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Extreme learning machine (ELM) application to model the shear stress of 
magnetorheological (MR) fluids has superiority over the existing methods, such as 
Herschel-Bulkley. Although the shear stress has been successfully predicted, the 
hidden node numbers are too high reaching up to 10,000 that will hinder the 
application of the models. Furthermore, the existing works have tried to determine the 
hidden node number only by trial and error method. Therefore, this paper aims to 
reduce the hidden node number by employing the particle swarm optimization (PSO) 
considering the accuracy and the hidden node numbers. The ELM based-shear stress 
model was firstly defined by treating the magnetic field and shear rate as the inputs 
and shear stress as output. The objective function optimization method was then 
formulated to minimize the normalized error and the hidden node numbers. Finally, 
the proposed methods were tested at various ELM activation functions and samples. 
The results have shown that the platform has successfully reduced the hidden node 
numbers from 10,000 to 571 while maintaining the error of less than 1%. In summary, 
the proposed objective function for PSO optimization has successfully built the 
optimum shear stress model automatically. 
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1. Introduction 
 

Magnetorheological (MR) fluids have been known for its controllable rheological properties. The 
control is carried out by applying magnetic fields caused by the magnetic particles within the fluid 
that make an alignment. Consequently, the yield stress and apparent viscosity values increase. The 
manipulate-able viscosity properties of the MR fluid have attracted the studies to apply the fluid in 
various energy dissipation devices, such as MR damper [1-2], MR brake [3-4], MR clutch [5], etc. In 
the process of applying the fluids, model is an important tool to design and calculate the devices 
performance before fabrication. The examples of the challenge of the model applications are the 
function complexity, accuracy, various important variables, and various compositions.  

The modeling methods have been developed over time ranging from simple equation to the 
advanced models. The early works namely conventional models have various limitations, such as the 
acceptable accuracy at a narrow operating range and inflexible input numbers [6]. Some studies have 
proposed machine learning as the methods to overcome the limitations. For example, Rabbani et al., 
[7] proposed artificial neural networks (ANN) and support vector regression as the solution. The ANN 
itself has carried the limitation of the high possibility to be trapped at local solution [8]. Extreme 
learning machine (ELM) application in MR fluids [9-10], elastomer [11], and grease [12] has been 
proposed to  overcome the limitations. The results have shown that a single model can exceed the 
accuracy of the conventional models. However, the existing ELM methods show a high number of 
hidden neuron number (about 10,000). While the lower hidden number reduces the accuracy, the 
higher number means longer prediction and training time. An optimization method can overcome 
the problem by formulating the appropriate objective function to consider both criteria. There are 
many choices to select the optimization methods. One of the widely known methods is particle 
swarm optimization (PSO). PSO has also been known for its speed prediction and better 
generalizations [13-16]. 

Therefore, this work aims to use PSO method to reduce the hidden node number and maintain 
the accuracy. An objective function was proposed with the intention to reach an optimum condition 
considering both hidden node number and model error simultaneously. The paper firstly discussed 
about the proposed platform and the simulation setup including the model description, the 
optimization algorithm, data description, normalization, and simulation setup. Then, the results are 
discussed from point of view the accuracy while comparing with the experimental data and the ELM 
model without optimization.  
 
2. The platform Description 
2.1 Model Description 

 
MR fluids can be modeled in various forms depending on the application, such as computational 

fluid dynamics [13], controls [7,14] and device designs [4], or the study of MR fluid rheology [5,15]. 
To model the rheological behavior of material, the model can be in the form of a type of neural 
network, known as a single-hidden layer feed forward neural network (SLFNs), which has been well-
described in the previous work [16], and it was trained or solved using an ELM. An ELM is an algorithm 
that to determine the parameters of single-hidden layer feed forward neural networks without 
iterations [8, 17-18]. The ELM is known for its enhanced generalization and faster training time than 
the classic support vector machine and back propagation artificial neural network. The experimental 
data for training purposes comprised N datasets that included the measured shear stress (τex) as a 
target, and the shear rate (γi̇) and magnetic field (Bi) as the inputs as shown in Figure 1. The model 
had a total of L hidden nodes. The j-th hidden node was calculated using Eq. (1), where fj(. ) is the 
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activation function, βj is the bias, xi is the i-th input from the total population of the training data, 

and a is the weighting input. The hard-limit function was used as the activation function, as expressed 
in Eq. (2). The i-th output (oi) or shear stress (τi) was defined as in Eq. (3), where wj is the j-th 

weighting output. 
 

 
Fig 1. SLFNs with two inputs 
(magnetic field and shear rate) 
and one output 

 

gj(xi) = fj(βj, xi, a); xi = [
γ̇i

Bi
]

T

; a = [
a1

a2
]          (1) 

 

fj(βj, xi, a) = g(a, xi, βj) = {
1, if a. xi + βj ≥ 0

0, if a. xi + βj < 0
         (2) 

 

oi = ∑ wjgj(xi)
L
i=j              (3) 

 
The algorithm of ELM to build a model consists of three steps. Firstly, a random distribution 

continuous function (usually is Gaussian function) are utilized to give value to the inputs weighting 
or a and bias or β. Then, the matrix output of the hidden nodes is calculated and represented as H in 
Eq. (4). If the output of hidden nodes and target (T) or the measured data that will be predicted by 

the mode are known, then the output weighting w can be calculated as shown in Eq. (5) where H†is 
the Moore–Penrose generalized inverse of matrix H. The operation is treated as pseudo inverse case 
that can be solved by utilizing Singular value decomposition (SVD) [17-18]. 

 

H = [
f(β1, x1, a) … f(βL, x1, a)

⋮ ⋯ ⋮
f(β1, xN, a) … f(βL, xN, a)

]

N×L

          (4) 

 

w = H†T ;  T = [

T1

…
Tj

] ; w = [

w1

…
wL

]           (5) 
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2.2 Optimization Algorithm 
 
The employed optimization algorithm is particle swarm optimization (PSO). PSO is initially 

formulated based on the movement of a group of bird to search food at various locations. The 
algorithm of the PSO can be described as the following 

i. Initialization of particle position and velocity. 
ii. The initial position is calculated using Eq. (6).  

Xp(t + 1) = Xp(t) + Vp(t)            (6) 

 
Each particle contains three types of information, namely, position (Xp), velocity (Vp) and local 

best position (P). The best position to obtain the best group particles is represented by G.  
iii. Calculate the output of the cost function. The output replaces the previous value as the best 

particle position, if the value is better than the previous position. If the output is better than 
group best output, then the particle is defined as the best group positions. 

iv. Velocity is updated using the following equation 
 

Vp(t + 1) = w ∗ Vp(t) + cp ∗ rp ∗ (P(t) − Xp (t)) + cg ∗ rg ∗ (G(t) − Xp(t))     (7) 

 
The variables, 𝑐𝑝 and 𝑐𝑔, are the weighting coefficients, known as the self and group confidence 

for the cognitive and social parts of Eq. Error! Reference source not found., while 𝑟𝑝 and 𝑟𝑔 are 

uniform random variables in the range (0, 1) for the particles and groups, respectively. w is updated 
in every iteration using a method known as linearly decreased inertia weight PSO (LDWPSO) as 
formulated in Eq. (8) where imax and i are the highest and present iteration value, respectively. w is 
changed from 𝑤𝑒𝑛𝑑 to 𝑤𝑠𝑡𝑎𝑟𝑡 along the iteration. According Shi and Eberhart [19], cp and cg as 

particle and group constant, respectively, are 2.0.  
 

𝑤𝑝,𝑣 = 𝑤𝑒𝑛𝑑 − (𝑤𝑒𝑛𝑑 − 𝑤𝑠𝑡𝑎𝑟𝑡)
𝑖

𝑖𝑚𝑎𝑥 
           (8) 

 
v. The calculation back to the point 2 until terminated according to the pre-determined accuracy 

or maximum iteration, which one come first.  
The objective of the optimization is to get the least root mean square error (RMSE) of the training 

data and minimum hidden node numbers. Thus, the objective function is formulated using Eq. (9). 
𝑅𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 is defined by Eq. (10) where 𝑇, 𝑂, and 𝐾 are the target or reference, output of the 

model, and the data number, respectively. The weighting of each objective is determined as a 
function of the training data range or the range of possible hidden node number to keep both 
objective values comparable as expressed in Eq. (11) and (12). 
 

𝐶 =
𝑅𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝑤1
+

𝐿

𝑤2
             (9) 

 

𝑅𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = √
∑ (𝑇𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔−𝑂𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)

2K 
ℎ=1

𝐾𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔
                    (10) 

 

𝑤1 = f(Rtraining_data_range)                      (11) 
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𝑤2 = 𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛                       (12) 
 
2.3 Materials and Simulation Setup 

 
The model is built based on the empirical data from the characterization of MR fluids using 

parallel plate rheometer. The material type is MRF 132DG from Lord Corporation [20]. The rheometer 
is manufactured by Anton Paar, Physical, GmbH, Austria. The training data has the ranges as the 
following [20] 

 
i. Shear rate  : 0.0977-993.000 s-1 

ii. Magnetic field  : 0, 0.090, 0.420, 0.610, 0.700, 0.783 Tesla 
iii. Shear stress  : 6-50627 Pa 

 
Before feeding the data to the training algorithm, the training data need to be normalized first to 

get a standardized range. The normalization method is expressed in Eq. (13) for shear rate and Eq. 
(14) for magnetic field where γ̇n,i, γ̇i, γ̇min, and γ̇max are the normalized shear rate, the current shear 
rate, minimum and maximum value of shear rate in the training data, respectively. B is the magnetic 
field with the similar meaning for the similar subscripted symbol in the shear rates.   

 

𝛾̇𝑛,𝑖 =
𝑙𝑜𝑔(𝛾̇𝑖)−𝑙𝑜𝑔(𝛾̇𝑚𝑖𝑛)

𝑙𝑜𝑔(𝛾̇𝑚𝑎𝑥)−𝑙𝑜𝑔(𝛾̇𝑚𝑖𝑛)
                      (13) 

 

𝐵𝑛,𝑖 =
𝐵𝑖 −𝐵𝑚𝑖𝑛

𝐵𝑚𝑎𝑥 −𝐵𝑚𝑖𝑛
                       (14) 

 
The available data were divided into training and testing data group. The flow curve with applied 

magnetic field of 0.310 and 0.830 Tesla are selected as testing data representing the interpolation 
and extrapolation cases, respectively. The rest of the data is selected as training data. The activation 
function is varied from sinusoid, hard limit, and sigmoid activation functions. For the optimization, 
the number of particles is varied from 4 to 100. Initial velocity is set at 0. All particle and group bests 
are set at 10,000.  
 
3. Results and Discussion 
3.1 Materials and Simulation Setup 

 
The simulation results of the platform with and without optimization are described in Table 1. As 

previously mentioned in section 2.2, the objective of the optimization process is to minimize the 
hidden node number while maintaining the training accuracy. In general, the results have shown that 
hidden node number can be significantly decreased with ELM with sinusoid activation is the best in 
term of training and testing cases. On the other hand, the training accuracy tends to decrease. It is 
understandable that the reducing of the hidden node number will affect the model accuracy. 
Nevertheless, the additional error after optimization process is still less than NRMSE of 1.5 %. The 
hidden node number reduction of ELM using sinusoid model is the highest among the others. On the 
other hand, the accuracy reduction is also the higher.  

Meanwhile, ELM with sigmoid activation function shows the least reduction of hidden node 
number and accuracy. The optimization has the difficulty to reduce hidden node while maintaining 
the accuracy for sigmoid case. Hard limit is in the middle position in term of the accuracy decrease 
and hidden node reduction compared to other schemes. The visual representation of the 
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convergence of the optimization process was depicted in Figure 2. ELM with sigmoid (Sim Sig) and 
Hard limit (Sim HL) activation function has the less decrease compared to the Sinusoid (Sim Sin). This 
pattern is with agreement with Table 1 showing Sim Sin has a highest hidden node number decrease 
compared to others.  In summary, the proposed platform has successfully decreased more than 80 
% of the hidden node number with the slight increase of the error.  
 

Table 1 
The comparison before and after the application of optimization algorithm 
Activation functions Hidden Node Training Accuracy Testing Accuracy 

RMSE NRMSE (%) RMSE NRMSE (%) 

Hard limit 314 406 0.80 3756 7.42 
10,000 14 0.03 3514 6.94 

Sigmoid 1398 1331 2.63 1424 2.81 
10,000 1350 2.67 1328 2.62 

Sinusoid 74 1310 2.59 1399 2.76 
10,000 770 1.52 1280 2.53 

 

 
Fig. 2. Convergence graph of objective function output 
as a function of iteration 

 
The platform still has space for further development. The possible improvements include the 

modification and investigation of the weighting effect, additional objective such as a set of validation 
data. Nevertheless, the platform has shown its importance in MR fluid modeling using ELM. Different 
with ANN that will show an over fitting phenomena if the hidden node number increase, ELM in some 
cases, especially in MR fluid modeling [16], shows a consistent acceptable or better generalization 
capability with the increasing hidden node number at both training and testing datasets. 

 
4. Conclusions 

 
A platform to optimize the ELM structure has been developed and evaluated. In general, the 

platform has successfully reduced the hidden node number while maintaining the model accuracy. 
The model hidden node number can be reduced from 10,000 to at most 1400 hidden node that 
results to a simpler model and a faster calculation when applied in a program or a device. The 
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algorithm can affect ELM based model using sinusoid activation function. However, the drawback of 
the proposed platform is the additional training time because the optimization algorithm. In the 
future, the proposed platform needs to be tested at various sample and more comprehensive 
investigation of each parameter. 
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