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Internal undular bores have been observed in many parts of the world. This paper 
intends to look at the variable topographic effects on the evolution of the internal 
undular bores of depression. Here, the internal undular bores is considered to be 
propagating in a two-layer fluid system. The topography is assumed to be slowly 
varying. Therefore, the appropriate mathematical model is the variable-coefficient 
extended Korteweg-de Vries equation. The governing equation is solved numerically 
using the method of lines. We are especially interested in looking at the transformation 
of two types of internal undular bore of depression, which are Korteweg de Vries-type 
and table-top internal undular bore. Our numerical results show that the internal 
undular bore of depression transformed into a positive undular bore as it propagates 
over a slowly increasing slope and when it involves polarity change. In front of the 
transformed internal bore, a series of isolated solitary waves or a solitary wavetrain is 
generated as a non-adiabatic response to the interaction between the internal undular 
bore with the changing bottom surface. The solitary wavetrain is observed to be 
climbing the negative pedestal. As time increases, the amplitude of the individual 
solitary wavetrain is decreasing and finally the solitary wavetrain will die out due to the 
pedestal. However, if there is no polarity change, the internal undular bores deforms 
adiabatically and its amplitude decreases slowly until it reaches new limiting amplitude 
value due the increasing bottom surface. On the other hand, when the slope is 
decreasing slowly, the internal undular bore deforms adiabatically where its amplitude 
increases slowly. There is a multi-phase behaviour is observed during the evolution as 
the results of the interaction between the internal bore and the varying slope. In this 
case, there is no polarity change. The transformation of internal undular bores of 
depression depends on the nature of the topographic change. 
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1. Introduction 
 

The study of the internal wave can be traced back to the observation of internal gravity wave at 
the interface between oil and water in a glass tumbler [1]. The first observation of internal waves in 
nature have been attributed by Nansen during his expedition in the Arctic ocean in 1893 when his 
boat was sailing on the surface of water but his boat experienced a great resistance to against it 
moving forward [2]. Later, Ekman studied Nansen’s observation to prove that there is an existence 
of internal wave hidden entirely in the layer of dead water [3]. Until the 1960s, the interest of internal 
wave grew up after World War 2 when the United States navy suffered difficulty in controlling their 
depth detection inside submarine [4]. Until now, internal wave often attracts the attention of the 
scientific community due to it is important in influencing the ocean environment and human 
activities. 

The existence of internal wave can affect the propagation of the acoustic wave in the deep ocean 
such that causing interference with the acoustic field [5]. Meanwhile, it can reduce the acoustic signal 
when internal waves make the temporal and spatial changes of medium density [6]. It is also a major 
danger to marine activities, submarine navigation and fishery activities due to large amplitude during 
propagation implying that a large amount of kinetic energy can be transferred in between the ocean 
layers [7]. When the high energy hits on the physical structures, e.g. deep-sea drilling station [8-9] 
and blockwork structures near the coastal areas [10], the great power has sufficient energy to scrape 
away the surface of them. Besides, it can affect the sea ice evolution in the frozen sea [11] and the 
growth of corals due to the occurrence of temperature fluctuations between the ocean layers [12-
13]. 

Large internal waves in the ocean usually have a negative polarity which has been proved by the 
observation of internal wave packets in the deep ocean [14-16]. In nature, the general structure of 
large-amplitude internal wave in the interior of coastal ocean commonly presents in the form of 
unsteady undular bores [17] and it has been observed in some part of the coastal regions, i.e. 
Australian North West Shelf [18], Japan/East Sea shelf-coastal region [19] and Peter the Great Bay 
[20]. In nature, internal waves are always propagating across an uneven sea-bottom in the ocean 
region. Therefore, we would like to study the evolution of internal undular of negative polarity or 
depression propagating over slowly varying region topography. 

In the following section, we will present the problem formulation and followed by the numerical 
methods adopted in our problem in section 3. The numerical results are presented and discussed in 
section 4 and the conclusion is in the final section. 
 
2. Problem Formulation  
 

The Korteweg-de Vries (KdV) equation has been widely used to solve nonlinear long wave 
problems. It was first used to describe the shallow water waves by Benney [21] and Benjamin [22], 
and subsequently by many others [23-25]. However, the KdV equation is not appropriate for 
describing the behaviour of internal wave due to nearly vanishing quadratic nonlinear effect in the 
KdV equation under certain condition such as large amplitude internal wave [26]. Therefore, the 
derivation of the KdV equation is extended such that a cubic nonlinear term is included to increase 
the nonlinearity effect for dynamic balancing with the dispersion effect [25]. Hence, the extended 
KdV equation is obtained. 

In this study, we consider the internal wave is propagating in a two-layer fluid system. Thus, the 
appropriate mathematical model is the variable-coefficient eKdV (veKdV) equation [27], 
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where A(x, t) refers to the amplitude of the wave, x and t represent the spatial and temporal variables 
respectively. The coefficient c(x) denotes the relevant linear long wave speed and Q(x) is the linear 
modification factor, so that Q−2A2 becomes the wave action flux for linear long waves [26]. The 
coefficients μ(x), μ1(x), and δ(x) are the coefficients of the nonlinear and the dispersive terms which 
are determined by the properties of the basic state of the fluid. All these coefficients are slowly 
varying functions of x.  
 

 
Fig. 1. Schematic illustration of internal undular bore of 
depression propagating in a two-layer fluid of different 
density over a slowly decreasing slope region 

 
The schematic of our problem is illustrated in Figure 1. Here, we let the depths of upper and lower 

layers are represented by H1 and H2 respectively. Also, we consider the densities of the fluid for both 
layers are constants and denoted by ρ1 and ρ2 respectively. Thus, the coefficients of nonlinear and 
dispersion terms, i.e. μ, μ1, and δ in the veKdV Eq. (1) are given by 
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,     and    .         (2) 

 
By following the usual oceanic condition, the density difference between upper and lower layers 

to be very small so that ρ2 – ρ1 ≪ ρ2
 [28]. In this paper, we consider initially H1 > H2 so that we have 

an internal undular bore of depression. We also consider that the upper layer has a constant depth 
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for all x and the depth of lower layer varies monotonically from h0 to h1 in the interval x0 ≤ x ≤ x1 
where x1 – x0 ≫ 1.  

The first two terms in veKdV Eq. (1) are the dominant terms. Thus, the veKdV Eq. (1) can be 
transformed by introducing new variables [26], 
 

,          ,           .         (3) 

 
By substituting the new variables (3) into veKdV Eq. (1) gives the following equation, to the same 

leading order of approximation where veKdV Eq. (1) holds 
 

 ,           (4) 

 
where 
 

,          ,          .           (5) 

 
In terms of the new variables U(X, T), H1(T) is constant for all T and H2(T) varies monotonically 

through a monotonic function, f(T) from h0 to h1 in the interval T0 ≤ T ≤ T1. In this study, we consider 
two types of variable topography, i.e. slowly increasing slope and slowly decreasing slope regions. 

The structure of undular bore is an oscillatory transition between two different basic states. It 
can be generated from a simple unit step using the Heaviside function [29]. Hence, we consider the 
initial condition for the veKdV Eq. (4) to be in the form of a sharp step, 
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where U0 < 0 and P is a Heaviside function (6) to generate a hydraulic jump that connects two 
different constant depths.   
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3. Numerical Method 
 

To solve the veKdV Eq. (4) numerically, we apply the method of lines (MOL). In previous studies, 
the MOL is widely used in solving many KdV-type equations, e.g. constant-coefficient eKdV equation 
[30], variable-coefficient eKdV equation [31], forced KdV equation [32], and forced KdV-Burgers 
equation [33]. First, the veKdV Eq. (4) is rewritten as follows 
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Then, the spatial derivatives are discretized using central finite difference formulae as follows 
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where j indicates the position along spatial axis and ΔX represents the increment value of the spatial 
axis. Therefore, the MOL approximation of the veKdV Eq. (4) is given by 
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To solve for the time integration, we adopt the classical fourth-order Runge-Kutta method. 

 

  
(a) (b) 

Fig. 2. The structure of internal undular bore of depression: (a) KdV-type internal undular bore 

where b = –0.10, (b) Table-top internal undular bore where b = –0.13 

The initial condition of veKdV Eq. (4) is taken as  
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where b denotes the height of the sharp step. Here, we consider two values for b, i.e. b = –0.10 and 
b = –0.13 so that we would have a KdV-type solitary wave and a table-top solitary wave as the leading 
wave of the internal undular bore of depression (refer to Figure 2(a) and Figure 2(b)). The values for 
H1 and H2 are chosen to be 1.0 and 1.5 respectively. The amplitude of leading solitary wave of KdV-
type internal undular bore is Ulim0 ≈ 2b = –0.20 and the leading solitary wave of table-top internal 
undular bore has a limiting amplitude, i.e., 
 

lim0 0.21U

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
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We would like to observe how the varying depth would affect the transformation of the internal 

undular bore especially the leading solitary wave when it propagates over the slowly varying slope.  
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4. Numerical Results  
 

The numerical results are divided into two categories, i.e., one that involves polarity change and 
one that without polarity change. 
 
4.1 Transformation of Internal Undular Bore Involves Polarity Change 

 
We observed that the polarity of the internal undular bore changes from negative to polarity 

when it propagates over a slowly increasing slope where the depth of the lower layer after the slope 
is less than or equal to the depth of the upper layer, i.e. ℎ1 ≤ 𝐻1.  

During the shoaling process, the internal wave of depression normally involves polarity change 
when it propagates from the deep-sea region to the coastal area [34–36]. This polarity conversion 
can be well-explained by the KdV theory which stated that the polarity changes for the wave solutions 
is based on the change of sign of coefficient in the quadratic nonlinear term, α [37–38]. When the 
internal undular bore of depression is propagating on the slowly increasing slope region, the negative 
coefficient of quadratic nonlinear term, α in Eq. (4) is slowly increasing toward positive value. Once 
the polarity of the internal undular bore has changed to a positive value, the leading solitary wave 
deforms adiabatically so that the amplitude of the leading solitary wave increases slowly. At the same 
time, there is a non-adiabatic respond where there is a generation of a set of isolated solitary waves 
with different amplitude or a solitary wavetrain in front of the transformed bore as the result of the 
interaction of the undular bore with the slowly varying bottom surface. The solitary wavetrain is seen 
to be riding on negative pedestal due to the rarefaction wave propagating in the background caused 
by the polarity change. As the result, the isolated solitary wave is diminishing as it climbs the pedestal 
and the amplitude of each isolated solitary wave in the wavetrain is slowly decreasing on the negative 
pedestal. Figure 3 shows the transformation of the internal undular bore over the slope where h1 < 
H1 after the slope. Figure 4 shows the contour and 3D plots of the evolution of the internal undular 
bore. The depth profile of lower layer is given by 
 

 

 
Figure 5 shows the transformation of the internal undular bore over the slope where h1 = H1 after 

the slope. Figure 6 shows the contour and 3D plots of the evolution of the internal undular bore. The 
depth profile of lower layer is 
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(a) (b) 

Fig. 3. 2D plots for the propagation of internal undular bores of depression over a slowly increasing slope 
where h1 < H1: (a) KdV-type internal undular bore where b = –0.10 and (b) Table-top internal undular bore 
where b = –0.13  

 

  
(a) (b) 

Fig. 4. Contour plot (upper panel) and 3D plot (lower panel) for the propagation of internal undular bores 
of depression over a slowly increasing slope where h1 < H1: (a) KdV-type internal undular bore where b = –
0.10 and (b) Table-top internal undular bore where b = –0.13 
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(a) (b) 

Fig. 5. 2D plots for the propagation of internal undular bores of depression over a slowly increasing slope 
where h1 = H1: (a) KdV-type internal undular bore where b = –0.10 and (b) Table-top internal undular bore 
where b = –0.13 

 

  
(a) (b) 

Fig. 6. Contour plot (upper panel) and 3D plot (lower panel) for the propagation of internal undular bores 
of depression over a slowly increasing slope where h1 = H1: (a) KdV-type internal undular bore where b 
= –0.10 and (b) Table-top internal undular bore where b = –0.13 
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4.2 Transformation of Internal Undular Bore Without Polarity Change 
 

When the depth after the increasing slope is still greater than the depth of the upper layer, i.e. h1 
> H1, the polarity of the internal undular bore remains unchanged throughout the entire propagation. 
The leading solitary wave deforms adiabatically and its amplitude decreases as it propagates over the 
slope. However, the value of the limiting amplitude changes to a new value, i.e. Ulim1 = –0.0557, which 
is a smaller value compared to the limiting amplitude value before the slope. Therefore, we observe 
the formation of a step-like wave of negative polarity. Figure 7 shows the transformation of the 
internal undular bore over the slope where h1 > H1 after the slope. Figure 8 shows the contour and 
3D plots of the evolution of the internal undular bore. The depth profile of lower layer is given by 
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(a) (b) 

Fig. 7. 2D plots for the propagation of internal undular bores of depression over a slowly increasing slope 
where h1 > H1: (a) KdV-type internal undular bore where b = –0.10 and (b) Table-top internal undular 
bore where b = –0.13 
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(a) (b) 

Fig. 8. Contour plot (upper panel) and 3D plot (lower panel) for the propagation of internal undular bores 
of depression over a slowly increasing slope where h1 > H1: (a) KdV-type internal undular bore where b = –
0.10 and (b) Table-top internal undular bore where b = –0.13  

 
Now, we look at the case where the bottom slope is decreasing slowly. For the KdV-type internal 

undular bore, i.e., when b = –0.10, the leading solitary wave of the internal undular bore behaves as 
an isolated solitary wave and it deforms adiabatically. Its amplitude increases as it enters the varying 
depth region. Once it reaches new constant depth region, the amplitude stops increasing and remains 
constant throughout the propagation. It also has a non-adiabatic respond where a solitary wavetrain 
is generated. This phenomenon has been observed as well when a surface undular bore evolves over 
a slowly varying region [39]. Also, a multi-phase interaction is observed during the evolution. The 
multi-phase interaction carries on for quite some time and it diminishes after the transformed bore 
has settled down on the new constant region. 

Figure 9(a) shows the evolution of the KdV-type internal undular bore over the slowly decreasing 
slope region. The depth of lower layer varies according to the following 
 

 

 
 

Figure 10(a) shows the contour and 3D plots of the evolution of the internal undular bore. 
However, we do not observe the generation of solitary wavetrain for the table-top internal undular 
bore, i.e., when b = –0.13. The leading table-top solitary wave also behaves as an isolated solitary 
wave such that it deforms adiabatically and reach a new limiting amplitude, i.e., Ulim2 = –0.3077. We 
also observe that the occurrence of multi-phase behaviour due (see Figure 9(b)). The contour plot 
and 3D plots of the transformation of internal undular bore over a slowly decreasing slope are shown 
in Figure 10(b).  
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(a) (b) 

Fig. 9. 2D plots for the propagation of internal undular bores of depression over a slowly decreasing slope: (a) 
KdV-type internal undular bore where b = –0.10 and (b) Table-top internal undular bore where b = –0.13 

 
Figure 11 shows the comparison of the amplitude variation between the leading solitary wave of 

the internal undular bore and an isolated solitary wave propagating over a slowly decreasing region. 
This shows that the leading solitary wave is indeed behaving as an isolated solitary wave during the 
evolution. 
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(a) (b) 

Fig. 10. Contour plot (upper panel) and 3D plot (lower panel) for the propagation of internal undular bores 
of depression over a slowly decreasing slope: (a) KdV-type internal undular bore where b = –0.10 and (b) 
Table-top internal undular bore where b = –0.13  

 

  
(a) (b) 

Fig. 11. Comparison of the amplitude variation between the leading solitary wave of internal undular bore 
and an isolated solitary wave: (a) b = –0.10 (b) b = –0.13  

 
5. Conclusions 
 

In this paper, we have simulated the propagation of internal undular bore of negative polarity 
with two types of leading wave, i.e., KdV-type and table-top over different types of slowly varying 
topography in a two-layer fluid system. When the internal undular bores propagates over a slowly 
increasing region, the polarity of the internal undular bore may change depending on the depth of 
the constant region after the slope. If the depth after the slope is less than or equal to the depth of 
the upper layer, then the polarity of the internal undular bore changes from negative polarity to a 
positive polarity. In this case, we notice that there is a generation of solitary wavetrain riding on a 
negative pedestal. At larger time-scale, the amplitude of the solitary waves in the solitary wave train 
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decreases and diminishes due to the pedestal. However, if there is no polarity change during 
transformation, the internal undular bore deforms adiabatically until the amplitude of leading wave 
reaches the new limiting amplitude. This leads to the formation of a step-like wave at the front of the 
transformed bore. When the internal undular bore propagates over a slowly decreasing slope, the 
leading wave of the KdV-type internal undular bore behaves as an isolated solitary wave and deforms 
adiabatically. A non-adiabatically respond in the form of a solitary wavetrain is observed at the front 
of the transformed bore. However, no solitary wavetrain is generated during the transformation of 
table-top internal undular bore even though the leading wave also behaves as an isolated solitary 
wave. These simulation results can be used to provide a useful insight to understand the evolution 
of internal undular bore of depression propagating in ocean layers for the prevention of oceanic 
disasters. 
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