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The present work aims to examine the influence of magnetic field dependent (MFD) 
viscosity on the onset of ferroconvection in a horizontal porous layer saturated with a 
quiescent ferrofluid and subjected to a uniform vertical magnetic field. It is assumed that 
the porous boundaries at the bottom and top are rigid-paramagnetic. The thermal 
conditions consist of a constant heat flux at the lower surface and a convective boundary 
condition at the upper surface, encompassing fixed temperature and uniform heat flux 
cases. The application of the Galerkin technique to the resulting eigenvalue problem 
reveals that the stability region expands as the porous parameter, Biot number, MFD 
viscosity parameter and magnetic susceptibility increase in magnitude. Conversely, the 
stability region contracts as the magnetic number and non-linearity of magnetization 
increase. Furthermore, it is noted that under uniform heat flux boundary conditions, the 
criterion for the initiation of ferroconvection remains unaffected by the non-linearity of 
fluid magnetization. 
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1. Introduction 
 

Ferrofluids are versatile materials that have garnered significant attention in recent decades due 
to their unique properties and wide-ranging applications. An ferrofluids is a colloidal suspension of 
magnetic nanoparticles, typically iron oxide or cobalt ferrite, stably dispersed in a carrier fluid, often 
a hydrocarbon-based solvent or water. First developed by NASA in the 1960s for space-related 
applications, ferrofluids have since found a wide array of applications in engineering, medicine, 
electronics, and various other fields. Some of the notable applications include magnetic sealing, 
damping, drug delivery systems, loudspeaker technology and cooling in electronics [1-5]. 

Numerous research studies have been undertaken to examine the phenomenon of convection in 
ferrofluids through porous media [6-10]. The ferrofluid’s magnetic properties, the porous material's 
structure, and outside influences like gravity and a magnetic field all have an impact on the flow 
patterns and heat transmission characteristics. Qin and Chadam [11] extended the nonlinear stability 
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analysis to consider thermal convection in a ferrofluid-saturated porous medium with inertial effects 
by adopting the Darcy-Forchheimer model. Borglin et al., [12] shown through experimentation that 
using permanent magnets generated a predictable pressure gradient that induced fluid flow, allowing 
ferrofluid to be retained in the porous media in predetermined configurations solely determined by 
the magnetic field. Shivakumara et al., [13] analyzed the impact of vertical permeability 
heterogeneity on the onset of ferroconvection in a horizontal layer of magnetized Darcy porous 
media that is saturated with ferrofluid for various permeability function forms. Nanjundappa et al., 
[14] elucidated the influence of cubic temperature profiles on the initiation of ferroconvection in a 
Brinkman porous medium under a uniform vertical magnetic field. Control volume based finite 
element method was employed by Li et al., [15] to simulate ferrofluid migration due to magnetic 
forces in a porous cylinder using a single-phase model to predict nanofluid characteristics. Siddiqui 
and Turkyilmazoglu [16] employed the modified Rosensweig-model to numerically investigate heat 
transfer in a water-based ferrofluid enclosed porous cavity with a novel permeable chamber using 
the successive-overrelaxation method (SOR). A linear stability analysis was conducted by Senin et al., 
[17] to examine how internal heating and variable gravity in an anisotropic porous medium affect the 
initiation of Benard-Marangoni convection in a ferrofluid layer system. Nanjundappa et al., [18] 
investigated theoretically the penetrative ferro-thermal-convection (FTC) via internal heating in a 
ferrofluid-saturated porous layer for different types of velocity, temperature and magnetic potential 
bounding surfaces. Saeed et al., [19] employed the RK4 shooting method to investigate the influence 
of temperature-dependent viscosity (TDV) and thermal conductivity on ferrofluid (FF) flow through 
a porous medium adjacent to a vertically stretching surface. The initial flow of immiscible fluids in a 
porous medium subjected to a rapid pressure gradient and a transverse magnetic field was studied 
by Goyal and Srinivas [20] to explore the influence of Hartmann number and porous medium 
parameters on the system's physical characteristics. 

In ferrofluid saturating a porous media, Sunil and Sharma [21] studied the effect of MFD viscosity 
on thermo--solutal convection, taking into account a fluid layer heated and soluted from below in 
the presence of a uniform magnetic field with two free boundaries. Nanjundappa et al., [22] 
investigated the impact of MFD viscosity on the initiation of Bénard–Marangoni ferroconvection with 
rigid-free boundaries to obtain the critical stability parameters using the Rayleigh–Ritz method. 
Bhandari [23] analyzed the influence of MFD viscosity on ferrofluid flow around a rotating disk in the 
existence of a stationary magnetic field using the Neruinger-Rosensweig model and solving the 
nonlinear coupled equations with Flex PDE. Molana et al., [24] examined the natural convection heat 
transfer of Fe3O4-water nanofluids with MFD viscosity in a unique porous cavity geometry under a 
constant inclined magnetic field. The impact of a perpendicular magnetic field on the flow of 
micropolar nanofluid over an impermeable stretching sheet in a porous medium and the combined 
convection heat transfer was investigated by Izadi et al., [25] in relation to the control of MFD 
viscosity. Savitha et al., [26] examined the impact of viscosity at MFD and energy-based volumetric 
internal heating in conjunction involving ferrofluid-saturated porous layers on convection Robin-type 
thermal and magnetic potential boundary conditions. 

Each of the aforementioned investigations has focused on isothermal boundary conditions at the 
ferrofluid layer's surfaces. In spite of this, these conditions might prove to be overly restrictive when 
actual situations are taken into account. Hence, the purpose of this research is to investigate the 
impact of MFD viscosity on Brinkman-Bénard ferroconvection while relaxing the temperature 
boundary conditions. This is accomplished by assuming a rigid-paramagnetic lower surface with a 
constant heat flux and a general type of boundary condition on the upper rigid-paramagnetic 
boundary. The solution to the subsequent eigenvalue problem is numerically determined using the 
Galerkin method with second-order Chebyshev polynomials as trial functions. 
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2. Mathematical Formulation 
 

The system investigated comprises of a horizontal layer of porous medium which is saturated 

with ferrofluid which is initially quiescent and has an applied vertical magnetic field 0( ).H  The 

physical configuration is depicted in Figure 1. The porous layer thickness d  between the two surfaces 
and edge effects are neglected due to its large horizontal extension. The bottom surface of the porous 

layer serves as the origin of the Cartesian coordinate system ( ),  ,  x y z used, and gravity operates in 

the negative z-direction, ˆ,g g k= −  represented by the unit vector ˆ.k  Notably, experimental evidence 

by Rosensweig et al., [27] has shown that the viscosity of ferrofluids exhibits significant variations 
with respect to the applied magnetic field. As an initial approximation, the assumption is that the 

viscosity changes linearly with the magnetic field in the approach, 0 (1 ),B  = +   where   is the 

magnetic viscosity,   is the coefficient of variation of the MFD viscosity, which is assumed to be 

independent of the location (i.e., ),x y z   = = =  while 0  represents the ferrofluid’s viscosity in 

the absence of the magnetic field and B  is the magnetic induction. Additionally, the fluid is 
considered to be incompressible, and its density variation, following the Boussinesq approximation, 
can be expressed as 
 

0 0[1 ( )]t T T  = − −              (1) 

 

where   is the fluid density, T is the Temperature, 0T  is the lower boundary's temperature, t  is 

the thermal expansion coefficient and 
0  is the reference density at temperature 0.T  

 
A condition of the type for a constant heat flux exists at the lower surface ( 0)z =  is 

 

1 0

T
k q

z


− =


              (2) 

 

where 1k  is the thermal conductivity, 0q  is the conductive thermal flux. 

Utilizing a general thermal boundary condition at the upper surface ( )z d=  of the form 

 

1 ( )t

T
k h T T

z



− = −


             (3) 

 

where th is heat transfer coefficient and T  is temperature in the bulk of the environment. 
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Fig. 1. Physical configuration 

 
The governing equations of continuity, momentum, energy and Maxwell equations respectively 

are given by Eq. (4)-(7) respectively. 
 

0= q


              (4) 

 

20 0

1 1
 ( . ) p 2 ( ) ( )

q
q q g q D M H

t k


   

 

 
+  = − + − +  +   

      (5) 

 

2
0 , 0 0 0 1

, ,

(1 )( )V H s

V H V H

M DT T M DH
C H C T k T

T Dt t T Dt
     

      
 −  + − +  =    

       

    (6) 

 

0,B  =  0H =   or H =             (7) 

 
where ( , , )q u v w= is velocity vector, p is the pressure,   is the porosity of the porous medium, t  is 

the time, k  is the permeability of the porous medium, [ ( ) ] / 2TD q q=  +   is the rate of strain 

tensor, M  is Magnetization, H  magnetic field's strength, ,V HC  is the specific heat at constant volume 

and magnetic field,   is the magnetic potential, while the subscript s denotes the porous media. 

 

Further, B , M and H are related by 
 

( )0B M H= +              (8) 

 
with 
 

( ),
H

M M H T
H

= .             (9) 

 

Eq. (10) denotes the linearized magnetic equation of state with respect to 0H  and 0T   

 

( ) ( )0 0 0M M H H K T T= + − − −                      (10) 
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where 0 is the vacuum's free space magnetic permeability,  is the magnetic susceptibility and K

is the pyromagnetic co-efficient. 
The initial state is considered to be at rest and can be described by the following expression: 

 

0,bq =  ( ),b z =  ( ),b z =  ( ),bp p z=  ( ),bT T z=  ( ),bH H z=  ( )bM M z=                (11) 

 
where subscript b denotes the basic state. 

Using Eq. (11), Eq. (5) and Eq. (6), respectively, yield 
 

( )0 00
ˆ1b b

b bt

dp dH
T T g k M

dz dz
   = − − − +

 
                   (12) 

 
2

2
0bd T

dz
=                         (13) 

 
Upon solving Eq. (13) with consideration of the boundary conditions of Eq. (2) and Eq. (3), the 

result obtained is as follows: 
 

0( )b

t

q
T z z T d

h
 = − + + +                       (14) 

 
where 10

/q k =  is the temperature gradient. 

Upon substituting the basic state Eq. (11) into Eq. (7) and utilizing Eq. (8) and Eq. (10), the 
magnetic field intensity and magnetization for the basic state is determined as demonstrated in 
Finlayson [28]. 
 

0
ˆ( )

1
b

K z
H z H k





 
= − 

+ 
                      (15) 

 

0
ˆ( )

1
b

K z
M z M k





 
= + 

+ 
                      (16) 

 

where 0 0 0 .extM H H+ =  

 
Using Eq. (12) to Eq. (14) in Eq. (10) and integrating, we obtain 
 

2 2
2 20 0 0

0 0 0 2

1
( )

2 1 2(1 )
b t

M
p z p g z g z z z

     
   

 
= − − − −

+ +
                 (17) 

 
To investigate the system's stability, a small disturbance is applied to the system, and the 

variables are perturbed in the form: 
 

,q q=  ( ) ',bp p z p= +  ( ) ',b z  = +   ( ) ,bT T z T = +  ( ) ,bH H z H = +  MzMM b +=


)(                 (18) 
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The perturbed variables ',q  ',p  ',  ',T  'H  and 'M  are assumed to be negligible. Eq. (17) is 

substituted into Eq. (8) and Eq. (9), and Eq. (7) is used and ignoring the primes in the notation, 
 

0

0

1 ,x x x

M
H M H

H

 
+ = + 

 
 0

0

1 ,y y y

M
H M H

H

 
+ = + 

 
 ( )1   z z zH M H K T+ = + −                (19) 

 

The above equations are derived under the assumption that ( ) 01  K d H  + . Substituting 

the perturbation Eq. (18) into momentum Eq. (5) and linearizing, we obtain (after neglecting the 
primes) 
 

2 2
0 0 0 0( )b x

b

Hu p
u u M H u

t x k z


  

 
= − − +  + +  +

  
                  (20) 

 

2 2
0 0 0 0( )

yb
b

Hv p
v v M H v

t y k z


  

 
= − − +  + +  +

  
                  (21) 

 
2

2 2 0
0 0 0 0 0 0( )

1

b z
b t z

K THw p
w w M H w gT K H

t z k z

  
      



 
= − − +  + +  + + − +

   +
              (22) 

 

where 0 0 0 0[1 ( )]b M H   = + +  and 2 2 2 2 2 2 2/ / /x y z =   +   +   is the Laplacian operator. 

Eq. (20) and Eq. (21) can be partially differentiated with respect to x and y, respectively, and 
added, we obtain 
 

( )2 2
0 0 0 0( )

yb x
h b

HHw w
p w M H

z t k z z z x y


  

      
 = + −  + + +  

         
               (23) 

 

where 2 2 2 2 2/ /h x y =   +   is the horizontal Laplacian operator  

 
Eq. (22) is simplified by substituting Eq. (23) to eliminate the pressure term, we obtain 
 

( )
2

2 2 22 2 0
0 0 0

1

b
b th h h

K
w K T g T

t k z

  
      



  
+ −   = −  +  +  

  + 
                (24) 

 
As before, substituting Eq. (18) into Eq. (6), linearizing and the resulting equation upon using 

,H =   we obtain (after neglecting primes) 

 
2

2 0 0
0 1 0 0 1 0 2( ) ( )

1

T KT
C T K k T C w

t t z


   



    
− =  + −  

   +   
                 (25) 

 
where 0 1 0 , 0 0 0( ) (1 ) ( )V H sC C H K C      = + + −  and 0 2 0 , 0 0( ) V HC C H K    = + . 

After substituting Eq. (18) and using Eq. (19), Eq. (7) can be rewritten (omitting the primes) as 
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( )
2

2
0

2
0

1  1 0h

M T
K

H zz


 

   
+  + + − = 

 
                    (26) 

 
It is expected that the dependent variables' normal mode expansion will have the form 
 

     , , ( ), ( ), ( ) exp ( )w T W z z z i x my t =   + +                   (27) 

 
where ,W  and   are the amplitudes of the perturbed vertical component velocity, temperature 

and magnetic potential respectively, while   is the growth rate and , m  are the wave numbers in 

the x  and y  directions. 

After substituting normal mode expansion Eq. (27) into Eq. (24) to Eq. (26) and then all the 
variables are non-dimensionalized using the following relations 
 

2

2
* ,   * ,   t* , * ,

z d d
z W W t

d A d


 

 
= = = = *

v d




 =  ,  

 

( )
2

1  
*  

v d

 



+
 = 


 and 0 0 0* ( )M H  = +                                  (28) 

 

where 0 0/v  = is the kinematic viscosity, 0 1 0 2( ) / ( )A C C = is the heat capacity ratio and 

1 0 2/ ( )k C = is the thermal diffusivity. 

 
To obtain the ordinary differential equations of the form (omitting the asterisks), 
 

  ( )2 2 2 2 2 2(1 ) ( ) ( )D a D a W a N D R N   + − − − − = −  − +    
                (29) 

 

( ) ( )2 2
2 2Pr Pr 1D a M D M A W − −  −  = − −                    (30) 

 

( )2 2
3D a M D−  =                         (31) 

 

where /D d dz=  is differential operator, 2 2a l m= +  is the horizontal wave number, 2 /d k = is 

the porous parameter, 4 /tR g d A   =  is the thermal Rayleigh number, 2

1 0 0/ (1 ) tM K g    = +  

is the magnetic number, 2 2 4

1 0 0/ (1 )N RM K d A    = = +  is the magnetic Rayleigh number, 

Pr / =  is the Prandtl number, 2 2

2 0 0/ (1 )( )sM T K C  = + is the magnetic parameter,

3 0 0(1 / ) / (1 )M M H = + + is the Magnetization parameter's nonlinearity. 

Owing to its average value for ferrofluid with various carrier liquids, which is of the order of 10-6, 

the effect of 2M  is ignored in comparison to unity [28]. 

The ordinary differential Eq. (29) to Eq. (31) are solved using the following boundary conditions 
 

(1 ) 0W DW D a D= = +  −  =  =  at 0z =     (on the lower rigid-paramagnetic)              (32) 
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(1 ) 0W DW D a D Bi= = +  +  = + =  at 1z =   (at the upper rigid-paramagnetic)              (33) 

 
The case 0Bi =  and Bi →  to upper boundary conditions with constant heat flux and 

temperature, respectively. 
 

3. Method of Solution 
 

Considering the validity of the principle of exchange of stability, we set  0 =  in Eq. (29) to Eq. 
(31) and simplifying, we get 
 

( )2 2 2 2 2 2
1 1(1 )( ) ( ) 1D a D a W a R M D M  + − − − = −  − +    

                 (34) 

 
2 2( )D a W−  = −                        (35) 

 
2 2

3( ) 0D a M D−  −  =                       (36) 

 
The eigenvalue problem, consisting of Eq. (29) to Eq. (31) along with the selected boundary 

conditions Eq. (32) and Eq. (33), is mathematically resolved using the Galerkin Method to obtain R as 
the eigenvalue. Consequently, ,W   and   are expressed as follows. 

 

1

( ),
n

i i

i

W A W z
=

=     
1

( )  ( ),
n

i i

i

z C z
=

 =     
1

( )  ( )
n

i i

i

z D z
=

 =                   (37) 

 

The unknown constants, ,i iA C  and iD  are determined through the chosen base functions 

( ) ,iW z  ( )i z and ( ) ,i z  which are generally selected to satisfy the corresponding boundary 

conditions. After substituting Eq. (37) into Eq. (34) to Eq. (36), the resulting equations are respectively 

multiplied with ( ) ), (j jW z z  and ( ).j z  The equations obtained are subsequently integrated by 

parts between the lower and upper limits of z  i.e., (0, 1) and are evaluated using boundary 
conditions. The resulting equations constitute a system of linear homogeneous algebraic equations: 
 

0ji i ji i ji iC A D C E D+ + =                       (38) 

 
0ji i ji iF A G C+ =                        (39) 

 
0ji i ji iH C I D+ = .                       (40) 

 
The inner products of the basic functions are involved in the coefficients ,ji jiC I− which are 

provided by 
 

2 2 2 2 2 2 2(1 )[ (2 ) ( ) ]ji j i j i j iC D W D W a DW DW a a W W  = +   + +   + +    

+−= ijji WMRaD )1( 1
2  

= ijji DWMRaE 1
2  
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−= ijji WF  
2(1) (1)ji j i j i j iG Bi D D a=   +     +      

−= ijji DH  

2
3(1) (1) (0) (0)

1
j jji i i j i j i

a
I D D a M


 =   +   +     +     +

 

 

where 
1

0

( ) dz  =    is the specification of the inner product. 

There is a non-trivial solution to the set of homogeneous algebraic equations stated above if and 
only if 
 

.0

0

0 =

jiji

jiji

jijiji

IH

GF

EDC

                      (41) 

 
The extraction of eigenvalues from Eq. (41) is done by selecting the trial functions as 
 

4 3 2 *
1( 2 )i iW z z z T −= − + ,   2

11 2 3 *

i iz ( - z / T − = ) ,   11 2 *

i iz / T − = ( − )                 (42) 

 
In the process of solving the eigenvalue problem, trial functions are used to approximate the 

solutions for the dependent variables ,i iW   and .i  These trial functions are represented by the 

modified Chebyshev polynomials, denoted as * ' .iT s  However, these trial functions may not satisfy 

the boundary conditions initially. To address this, the residual technique is employed. The residual 
term, which appears as the first term on the right-hand side of the characteristic equations jiG  and 

,jiI  accounts for the deviation of the trial functions from the actual boundary conditions. By 

incorporating this residual term, the characteristic equation can accurately describe the behavior of 
the system. The extracted eigenvalue determines the stability of the system and provide crucial 
information about the convection behavior of the ferrofluids flowing through porous media under 
the influence of a magnetic field. 

Eq. (41) allows for the derivation of a relation with the characteristic parameters of the following 
type 
 

2
1 3( , , , , , , , ) 0f R Bi N M M a  =                      (43) 

 

Numerical analysis is utilized to determine the critical value of ( ),  . ., cR i e R corresponding to 

various values of wave number a  by varying it for different  , ,N  2 ,  Bi ,  and 3M . 

 
4. Results 
 

The effect of MFD viscosity on the initiation of Brinkman-Benard ferroconvection in a horizontal 
ferrofluid-saturated porous layer under the influence of a uniform vertical magnetic field is 
examined. The analysis is conducted using linear stability theory. In order to establish the rigid-

1M
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paramagnetic nature of the upper and lower boundaries of the porous layer, a general thermal 
condition is applied to the upper boundary and a uniform heat flux condition is applied to the lower 
boundary. Numerically, the eigenvalue problem that results is resolved by employing the Galerkin 
method. Initially, we verify the numerical method employed through a comparison of the critical 

Rayleigh number ( )cR and the corresponding critical wave number ( )ca with the values reported by 

Sparrow et al., [29] for a conventional viscous fluid. It has been noted that in order to achieve 
convergent results, six terms (   6)n =  are necessary in the series expansion of Eq. (37). A comparison 

between our findings and those of Sparrow et al., [29] for different Biot numbers ( )Bi  in the limiting 

case of 1 0M = , 3 0M = , 0 =  and 0 =  (i.e., ordinary viscous fluid) is presented in Table 1. The 

correctness of the numerical process used to identify the essential stability parameters is confirmed 
by the good agreement between the two methods. 
 

Table 1 

cR  and ca  comparison for various Bi   

Bi  Sparrow et al., [29] Present analysis 

Rigid- Rigid Rigid-Rigid 

cR  ca  cR  ca  

0 720. 000 0.00 720.000 0.000 
0.01 747.765  0.71 747.765 0.7126 
0.03 768.153 0.93 768.155 0.9283 
0.1 807.676 1.23 807.676 1.2281 
0.3 869.231 1.57 869.208 1.5571 
1 974.173 1.94 974.172 1.9427 
3 1093.744 2.24 1093.74 1.2419 
10 1204.571 2.44 1204.57 2.4367 
30 1259.884 2.51 1259.91 2.5110 
100 1284.263 2.53 1284.28 2.5394 

  1295.781 2.55 1295.78 2.5490 

 

The value of cR
 by corresponding the wave numbers ca  obtained for different physical 

parameters  2 ,  ,N  Bi , 1M , 3M  and   are presented graphically in Figure 2 to Figure 6. The 

effect of the Biot number ( )Bi  on the critical Rayleigh number ( )cR  is studied while considering the 

variation of MFD viscosity in the context of Brinkman-Benard ferroconvection in Figure 2. Assigned 
to the boundary of the porous medium, the Biot number quantifies the relationship between the 
internal thermal resistance of the solid matrix and the external thermal resistance at the boundary 
of the porous medium. The initiation of convection in such systems is significantly influenced by it. 

The variation of critical Rayleigh number cR  and wave number ca  is shown in Figure 2(a) and Figure 

2(b) respectively as a function of MFD viscosity parameter   for different Bi  and χ  when 3 1M = , 

1 5M =  and 2 50 = . Figure 2(a) illustrates that cR increases with an increment in MFD viscosity 

parameter ( ,)  resulting in a stabilizing effect and delaying the onset of ferroconvection. 

Additionally, the variation in Bi  from 0  2to significantly impacts the critical Rayleigh number, cR  

with the most stable condition observed for  0Bi = and the least stable for  2,Bi =  as the system 

changes from an insulated to a conductive upper boundary. Moreover, the system exhibits higher 

stability with paramagnetic boundaries having large susceptibility 4)(1  10+ =  compared to  0, =  

although the control of magnetic susceptibility diminishes as   increases. This finding aligns with the 

,
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results obtained by Gotoh and Yamada [30]. On the other hand, Figure 2(b) demonstrates that an 

increase in Bi  and   leads to an increase in the critical wave number ( ),ca  reducing the size of 

convection cells, while   does not affect the critical wavenumber. This behavior holds the initiative 
that higher values of Bi  lead to enhanced thermal conductivity within the porous medium, allowing 
heat to be transported more efficiently. As the magnetic susceptibility increases, the ferrofluid 
becomes more responsive to the magnetic field, leading to stronger magnetization effects. This 
enhanced magnetization creates stronger interactions between magnetic particles in the fluid, 
affecting its flow behavior. The increased magnetic response results in a more stable system, 
requiring higher convective instability (higher critical Rayleigh number) to trigger convection. 
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Fig. 2. Variation of (a) 

cR and (b) 
ca with   for different Bi  and   for 

3 1,M =  
1 5M =  and 2 50 =  

 

Figure 3(a) and Figure 3(b) display the variation of cR  and ca  respectively, as a function of MFD 

viscosity   to examine the influence of the porous medium's coarseness on the onset of 

ferroconvection for different values of 2 and   with fixed values of 1 5M = , 3 1=M  and 2Bi = . 

When the porous parameter 2  increases for a fixed thickness of the porous layer, it leads to a 
decrease in the permeability of the porous medium. This behavior can be attributed to the decreased 

fluid flow caused by a larger porous parameter 2 , which hinders the convective heat transfer within 

the system. The reduced flow velocities restrict the transport of heat and result in less efficient mixing 
of the fluid, delaying the onset of ferroconvection. Thus, it requires higher heating and a higher value 
of the thermal Rayleigh number for the onset of ferroconvection in the ferrofluid-saturated porous 
medium. Figure 3(b) demonstrates that in the absence of the pyromagnetic coefficient (   0), =  an 

increase in 2  causes cell size ca  to become destabilizing. However, for a high pyromagnetic 

coefficient 4)(1  10+ = an increase in 2  results in a stabilizing nature of cell size ca . 
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Fig. 3. Variation of (a) 

cR  and (b) 
ca with  for different values of 2  and   for 

3 1,M =  
1 5,M =  2Bi=  

 

By plotting the critical Rayleigh number cR  against the MFD viscosity parameter ,  Figure 4(a) 

illustrates the influence of the magnetic number 1M  on the initiation of ferroconvection for 3 1=M

, 2σ 50=  and 2Bi = . The magnetic number 1( )M is a dimensionless parameter that characterizes 

the relative strength of the magnetic forces to buoyancy forces in a ferrofluid system. When the 
magnetic number is increased, it implies that the magnetic forces become more dominant compared 
to buoyancy forces. An increase in the magnetic number is observed to have a destabilizing effect. 
This pattern can be explained by attributing it to the enhanced magnetic response of the ferrofluid 
as the magnetic number increases. The stronger magnetic forces lead to more vigorous fluid motion 
and heat transfer, promoting convection at lower thermal gradients. The stronger magnetic field 
enhances the interaction between magnetic particles in the ferrofluid, leading to more significant 
disturbances and convection. On the other hand, a lower magnetic number would result in a more 
stable system with smaller and less pronounced convection cells. The observed trend in Figure 4(b) 

reveals that with an increase in the magnetic number 1( ),M the critical wave number ( )ca  also 

increases, leading to a reduction in the size of convection cells. This implies that as the magnetic field 
strength increases, the convection cells become smaller and more compact, indicating a more 
organized and stable flow pattern within the ferrofluid-saturated porous layer. 

Figure 5(a) illustrates the impact of the nonlinearity of fluid magnetization 3( )M on the onset of 

ferroconvection. The curves of cR  versus   are shown for different 3M  and χ  when 2 50, =

1 5M =  and 2Bi = . The non-linearity of fluid magnetization refers to the deviation of the magnetic 

response of ferrofluid from a simple linear relationship with the applied magnetic field. In ferrofluids, 
the magnetization is often dependent on both the magnitude of the magnetic field and the 
temperature, resulting in non-linear behavior. The pyromagnetic coefficient quantifies the rate at 

which the magnetization changes with temperature. The graph demonstrates that an increase in 3M  

has a destabilizing effect on the system, making it more prone to convection. However, the 

destabilization caused by 3M  is relatively small. This can be explained by the fact that when the 

pyromagnetic coefficient is large, the magnetization becomes highly dependent on temperature, 
making it more non-linear. This non-linearity of magnetization has significant implications for the 
behavior of the ferrofluid in response to external magnetic fields and thermal gradients, which 
accelerates the initiation of convection due to a reduction in stability region. Similar patterns of 
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behavior are seen in the case of critical wave numbers, as shown in Figure 5(b), where an increase in 

3M causes a decrease in ca  and a resulting increase in convection cell size. 
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Fig. 5. Variation of (a) 

cR and (b) 
ca as a function   for different 

3M and   for 
1 5,M =  2 50, =  2Bi=   

 
The combined influence of buoyancy and magnetic forces is depicted in Figure 6 through the locus 

of cR  and ( )1c c cN N R M=  for various 3M  and   when 2 50 = , 0.02 =  and 2Bi = . The 

relationship between cR  and cN  is inversely proportional. For 3M →   case, the data aligns with 

the correlation 
 

0 0

1c c

c c

R N

R N
+ =  

 

as observed in the non-porous case for constant viscosity ferrofluids [28, 30]. Here, 0cR  is the critical 

thermal Rayleigh number without magnetic field ( 0)N =  and 0cN  is the critical magnetic Rayleigh 

number in the absence of gravity ( 0)R = . 
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The values of the critical stabilities parameters cR  and cN  are tabulated for different values of 

 , Bi , , 3M  and   in Table 2 to 4. From the tables, it is evident that cR  and cN  are increasing as 

a function of MFD viscosity parameter . In the scenario of negligible buoyancy (i.e.,   0R = ), it is 

observed that the critical magnetic Rayleigh number cN  decreases as 3M  increases. These findings 

indicate that the ferrofluid-saturated porous layer becomes more susceptible to temperature 
gradients when influenced by magnetic forces and/or greater non-linearity of the fluid 

magnetization. As 3M  approaches to infinity, the results converge towards those of the classical 

Bénard problem, consistent across various magnetic susceptibility values. 
 

Table 2 
Variation of 

cR and 
cN  for different ,  

3M  and   when 0Bi = =   

  
cR  

( 0N = ) 
cN  ( 0R = ) 

3 1M =  
3 10M =  

3M →   

0 =  9999 =  0 =  9999 =  0 =  9999 =  

0 720 1418.06 2128.58 974.67 1020.21 720 720 
0.02 734.4 1446.42 2171.15 994.16 1040.61 734.4 734.4 
0.04 748.8 1474.78 2213.72 1013.66 1061.01 748.8 748.8 
0.06 763.2 1503.14 2256.29 1033.15 1081.42 763.2 763.2 
0.08 777.6 1531.51 2298.86 1052.64 1101.82 777.6 777.6 
0.1 792 1559.87 2341.43 1072.14 1122.23 792 792 

 
 
 
 
 
 
 
 
 
 


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Table 3 
Variation of 

cR  and 
cN  for different ,  

3M  and   when 0Bi=  and 10 =  

  
cR  

( 0N = ) 
cN  ( 0R = ) 

3 1M =  
3 10M =  

3M →   

0 =  9999 =  0 =  9999 =  0 =  9999 =  

0 889.511 1782.43 2671.86 1222.77 1282.12 889.511 889.511 
0.02 907.30 1818.08 2725.3 1247.22 1307.76 907.30 907.30 
0.04 925.09 1853.73 2778.74 1271.68 1333.4 925.09 925.09 
0.06 942.88 1889.37 2832.18 1296.13 1359.05 942.88 942.88 
0.08 960.67 1925.02 2885.61 1320.59 1384.69 960.67 960.67 
0.1 978.46 1960.67 2939.05 1345.04 1410.33 978.46 978.46 

 
Table 4 
Variation of 

cR  and 
cN  for different ,  

3M  and   when 1Bi=  and 10 =  

  
cR  

( 0N = ) 
cN  ( 0R = ) 

3 1M =  
3 10M =  

3M →   

0 =  9999 =  0 =  9999 =  0 =  9999 =  

0 1222.4 1969.9 2791.06 1402.23 1443.55 1222.4 1222.4 
0.02 1246.85 2009.9 2846.88 1430.27 1472.42 1246.85 1246.85 
0.04 1271.3 2048.69 2902.7 1458.31 1501.3 1271.3 1271.3 
0.06 1295.75 2088.09 2958.52 1486.36 1530.17 1295.75 1295.75 
0.08 1320.19 2127.49 3014.34 1514.4 1559.04 1320.19 1320.19 
0.1 1344.64 2166.89 3070.16 1542.45 1587.45 1344.64 1344.64 

 
4. Conclusions 
 

The investigation focus is on the impact of MFD viscosity on the onset of Brinkman-Bénard 
ferroconvection in an ferrofluid-saturated porous layer, considering the variable viscosity of 
ferrofluid under an applied magnetic field. The porous layer is bounded by rigid-paramagnetic 
surfaces. The eigenvalue problem is numerically solved using the Galerkin technique with Rayleigh 
number R  as the eigenvalue. The obtained results show excellent agreement with previously 
published works. The present study yields the following conclusions 

 
i. The MFD viscosity parameter   delays the onset of ferroconvection in the ferrofluid. This 

means that as the MFD viscosity parameter increases, it hinders the initiation of 
convection, making the system more stable and requiring higher values of critical Rayleigh 

number cR  for the convective motion to occur. The fluid's ability to flow becomes more 

resistant under the influence of the magnetic field, leading to a slower development of 
convection compared to the scenario without MFD viscosity. 

ii. The effect of the magnetic number 1M  and nonlinearity of fluid magnetization parameter 

on cR  in ferrofluids indicates that increasing the magnetic number enhances the 

responsiveness of the fluid to the magnetic field, leading to a more efficient fluid flow and 
heat transfer. As a result, convection is triggered at lower thermal driving forces. 
Understanding this relationship can help in designing and optimizing magnetic fluid-based 
systems, where precise control of fluid motion and heat transfer is desired through 
magnetic fields. 
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iii. The critical thermal Rayleigh number ( cR ) increases as both the Biot number Bi and 

porous parameter 2  increase, resulting in a delay in the onset of ferroconvection. This 
means that higher values of Biot number and porous parameter lead to a more stable 
system, requiring a higher critical Rayleigh number for the initiation of convection in 
ferrofluid-saturated porous layer. 

iv. The system exhibits greater stability against ferroconvection when the boundaries are 
paramagnetic with a large magnetic susceptibility ( ) 0 ,  compared to cases with very 

low susceptibility. The observation shows that  0 0( and ) ( and ) .c c c cR a R a  =  

v. As 3M →  , the results are reduced to those of the classical Rayleigh-Bénard problem 

due to the non-linearity of magnetization. 
vi. Complementary effects are observed between the buoyancy and magnetic forces, with 

the system attaining greater stability in the presence of magnetic forces alone. 
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