜉6
                                                                                                                                                  (29) 

 

𝐿2(𝜃𝐸) =
𝜕2𝜃𝐸

𝜕𝜉2
                                                                                                                                                  (30) 

                                                                                                      

𝐿3(𝐹𝑁) =
𝜕2𝐹𝑁

𝜕𝜉2
− (𝑆𝑟𝑆𝑐 +

𝑁𝑡

𝑁𝑏
)                                                                                                                     (31) 

                                                                       
The initial guessing may be presupposed as 
 

                 

𝑞𝜁00 =
1

120
 𝜔1𝜉

5+ 
1

24
 𝜔2𝜉

4 +
1

6
 𝜔3𝜉

3 +
1

2
 𝜔4𝜉

2 + 𝜔5𝜉
2 + 𝜔6                                                        (32) 

 
𝜃𝐸00 = 𝜔7𝜉 + 𝜔8                                                                                                                                              (33) 
                     

𝐹𝑁00 =
1

2
(
𝑁𝑡ℎ

𝑁𝑏𝑟
 +𝑆𝑜𝑟𝑆𝑐ℎ) 𝜉2 + 𝜔9𝜉 + 𝜔10                                                                                                  (34) 
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Also, the distributions of 𝑞𝜁1, 𝜃𝐸1 and 𝐹N1 .have the solution of the form 

                              
𝜒1= 𝜒10+ P𝐻 𝜒11+ P𝐻

2 𝜒12 +⋅⋅⋅⋅⋅⋅⋅⋅⋅                                                                                                               (35) 
                                             
where, 𝜒 stands for any one of  𝑞𝜁1, 𝜃𝐸1 and 𝐹N1 . 

By applying the same forgoing steps and utilizing HPM as well as the linear operators definitions, 
the initial guesses solutions for: 𝑞𝜁1, 𝜃𝐸1 and 𝐹N1 may be represented as follows 

 

𝑞𝜁10 =
1

120
 𝜔21𝜉

5+ 
1

24
 𝜔22𝜉

4 +
1

6
 𝜔23𝜉

3 +
1

2
 𝜔24𝜉

2 + 𝜔25𝜉
2 + 𝜔26                                             (36) 

                   
𝜃𝐸10 = 𝜔27𝜉 + 𝜔28                                                                                                                                           (37) 
 
𝐹𝑁10 = 𝜔29𝜉 + 𝜔30                                                                                                                                           (38) 
 

On utilizing the preceding power series solution into Eq. (21)-(26), then the complete solutions 
may be expressed as 

 
𝑞𝜁

=

(

 
 

(𝜔6 + 𝜔16) + (𝜔5 + 𝜔15)𝜉 +
1

2
 (𝜔4 + 𝜔14)𝜉

2 +
1

6
 (𝜔3 + 𝜔13)𝜉

3

+
1

24
 (𝜔2 + 𝜔12)𝜉

4 +
1

120
 (𝜔1 + 𝜔11)𝜉

5 + 𝛺1𝜉
6 + 𝛺2𝜉

7 + 𝛺3𝜉
8 + 𝛺4𝜉

9

+𝛺5𝜉
10 + 𝛺6𝜉

11 + 𝛺7𝜉
12 + 𝛺8𝜉

13 )

 
 

+ 𝛿1

(

 
 
 
 
 

(𝜔26 + 𝜔36) + (𝜔25 + 𝜔35)𝜉 +
1

2
 (𝜔24 + 𝜔34)𝜉

2 +
1

6
 (𝜔23 + 𝜔33)𝜉

3

+
1

24
 (𝜔22 + 𝜔32)𝜉

4 +
1

120
 (𝜔21 + 𝜔31)𝜉

5 + 𝛺9𝜉
6 + 𝛺10𝜉

7 + 𝛺11𝜉
8 +

𝛺12𝜉
9 + 𝛺13𝜉

10 + 𝛺14𝜉
11 + 𝛺15𝜉

12 + 𝛺16𝜉
13 + 𝛺17𝜉

14 + 𝛺18𝜉
15 + 𝛺19𝜉

16 +

𝛺20𝜉
17 + 𝛺21𝜉

18 + 𝛺22𝜉
19 + 𝛺23𝜉

20 + 𝛺24𝜉
21 + 𝛺25𝜉

22 + 𝛺26𝜉
23 + 𝛺27𝜉

24

+𝛺28𝜉
25 + 𝛺29𝜉

26 + 𝛺30𝜉
27 + 𝛺31𝜉

28 + 𝛺32𝜉
29 )

 
 
 
 
 

              (39) 

 

( ) ( )

( ) ( )

2 3 4 5 6 7

8 18 7 17 33 34 35 36 37 38

8 9 10

39 40 41

2 3 4 5 6 7

28 38 27 37 42 43 44 45 46 47

8 9 10 11 12 13 14 15 16

48 49 50 51 52 53 54 55 56 57

1

=E

          


  

          

        



 + + + + + + + + + +
+ 

  + + 

+ + + + + + + + + +

 + + + + + + + + + 17

18 19 20 21 22 23 24 25 26

58 59 60 61 62 63 64 65 66

27 28 29 30 31 32 33 34 35

67 68 69 70 71 72 73 74 75

36 37 38

76 77 78

,



        

        

  

 
 
 
 
+ + + + + + + + + 
 + + + + + + + + + +
 
  + +
 

                              (40) 
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FN =(

(ω10 + ω20) + (ω9 + ω19)ξ +

(
1

2
(
Nt

Nb
 +SrSc) + Ω79) ξ2 + Ω80ξ3 + Ω81ξ4)

+ δ1 (

(ω30 + ω39) + (ω29 + ω40)ξ + Ω82ξ2 + Ω83ξ3 + Ω84ξ4

+Ω85ξ5 + Ω86ξ6 + Ω87ξ7 + Ω88ξ8 + Ω89ξ9 + Ω90ξ10 + Ω91ξ11

+Ω92ξ12 + Ω93ξ13 + Ω94ξ14 + Ω95ξ15 + Ω96ξ16 + Ω97ξ17 + Ω98ξ18

)                                    (41) 

 
5. Numerical Discussions 
 

The Mathematica software is utilized for illustrating the quantitative impacts of the diverse 
physical parameters on the distributions of 𝑞𝜁,  𝜃𝐸   and 𝐹𝑁. The ranges of the dimensionless variables 

are imposed as [33] and [39]. ( 1,raP = 0 0.2, 1, 0.2,FM = = = 0.1,brN = 0.5,chS = 0.5,orS =

1 0.1, = 2.0,c = 1.5,cn = 0.5,H =
11.5, 0.5, 0.5, 0.5s

H f crD R = = = =  and 0.1).thN =  

The effect of the Weissenberg number 𝑊𝑒
𝑐 on the axial velocity 𝑞𝜁  is illustrated through Figure 2.  

It is found that 𝑞𝜁  enhances in accordance to enrich in 𝑊𝑒
𝑐.  From the physical attitude, the 

Weissenberg number is inversely proportional to viscosity. Therefore, rising in 𝑊𝑒
𝑐 deemed as reason 

for decaying in the viscosity of the fluid, which enlarges the axial velocity 𝑞𝜁correspondingly. This 

demeanor is totally consistent to the behavior that reported in [15], [32], and [35].  Figure 3 portrays 
the impact of the velocity slip parameter𝛽1

𝑠 on the axial velocity 𝑞𝜁. It is recognized that when the 

value of 𝛽1
𝑠 is enhanced, the axial velocity 𝑞𝜁 is dwindled. Also, in case of no slip condition (𝛽1

𝑠 = 0),  

the 𝑞𝜁 is larger than that in case of the slip parameter. In fact, the slip boundary condition or velocity 

offset boundary condition represents the relative movement between the fluid and the boundary. A 
slip parameter describes the discontinuity in the velocity function. Therefore, the elevate in 𝛽1

𝑠 leads 
to decline the axial velocity profile. This noticeable demeanor is greatly congruous to that obtained 
in [46]. 

The influences of the parameters 𝛾𝑐, 𝑀𝐹and 𝐷𝐴𝑟 on 𝑞𝜁  are also studied. It is noticed that all these 

parameters behave in the same way as the slip parameter 𝛽1
𝑠. The impact of the couple stress 

parameter 𝛾𝑐 on velocity 𝑞𝜁  is taken into account. It is found that the velocity profile is the decaying 

function under the influence of the couple stress parameter𝛾𝑐. Physically, this behavior occurs since 
elevating in the couple stress parameter leads to enhance the viscosity, which declines the fluid 
velocity. This important observation is consistent with the behavior recorded by [30], [33] and [45]. 
Also, velocity dwindles with an enhancement in 𝑀𝐹 . As known, 𝑀𝐹 is deemed as the proportion 
amidst the magnetic strength and the viscid one.  So, it is found that the enhancing in 𝑀𝐹 leads to 
reduce 𝑞𝜁.  From the physical visualization, this phenomenon accords with the theory which states 

that the rise in 𝑀𝐹increases the Lorentz force. Once noticing that the Lorentz force impedes the 
movement of the fluid influx. 𝑀𝐹impact has a significant role in a huge number of industrial 
applications, particularly in favor of solidification processes such as casting and semiconductor single 
crystal growth applications. In these claims, as the liquids experience solidification, fluid flow and 
turbulence occur in the solidifying liquid pool and have critical impacts on the product quality control. 
The practice of magnetic fields has effectively been applied to monitoring melt convection in 
solidification systems [9,10,33,35,39,47]. On the other hand, velocity is observed as an increasing 
function with a rise in the value of Darcy number 𝐷𝐴𝑟 . From a physical perspective, the elevate in the 
value of Darcy number diminishes the drag force and hence enhances the flow velocity. This evident 
result is in a good agreement with that pointed out by [30]. These figures are excluded here to keep 
space. 
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Fig. 2. The attitude of  c

eW on q  

       

 
Fig. 3. The attitude of  1

s  on q  

 
Figure 4 displays the impact of 𝛤𝐻 on 𝜃𝐸 . As seen from this figure, the 𝜃𝐸  dwindles with the rise 

in 𝛤𝐻. From physical perspective, the enhancement in 𝛤𝐻 causes a non-conducting behavior. 
Moreover, one found that more time is required for the particles to carry heat to its neighboring one, 
which reduces 𝜃𝐸 .  Furthermore, 𝜃𝐸  enlarges when 𝛤𝐻 = 0. This resultant outcome is compatible 
with the that illustrated by [8], [9], [10], [11], [13], [30], and [39]. The influence of 𝛾𝑐 on  𝜃𝐸  is exhibits 
through Figure 5. It is found that 𝜃𝐸  is enriched with the elevation in 𝛾𝑐. In fact, when an extra force 
is added to the fluid which obstruct the flow of the fluid, this resistance causes a couple force, 
therefore a couple stress is induced in the fluid. This type of fluid is known as couple stress fluid.  This 
obtained result is in good agreement with that represented by [30].  
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Fig. 4. The influence of  H  

 

 

Fig. 5. The influence c  on E  

 

     The impacts of 𝑀𝐹 , ,brN  𝐷𝑓and 𝑆𝑜𝑟 on 𝜃𝐸  are also studied.  It’s realized that 𝜃𝐸  is enhanced with 

an enhancement in𝑀𝐹. This resultant outcome is compatible to [48]. The impact of 𝑁𝑏𝑟 on 𝜃𝐸   is 
illustrated. one found that an enhancement in 𝑁𝑏𝑟 enlarges 𝜃𝐸 . This resultant outcome is compatible 
with that illustrated by [9], [15] and [33]. Finally, 𝜃𝐸  has a progressive reduction for diverse values of 
both 𝐷𝑓 as well as 𝑆𝑜𝑟. It is revealed that 𝜃𝐸  elevates for the growth in 𝐷𝑓 together with 𝑆𝑜𝑟 . In fact, 

the enrichment in both 𝐷𝑓 as well as 𝑆𝑜𝑟elevates the thermal-diffusion, and consequently the 

temperature 𝜃𝐸  rises. From the physical situation, the diffusion-thermo is known as a heat influx 
conducted when a chemical system undergoes a concentration gradient. These influences are 
essentially relied on thermal-diffusion.  Mass diffusion is pursued by the disparate distribution of 
species producing a concentration gradient. Furthermore, a temperature gradient may be considered 
as a driving force for mass diffusion which is named thermo-diffusion or Soret impact. Thus, the 
enhancement in the Soret number elevates the temperature gradient. This resultant behavior is 
totally consistent with that observed by [47]. To avert repetition, these Figures are excluded.  

The impact of the Soret number 𝑆𝑜𝑟 on the nanofluid concentration 𝐹𝑁 is displayed from Figure 
6. It is found, the rising in the Soret number 𝑆𝑜𝑟 enhancing the nanofluid concentration 𝐹𝑁. Figure 7 
describe the impact of the Schmidt number𝑆𝑐ℎon the nanofluid concentration 𝐹𝑁. It is found that 𝐹𝑁 
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dwindles with the elevation in the value of 𝑆𝑐ℎ. Indeed, 𝑆𝑐ℎrepresents the ratio of thermal diffusivity 
to mass diffusivity. This is utilized to characterize flows in which there is a simultaneous heat and 
mass (by convection) transfer. Thus, the enlargement in 𝑆𝑐ℎ causes a reduction in the mass diffusion 
which enriches the inter – molecular force and reduces nanoparticles concentration 𝐹𝑁. Also, Schmidt 
number is inversely proportional to mass diffusivity, that is, the higher the Schmidt number, the less 
mass diffusivity, hence nano concentration distribution drops. This observed finding corresponds to 
those observed in [9], [11], [12], [13], [14], [34], [35], and [39].  
 

 
Fig. 6. The demeanor of orS  on NF  

 

 
Fig. 7. The conduct of chS  on NF  

 
      The impacts of  𝑅𝑐𝑟 and 𝐵𝑚1 on 𝐹𝑁 are examined.  It is observed that the conducts of both 𝑅𝑐𝑟and 
𝐵𝑚1 are as the same as the behavior of 𝑆𝑐ℎ. The impact of the chemical reaction parameter 𝑅𝑐𝑟 on 
the nanofluid concentration 𝐹𝑁 is displayed in Figure 6. The enhancing in the chemical reaction 
parameter 𝑅𝑐𝑟 is responsible for elevation in the nanofluid concentration 𝐹𝑁.  In fact, 𝑅𝑐𝑟 boosts the 
interfacial mass transfer rate which decays 𝐹𝑁. The impact of nano Biot number 𝐵𝑚1 on the nanofluid 
concentration 𝐹𝑁 is investigated. It is recognized that the rise in 𝐵𝑚1 causes a progressive reduction 
in 𝐹𝑁.  In the physical situation, this behavior takes place since the rise in 𝐵𝑚1 reduces the thermal 
conductivity of fluid influx. Thus, the fluid temperature 𝜃𝐸  is diminished, consequently the nanofluid 
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concentration 𝐹𝑁 is decayed. In other words, mass conductivity is dwindled by enlarging in 𝐵𝑚1, 
which responsible for decaying in the nanofluid concentration 𝐹𝑁. This noticed result is in great 
agreement with that explained in [35].  
 
6. Conclusion 
        

This analytical study target is to exhibits the impact of Cattaneo-Christov heat influx on the 
peristaltic influx for Carreau nanofluid between two horizontal symmetric channels. The impacts of 
couple stress, couple stress viscous dissipation, Soret, Dufour, porous medium, heat absorption and 
chemical reaction are also examined. The governing resulting equations of motion are represented 
in a dimensionless form. The obtained non-linear system is very complicated to solve analytically. 
Thus, to relax the complexity of the mathematical procedure, assumptions of long wavelength, 
together with low Reynolds’s number are utilized, followed by the regular perturbation as well as the 
HPM up to first order. A group of graphs is drawn to describe the influences of the several diverse 
dimensionless parameters on 𝑞𝜁, 𝜃𝐸  and 𝐹𝑁 distributions. The numerical results are found to be in a 

great agreement with other preceding studies. The concluding remarks may be summarized and 
outlined as follows 

 
i. 𝑞𝜁  is reduced for enlarging in 𝛽1

𝑠, 𝛾𝑐, 𝑀𝐹, 𝐷𝐴𝑟 , whilst it rises with the growth in 𝑊𝑒
𝑐 .  

ii. 𝜃𝐸  is enhanced for the rise of 𝑀𝐹and 𝑁𝑏𝑟 , Meanwhile, 𝜃𝐸  is reduced for growth in 
,H

𝐷𝑓, 𝑆𝑜𝑟. 

iii. 𝐹𝑁 is reduced for the rise in 1,mB 𝑆𝑜𝑟, 𝑆𝑐ℎ, 𝑅𝑐𝑟. 
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