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Predict accurately resistance of the ship and flow around ship hull form is extremely 
important as these are input parameters for optimizing ship hull form, designing the ship 
propulsion system. This paper focuses on the numerical simulation of the flow around the 
Container Ship Fortune Freighter in calm water condition at different ship speeds by using 
CFD method. The results of impact of ship speed on components of ship resistance, wave 
patterns, volume fraction of air, the distribution of pressure, and wall shear stress on the 
ship's hull surface, as well as the nominal wake field are provided and analysed in this 
paper. 
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1. Introduction 
 

In the design of ship hull forms, predicting accurately resistance of the ship and flow around ship 
hull form is extremely crucial as these are input parameters for various aspects, including the 
optimization of the ship hull form to minimize ship resistance, and correct the design of the ship's 
propulsion system effectively. 

Nowadays, researchers all over the world tend to use two methods to predict ship resistance and 
obtain information on the flow field around the ship, including the experimental and the 
Computational Fluid Dynamics (CFD) methods. The first method offers the most dependable data 
regarding the ship resistance and flow around the ship hull. Nonetheless, this method entails high 
costs and is time-consuming. A more favorable alternative, the CFD method can provide relatively 
accurate results and furnish more intricate details of the flow around the ship hull with a shorter time 
and at a lower cost compared to the experimental method [1]. Consequently, the CFD method has 
been universally adopted for investigating the ship resistance and flow around the hull [2-13]. 

Hänninen and Sehweighofer [10] investigated the flow around the containership Hamburg Test 
Case at different scales using the CFD method. The results of this research have provided the different 
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flow fields around the hull at various model scales. Hoa [14] and Tu et al., [15] assessed the influence 
of the selected turbulent model on the flow characteristics around the DTMB 5415 ship in model 
scale. Their research proved that the chosen turbulence model significantly impacts not only the 
numerical results in resistance but also the characteristics of flow around the ship. Ahmed et al., [9] 
used both CFD and experimental methods for validating the resistance of DTMB vessel. Hoa [14] 
applied CFD method to discover the influence of water depth on ship resistance. Using the same 
method, Le et al., [16] studied the effect of trim on a DTMB vessel at different drafts and ship speeds, 
revealing the similar results and concluded that the optimal trim varies significantly with ship speeds 
and drafts. These reviewed studies provide valuable references for using the CFD method in 
predicting the ship resistance and simulating the flow fields around the hull. This paper focuses on 
the investigation of the resistance and flow around the containership Fortune Freighter at different 
ship speeds in calm water condition using the CFD appliance. 
 
2. Methodology 
2.1 Reynolds-Averaged Navier-Stokes Equations 
 

The application of time-averaging to the momentum and continuity equations for Reynolds 
Averaged Navier-Stokes equation (RANSE) is written as [4] 
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where: ρ is the fluid density, ix  and 

jx are the coordinates, ν presents the fluid kinematic viscosity, 

ij is the Reynolds stresses tensor; P and iV are the time-averaged pressure and velocity components, 

respectively. 
 
2.2 SST K-ω (SSTKO) Turbulence Models 
 

SST K-ω turbulence model are two variants of k-omega turbulence models that solve transport 

equations for k and ω to calculate t . And t  is defined by the below equation [15] 

 

t kT =               (3) 

 
The turbulent time scale (T) is defined as follows 
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The k and ω are estimated as follows 
 

( ) * 0 0( ) ( v)= * ( )k t k kk k k P f k k S
t

       


+  +  + − − +  
      (5) 

 

( ) 2 2

0( ) ( v)= ( )t P f S
t

           


+  +  + − − +  
      (6) 

 

where
*a , 1a  represent the model coefficients, f  and *f present the vortex-stretching and free-

shear modification factors, 2F is a blending function, kP and P  represent production terms, S are 

user-specified source terms,  is a model coefficient. 

The coefficients in equations from (3) to (6) are selected following the recommendations of user 
guide of Star-CCM+ [17]. 
 
3. Numerical Setup 
3.1 Reference Vessel 
 

The container ship Fortune Freighter is selected to be the reference vessel. The principal 
parameters and geometry of this ship are depicted in Table 1 and Figure 1 [18]. 
 

Table 1 
Principal particulars of containership Fortune Freighter [18] 
Parameters Symbol Unit Value 

Ship length between perpendiculars LPP [m] 113.60 
Ship breadth B [m] 18.50 
Ship design draught T [m] 8.00 
Displacement Δ [tone] 12763 
Block coefficient CB [-] 0.738 
Wetted surface area S [m2] 3214 
Container capacity nTEU [TEU] 566 
Main engine power Ps [kW] 5960 

 

 
Fig. 1. The containership Fortune Freighter 
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3.2 Case Study 
 

This study applied a commercial CFD code Star-CCM+ (Version 16.02 2021.1) to perform the 
numerical computations. The simulation was configured with the following settings 

i. Calm water condition;  
ii. The vessel is free to trim and sink;  

iii. The displacement of the ship is constant for different ship speeds;  
iv. The hull roughness kS =150×10-6 m; 
v. The water parameters for all case studies (density, viscosity) were taken corresponding to the 

realistic seawater properties at temperature 230 (water density ρ =1024.16 kg/m3, kinematic 
viscosity of water ν = 1.00836×10-6 m2/s). 

 
3.3 Computational Domain and Boundary Condition 
 

To enhance the ship resistance computation efficiency, only half of the ship hull was modelled as 
the ship hull is symmetry along its longitudinal plane. The computational domain size was defined 
following the guidelines of the ITTC (International Towing Tank Conference) [19]. Consequently, the 
inlet and outlet boundaries were established at distances of 1.5LPP and 2.5LPP from the bow and stern 
of the ship, respectively. The top, bottom, and side boundaries were positioned at distances of 1.5LPP, 
2.5LPP, and 2.5LPP from the ship, respectively (see Figure 2). 
 

 
Fig. 2. The Computational domain size 

 
The chosen boundary conditions are as follows: within the computational domain, constant 

velocity is set for the inlet, bottom, and top boundaries; the outlet boundary is subject to hydrostatic 
pressure; symmetry plane is applied to the side and symmetry plane boundaries, for the ship hull, a 
no-slip wall condition is employed. 
 
3.4 Mesh Generation and Physical Model 
 

The mesh is a critical factor that significantly influences the accuracy of the numerical obtained 
results. In this study, a combination of trimmed mesh and prism layer meshes were employed for 
meshing purposes. The computational domain was discretized into finite volumes using a trimmed 
mesh. Refinement of the mesh was carried out in the vicinity of the ship hull and the free surface to 
acquire the exact flow near the hull and at the free surface. To prevent unnecessary use of fine grid 
resolution where not essential, local volume refinement was only implemented at ship bow and ship 
stern. Prism layer meshes were incorporated to accurately capture the exact boundary layer between 
walls and flow. Figure 3 illustrates the result of the mesh generation process. 
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Fig. 3. The result of mesh generation 

 
The physical model used in this research is the unsteady RANSE method with the SST (Shear Stress 
Transport) K-Omega turbulence model. This model proved to predict ship hydrodynamics accurately 
[15]. The VOF (Volume of Fluid) technique was applied to model the free surface. The two degrees of 
freedom motion is employed to allow ship motion in heave and pitch direction. DFBI (Dynamic Fluid 
Body Interaction) Equilibrium option is used to simulate the motion of the hull during the 
computation [13,16]. 
 
4. Results and Discussion 
4.1 Numerical Results of Ship Resistance and Ship Motion 
 

Table 2, Figure 4 and Figure 5 show the numerical results of ship resistance and the ship motion 
at design draught T=8.00m for different ship speeds (Vs) in calm water condition. In Table 2, the 
symbols RT, RF, and RP represent the total ship resistance, frictional resistance, and pressure 
resistance components, respectively. Some conclusions can be produced from the results depicted 
in Table 2, as follows 

i. When the ship operates at different speeds, the ship’s resistance and motions change. 
ii. The frictional and pressure resistance components have the same monotonically changing 

trend at different ship speeds, but different in the magnitude of changing. Specifically, a larger 
increase is observed in the pressure resistance than in frictional resistance with increasing the 
ship speed. As a result, the ratio of frictional resistance and pressure resistance reduces with 
increasing the ship speed. This trend is perfectly consistent with the literature mentioned in 
documents [1,20]. This can be explained by the difference in the flow field around the ship 
hull presented in Section 3.2 of this paper. 

iii. Trim and sinkage of the ship increase monotonically with increasing ship speed. 
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Table 2 
The numerical results of ship resistance and ship motion at different ship speeds in calm water condition 
Vs [knots] Ship resistance components Ship motion 

RT [kN] RF [kN] RP [kN] RF/RP Trim (deg.) Sinkage (m) 

11.0 148.20 111.60 36.60 3.05 0.112 -0.122 
13.0 229.60 157.20 72.40 2.17 0.161 -0.179 
15.0 329.50 207.40 122.10 1.70 0.214 -0.239 
17.0 475.40 261.00 214.40 1.22 0.308 -0.333 

 

 
Fig. 4. The relationship between the ship resistance components 
versus ship speeds 

 

 
Fig. 5. The relationship between the ship motion versus ship speeds 

 
4.2 Flow Around the Ship 
 

The features of the flow around the containership hull are presented in Figure 6 to Figure 13. This 
could not only explain the change of ship resistance versus the ship speed, but also is an important 
input data for the hull shape optimization in terms of minimizing ship resistance. As can be seen in 
Figure 6 and Figure 7 that, the wave amplitude on the free surface exhibits a monotonic increase with 
increasing of ship speed. The wave amplitude reaches the biggest value at Vs=17.0 knots, while the 
smallest one occurs at Vs=11.0 knots. This variation in wave amplitude partially causes the increase 
in the pressure resistance component. 
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Fig. 6. Wave pattern at various ship speeds 

 

 
Fig. 7. Wave’s profile along the ship hull at various ship speeds 

 
Figure 8 illustrates the variation in air volume fraction across different parts of the ship at 

different ship speeds. As evident from the figure, at the bow of the containership, the volume fraction 
of air rises gradually when ship speed increases. 
 

  

  

 
Fig. 8. Volume fraction of air at various ship speeds 

 
Figure 9 and Figure 10 show the variations in the dynamic pressure coefficient distribution on the 

containership hull surface at different ship speeds. These visualizations offer valuable insights into 
the observed changes in the pressure resistance component at varying speeds. As evident from 
Figure 9 and Figure 10, across the location from stern of the ship to X/L = 0.2 and from X/L=1.0 to 
ship’s bow, the dynamic pressure coefficient is almost the same at various of ship speeds. Conversely, 
the region between X/L = 0.2 and X/L= 1.0 presents differences in the pressure coefficient at various 
ship speeds. 
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Fig. 9. Dynamic pressure coefficient distribution on the containership hull surface at various ship speeds 

 

 
Fig. 10. Dynamic pressure coefficient at Z =4m with different ship speeds 

 
The variations in wall shear stress distribution contribute to explaining the changes observed in 

the friction resistance component at various ship speeds. Figure 11 and Figure 12 depict the 
discrepancy in wall shear stress distribution on the hull surface at various ship speeds. It can be 
observed in Figure 12 that, the wall shear stress at Z=4.0m changes monotonically with various ship 
speeds. The highest and smallest wall shear stress values are observed at Vs=17.0 knots and Vs=11.0 
knots, respectively. 
 

  

  

    

 
Fig. 11. Wall shear stress distribution on the containership hull surface at various ship speeds 
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Fig. 12. Wall shear stress distribution at Z=4.0m with various ship speeds 

 
An important hydrodynamic characteristic affecting the efficiency of the propeller located behind 

the ship is the nominal wake field at the propeller disc. Figure 13 presents the nominal wake field at 
the propeller disc at various ship speeds. As evident from the figure, the nominal wake field at the 
propeller disc is almost the same at various ship speeds. 
 

    

 
Fig. 13. Nominal wake on propeller disc at various ship speeds 

 
5. Conclusions 
 

This study successfully achieved its research objectives by employing the CFD method to predict 
the resistance and motions of the ship and simulating the flow patterns around the hull surface of 
containership at various speeds. The key findings from these simulations are detailed as follows 

i. Predicted ship resistance and motions at design draught with different ship speeds in calm 
water conditions. The frictional and pressure resistance components have similar 
monotonically changing trend at different ship speeds, but different in level of change. 
Specifically, as ship speed increases, a larger increase is observed in the pressure resistance 
than in the frictional resistance. Trim and sinkage of the ship increase monotonically with 
increasing ship speed. 

ii. The characteristics of wave pattern, volume fraction of air, distribution of dynamic pressure 
and wall shear stress coefficient on the hull surface, and the nominal flow field at the propeller 
disc at different ship speeds have been provided and analyzed. This could not only provide 
valuable insights into the change of ship resistance versus the ship speeds, but also is an 
important input data for the hull shape optimization in terms of minimizing ship resistance. 
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