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In this study, the system of nonlinear partial differential equations of boundary-layer 
steady flow of Carreau nanofluid over a moving stretching sheet is modulated. 
Moreover, both thermal diffusion and diffusion thermo effects are considered. This 
system has been simplified into a system of nonlinear ordinary differential equations 
using appropriate similarity transformations. Then it has been solved by using the 
multi-step differential transformation method and the differential transformation 
method with Padé approximation. These methods represent approximations with a 
high degree of accuracy and minimal computational effort for studying the particle 
motion in a steady boundary layer flow and heat transfer over a porous moving plate 
in presence of thermal radiation. In addition, the velocity, temperature and 
nanoparticles concentration profiles are obtained and depicted graphically in the 
current study. The porosity parameter effect on the stretching velocity is analyzed and 
it is shown that the increase of porosity parameter tends to reduce the stretching 
velocity. 
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1. Introduction 
 

In fluid mechanics, the boundary layer is considered as an essential part and indicates to the layer 
of fluid in the immediate vicinity of a bounding surface where the effects of viscosity are 
considerable. A range of velocities occurs across the boundary layer from maximum to zero, provided 
that the fluid is in contact with the surface. The expansion of boundary layer velocity on a flat plate 
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was first scrutinized by Blasius [1] and that's expansion of velocity have been studied through this 
paper. In recent years. Considerable attention has been devoted to the study of boundary layer flow 
behavior and heat transfer characteristics of a non-Newtonian fluid past a vertical plate because of 
its extensive applications in engineering processes. Howarth [2] discussed the various aspects of the 
Blasius flat plate flow problem numerically while, our paper use two different semi-analytical 
methods. The boundary layer equations play a central role in many aspects of fluid mechanics since 
they design the motion of a viscous fluid near the surface. The heat transfer for problem that offered 
by Howarth [2] was computed by Pohlhausen [3]. Abou-zeid [4] studied the heat generation and 
viscous dissipation effects on a Newtonian fluid over a stretching sheet with heat transfer. El-dabe et 
al., [5] discussed effects of uniform magnetic field, heat generation and chemical reaction on the flow 
of non-Newtonian nanofluid down a vertical cylinder. For more theorems and investigation see Refs. 
[6-10]. 

In many transport processes in nature, flow is driven by density differences caused by 
temperature gradient, chemical composition (concentration) gradient and material composition. It is 
therefore important to study flow induced by concentration differences independently or 
simultaneously with temperature differences. The energy flux caused by the composition gradient is 
called Dufour effect (diffusion-thermo). If the mass fluxes are created by temperature gradients, it is 
called Soret effect (thermal-diffusion). Abou-zeid [11] computed the influences of thermal-diffusion 
and viscous dissipation on peristaltic flow of micropolar non-Newtonian nanofluid using homotopy 
perturbation method. These effects are generally of a small order of magnitude. The Dufour effect 
was found to be of an order of magnitude such that it cannot be neglected [12]. Soret effect plays an 
important role in the operation of solar ponds, biological systems, and the microstructure of the 
world oceans. In biological systems mass transport across biological membranes induced by small 
thermal gradients in living matter is an important factor. Soret effect also is utilized for isotope 
separation and, in a mixture of gases of light molecular (H2, He) and medium molecular weight (N2, 
air). Eldabe et al., [13] studied non-Darcian, radiation and chemical reaction effects on MHD non-
Newtonian nanofluid flow over a stretching sheet Through a porous medium. Osalusi et al., [14] 
examined numerically the effects of thermal-diffusion and diffusion thermo on combined heat and 
mass transfer of a steady hydromagnetic convective slip flow due to a rotating disk with viscous 
dissipation and Ohmic heating. Recently, Srinivas et al., [15] (several references therein) studied the 
thermal diffusion and diffusion thermo effects in a two-dimensional viscous flow between slowly 
expanding or contracting walls with weak permeability. For more details see Refs. [16-20]. 

The main aim of this paper is to make comparisons between two new algorithms Ms-DTM and 
Pade'-DTM to solutions of thermal diffusion and diffusion thermo effects on the flow of Carreau 
nanofluid over a moving stretching sheet with variable thickness. A computer program technique is 
presented by using Mathematica 11 to discuss and cure the slow convergent rate or completely 
divergent in the wider region that happened in DTM techniques with aid of the multi-step differential 
(Ms-DTM) transform method and pretend the Pade'-DTM techniques. Influences of pertinent 
physical parameters on velocity, temperature and concentration have been discussed. To approve 
the validity of our results and our solutions the semi-numerical and analytical results that obtained 
by Ms-DTM and Pade'-DTM are compared with the nearest published results by Khan et al., [21]. 
 
2. Mathematical Formulations 
 

In this paper, we consider a mathematical model to study Carreau nanofluid flow due to nonlinear 
stretching sheet with variable thickness. The sheet is stretched with velocity  𝑈𝑤 = 𝑈0(𝑥 + 𝑏)

𝑚 

where 𝑈0 reference velocity. Suppose thickness of sheet is 𝑦 = 𝐵(𝑥 + 𝑏)
1−𝑚

2  (see Figure 1). Here 𝑏 is 
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the dimensionless constant and 𝑚 is the power law index. We observe that the model must be 
satisfied only for 𝑚 ≠ 1, because for 𝑚 = 1, the problem reduces to flat sheet. Suppose that the 
variable magnetic field of strength 𝐵𝑜(𝑥) is applied vertical to the plate. 
 

 
Fig. 1. Geometry of the problem 

 
In view of all above approximations and by applying the boundary layer approximation, the 

governing equation of motion can be written as [22-24]: 
 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,              (1) 

 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= (𝑣

𝜕2𝑢

𝜕𝑦2
+ 𝑣

3(𝑛−1)

2
Γ2 (

𝜕𝑢

𝜕𝑦
)
2 𝜕2𝑢

𝜕𝑦2
) −

𝑣

𝑘
𝑢 −

𝜎𝐵0
2𝑢

𝜌
        (2) 

 

𝜌𝑐𝑝 (𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
) = 𝛼

𝜕2𝑇

𝜕𝑦2
+ 𝜏 {𝐷𝐵 (

𝜕𝑇

𝜕𝑦

𝜕𝐶

𝜕𝑦
) +

𝐷𝑇

𝑇∞
[(
𝜕𝑇

𝜕𝑦
)
2

+ (
𝜕𝑇

𝜕𝑥
)
2

]}  

+
𝐷𝑚𝑘𝑇

𝐶𝑠

𝜕2𝐶

𝜕𝑦2
−
𝜕𝑞𝑟

𝜕𝑦
+ 𝑄0(𝑇 − 𝑇∞),        (3) 

 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷𝐵 (

𝜕2𝐶

𝜕𝑦2
) +

𝐷𝑇

𝑇∞
(
𝜕2𝑇

𝜕𝑦2
) +

𝐷𝑚𝑘𝑇

𝑇𝑚

𝜕2𝑇

𝜕𝑦2
− 𝑘𝑟(𝐶 − 𝐶∞)       (4) 

 
With associated boundary conditions, 
 

𝑢 (𝑥 + 𝐵(𝑥 + 𝑏)
1−𝑚

2 ) = 𝑈0(𝑥 + 𝑏)
𝑚, 𝑣 (𝑥 + 𝐵(𝑥 + 𝑏)

1−𝑚

2 ) = 0, 𝑇 (𝑥 + 𝐵(𝑥 + 𝑏)
1−𝑚

2 ) = 𝑇𝑤,   (5) 

 
𝑢(𝑥,∞) = 0, 𝑇 → 𝑇∞, 𝐶 → 𝐶∞, as 𝑦 → ∞.          (6) 
 
By using self-similarity transformations, 
 

𝜂 = 𝑦√𝑈0 (
𝑚+1

2
) (

(𝑥+𝑏)𝑚−1

𝑣
),   

Ψ = √𝑣𝑈0 (
2

𝑚+1
) (𝑥 + 𝑏)𝑚−1𝑓(𝜂), Θ(𝜂) =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
, 𝜙(𝜂) =

𝐶−𝐶∞

𝐶𝑤−𝐶∞
,      (7) 
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where the stream function Ψ is defined in usually way as 𝑢 =
𝜕Ψ

𝜕𝑦
 and 𝑣 = −

𝜕Ψ

𝜕𝑥
. 

 
Eq. (1)-(4) with boundary conditions Eq. (5) becomes 
 

𝑓′′′ +
2𝑚

𝑚+1
(𝑓′)2 − 𝑓𝑓′′ +

3(𝑛−1)

2
𝑊𝑒

2(𝑓′′)2𝑓′′′ − (
1

𝐾
+𝑀)𝑓′ = 0,       (8) 

 

(
1+𝑅

𝑃𝑟
) 𝜃′′ + 𝜃′𝑓 + 𝑁𝑏𝜙

′𝜃′ + 𝑁𝑡(𝜃′)
2 + 𝛾𝜃 + 𝐷𝑢𝜃

′′ = 0,        (9) 

 

𝜙′′ + 𝑆𝑐𝐿𝑒𝑃𝑟 𝑓 𝜙
′ + (𝑆𝑟𝑆𝑐 +

𝑁𝑡

𝑁𝑏
) 𝜃′′ − 𝑆𝑐𝐿𝑒𝜆 𝜙 = 0,                  (10) 

 
The corresponding transformed boundary conditions are, 
 
𝑓(𝜂) = 0, 𝑓′(𝜂) = 1, 𝜃(𝜂) = 1, 𝜙(𝜂) = 1, 𝜂 → 0, 𝑓(∞) = 0, 𝜃(∞) = 0, 𝜙(∞) = 0,              (11) 
 

where 𝑀 =
2𝜎𝐵0

2

(𝑚+1)𝜌𝑈0(𝑥+𝑏)𝑚−1
 , 𝑊𝑒 =

𝑈0
3(𝑥+𝑏)3𝑚−1

2𝑣
 , 𝑃𝑟 =

𝜇𝑐𝑝

𝑘
, 𝛾 =

2𝑄0(𝑥+𝑏)
𝑚−1

(1+𝑚)𝜌𝑐𝑝𝑈0
 , 𝑁𝑏 =

𝐷𝐵(𝐶𝑤−𝐶∞)

𝑣
 ,  

𝑅 =
4𝜎∗𝑇∞

3

𝑘∞𝑘∗
, 𝜆 =

2𝑘

(𝑚+1)𝑈0(𝑥+𝑏)𝑚−1
 , 𝐿𝑒 =

𝑣

𝐷𝐵
 , 𝑁𝑡 =

𝐷𝑡(𝑇𝑤−𝑇∞)

𝑣
, 𝑆𝑟 =

𝐷𝑚𝑘𝑇

𝑣𝑇𝑚
(
𝑇𝑤−𝑇∞

𝐶𝑤−𝐶∞
), 𝐷𝑢 =

𝐷𝑚𝑘𝑇

𝑣𝐶𝑠𝐶𝑝
(
𝐶𝑤−𝐶∞

𝑇𝑤−𝑇∞
), 

𝐾 =
𝑘𝑈0

𝑣𝑥
 and 𝑆𝑐 =

𝑣

𝐷𝑚
 . 

 
Physically quantity of primary interest (i.e.) the rate of heat transfer is given by, 
 

𝑁𝑢𝑅𝑒𝑥
−1/2

= −√
(𝑚+1)

2
𝜃′(0),  

 

where 𝑅𝑒𝑥
1/2

=
𝑈0(𝑥+𝑏)

𝑣
. 

 
Eq. (8)-(10) with associated boundary conditions Eq. (11) are solved semi-numerically by using 

multi-step differential transform techniques and Pade'-DTM algorithm. Comparisons have been 
made between those mentioned methods through graphs and tables. 
 
3. Methodology  
 

In this attempt, firstly, solutions are offered using differential transform method (DTM) which 
introduced for the first time by Zhou [25]. The differential transform technique is one of the semi-
numerical analytical methods for ordinary and partial differential equations that use the form of 
polynomials as approximations of the exact solutions that are sufficiently differentiable [26–29]. For 
convenience of the reader, we present a review of the DTM.  
 
Consider a general equation of nth order ordinary differential equation, 
 
𝑦(𝑡, 𝑓, 𝑓′, . . . , 𝑓⁽ⁿ⁾) = 0.                      (12) 
 
Subject to the initial equations, 
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𝑓(𝑘)(0) = 𝑑𝑘, 𝑘 = 0, . . . , 𝑛 − 1.                     (13) 
 
Let 𝑓(𝑡) be analytic in a domain 𝐷 and let 𝑡 = 𝑡₀ represent any point in 𝐷. The function 𝑓(𝑡) is 

then represented by one power series whose centre is located at 𝑡₀. The differential transformation 
of the 𝑘𝑡ℎ derivative of a function 𝑓(𝑡) is defined as the following: 
 

𝐹(𝑘) = (
1

𝑘!
) [(

𝑑(𝑘)𝑓(𝑡)

𝑑𝑡(𝑘)
)]
(𝑡=𝑡0)

, ∀𝑡 ∈ 𝐷.                    (14) 

 
And the inverse transformation of 𝐹(𝑘) can take the form, 
 

𝑓(𝑡) = ∑ 𝐹(𝑘)(𝑡 − 𝑡0)
(𝑘)∞

𝑘=0 , ∀𝑡 ∈ 𝐷.                    (15) 
 
In fact, from Eq. (14) and Eq. (15), we obtain, 
 

𝑓(𝑡) = ∑
(𝑡−𝑡0)

(𝑘)

𝑘!
(
𝑑(𝑘)𝑦(𝑡)

𝑑𝑡(𝑘)
)
𝑡=𝑡0

, ∀𝑡 ∈ 𝐷.∞
𝑘=0                     (16) 

 
Eq. (15) implies that the concept of differential transformation is derived from the Taylor series 

expansion. In real applications, the function 𝑓(𝑡) is expressed by a finite series and Eq. (16) can be 
written as: 
 

𝑓(𝑡) = ∑ 𝐹(𝑘)(𝑡 − 𝑡0)
(𝑘)𝑁

𝑘=0 , ∀𝑡 ∈ 𝐷.                    (17) 
 

Eq. (17) implies that ∑ 𝐹(𝑘)(𝑡 − 𝑡0)
(𝑘)∞

𝑘=𝑁+1  is negligibly small. 
 

The following table show that the transformation for some functions and relation by using 
differential transformation method . In view of the differential transform method and the operations 
of differential transformation given in Table 1, Eq. (8)-(10) with associated boundary conditions Eq. 
(11) are, 

 

[𝑘 + 1][𝑘 + 2][𝑘 + 3]𝐹[𝑘 + 3] +
2𝑚

𝑚+1
∑ (𝑟 + 1)(𝑘 − 𝑟 + 1)𝐹(𝑟 + 1)𝐹(𝑘 − 𝑟 + 1)𝑘
𝑟=0 −

∑ (𝑟)(𝑘 − 𝑟 + 1)(𝑘 − 𝑟 + 2)𝐹(𝑟)𝐹(𝑘 − 𝑟 + 2)𝑘
𝑟=0 +

3(𝑛−1)

2
𝑊𝑒

2∑ ∑ (𝑟1 + 1)(𝑟2 − 𝑟1 +
𝑟2
𝑟1=0

𝑘
𝑟2

1)(𝑘 − 𝑟2 + 1)(𝑘 − 𝑟2 + 2)(𝑘 − 𝑟2 + 3) 𝐹(𝑟1 + 1)𝐹(𝑟2 − 𝑟1 + 1)𝐹(𝑘 − 𝑟2 + 2)𝐹(𝑘 − 𝑟2 + 3) −

(
1

𝑘
+𝑀) [𝑘 + 1]𝐹[𝑘 + 1] = 0                     (18) 

 

(
1+𝑅

𝑃𝑟
) [𝑘 + 1][𝑘 + 2]Θ[𝑘 + 2] + ∑ (𝑟)(𝑘 − 𝑟 + 1)𝐹(𝑟)Θ(𝑘 − 𝑟 + 1)𝑘

𝑟=0 + ∑ 𝑁𝑏(𝑟 + 1)(𝑘 − 𝑟 +
𝑘
𝑟=0

1)Φ(𝑘 − 𝑟 + 1)Θ(𝑘 − 𝑟 + 1) + 𝑁𝑡 ∑ (𝑟 + 1)(𝑘 − 𝑟 + 1)Θ(𝑟 + 1)Θ(𝑘 − 𝑟 + 1)𝑘
𝑟=0 + 𝛾Θ[𝑘] +

  𝐷𝑢[𝑘 + 1][𝑘 + 2]Θ[𝑘 + 2] = 0                     (19) 
 

[𝑘 + 1][𝑘 + 2]Φ[𝑘 + 2] + 𝑆𝑐𝐿𝑒𝑃𝑟  ∑ (𝑟)(𝑘 − 𝑟 + 1)𝐹(𝑟)Φ(𝑘 − 𝑟 + 1)𝑘
𝑟=0 + (𝑆𝑟𝑆𝑐 +

𝑁𝑡

𝑁𝑏
) [𝑘 +

1][𝑘 + 2]Θ[𝑘 + 2] − 𝑆𝑐𝐿𝑒𝜆 Φ[𝑘] = 0,                    (20) 
 
where 𝐹[𝑘], Θ[k]and Φ[𝑘] are the differential transformations of 𝑓[𝜂], 𝜃[𝜂]and 𝜙[𝜂] respectively. 
The differential transform of the boundary conditions are given by, 
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𝐹[0] = 0, ∑ 𝐹(𝑘)ℎ𝑘𝑛
𝑘=0 = 1, Θ[0] = 1,Φ[0] = 1, ∑ 𝐹(𝑘)ℎ𝑘∞

𝑘=0 = 0,∑ Θ(𝑘)ℎ𝑘∞
𝑘=0 =

0∑ Φ(𝑘)ℎ𝑘∞
 𝑘=0 = 0,                       (21) 

 
On applying the DTM technique, the given differential equations and their related boundary / 

initial conditions are transformed into recurrence a relation who leads to the solution of a system of 
algebraic equations as coefficients of a power series solution. In some situations where the governing 
equations of the system contain highly non-linear terms, the solutions may diverge. To overcome the 
shortcoming, the Pade'-DTM and Ms-DTM are applied. 
 
3.1 Pade'-DTM Approximation 
 

Padé approximant is the best approximation of a function by a rational function of given order – 
under this technique, the approximant's power series agrees with the power series of the function it 
is approximating. The technique was developed around 1890 by Henri Padé, but goes back to Georg 
Frobenius who introduced the idea and investigated the features of rational approximations of power 
series. The Padé approximant often gives better approximation of the function than truncating its 
Taylor series and it may still work where the Taylor series does not converge. For these reasons Padé  
Padé-DTM technique which is the combination between Pade' approximation and differential 
transform method has been adopted and used recently by Zheng [30] to overcome such 
a difficulty in DTM results and to get approximate solutions for a wide range. In literature review, 
Representative studies dealing with Pade'-DTM techniques can be found in [31-34]. Solution 
obtained by DTM is in terms of power series. Since the radius of convergence of the power series 
may not be large enough to contain the two boundaries, Padé approximants are applied to 
manipulate the obtained series for numerical approximations to overcome this difficulty. Padé 
approximant is the best approximation for a polynomial approximation of a function into rational 

functions of polynomials of given order. Let the power series ∑ 𝑎𝑖𝑥
𝑖∞

𝑖=0 , represent a function 𝑓(𝑥); 
i.e., 
 

𝑓(𝑥) = ∑ 𝑎𝑖𝑥
𝑖∞

𝑖=0 .                       (22) 
 
The Padé approximant is a rational function given by, 
 

[𝐿/𝑀] =
𝑃𝐿(𝑥)

𝑄𝑀(𝑥)
                       (23) 

 
where 𝑃𝐿(𝑥) is a polynomial of degree atmost 𝐿 and 𝑄𝑀(𝑥) is a polynomial of degree at most 𝑀. And 
we have: 
 
𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥

2 + 𝑎3.                     (24) 
 
𝑃𝐿(𝑥) = 𝑝0 + 𝑝1𝑥 + 𝑝2𝑥

2 + 𝑝3𝑥
3 +⋯+ 𝑝𝐿𝑥

𝐿 .                   (25) 
 
𝑄𝑀(𝑥) = 𝑞0 + 𝑞1𝑥 + 𝑞2𝑥

2 + 𝑞3𝑥
3 +⋯+ 𝑞𝑀𝑥

𝑀 .                   (26) 
 

It may be observed that in Eq. (25), there are 𝐿 +  1 numerator and 𝑀 +  1 denominator 
coefficients. Since we can clearly multiply numerator and denominator by a constant and leave 
[𝐿/𝑀] unchanged, we impose the normalization condition. 
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𝑄𝑀(0) = 1.                        (27) 
 

Thus there are 𝐿 +  1 independent numerator and 𝑀 independent denominator coefficients, 
making 𝐿 +  𝑀 +  1 unknown coefficient in all. This number suggests that normally [𝐿/𝑀] ought to 
fit the power series Eq. (22) through the orders. 
 
1, 𝑥, 𝑥2, 𝑥3, … , 𝑥1+𝑀.                       (28) 
 
So, in the notation of formal power series, we have: 
 

∑ 𝑎𝑖𝑥
𝑖 =

𝑝0+𝑝1𝑥+𝑝2𝑥
2+𝑝3𝑥

3+⋯+𝑝𝐿𝑥
𝐿

𝑞0+𝑞1𝑥+𝑞2𝑥2+𝑞3𝑥3+⋯+𝑞𝑀𝑥𝑀
+ 𝑂(𝑥𝐿+𝑀+1)∞

𝑖=0 .                  (29) 

 
By cross multiplying, we get that: 
 
(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥

2 + 𝑎3𝑥
3 +⋯)(𝑞0 + 𝑞1𝑥 + 𝑞2𝑥

2 + 𝑞3𝑥
3 +⋯+ 𝑞𝑀𝑥

𝑀) = 𝑝0 𝑝1𝑥 + 𝑝2𝑥
2 +

𝑝3𝑥
3 +⋯+ 𝑝𝐿𝑥

𝐿 + 𝑂(𝑥𝐿+𝑀+1).                     (30) 
 

Equating the coefficients of 1, 𝑥, 𝑥2, 𝑥3, … , 𝑥𝐿 and the coefficients of 𝑥𝐿+1, 𝑥𝐿+2, … , 𝑥𝐿+𝑀, we get 
the following sets of equations: 
 

{
 
 

 
 
𝑎0 = 𝑝0,                                                            
𝑎1 + 𝑎0𝑞1 = 𝑝1,                                                                
𝑎2 + 𝑎1𝑞1 + 𝑎0𝑞2 = 𝑝2,                               

⋮                               
𝑎𝐿 + 𝑎𝐿−1𝑞1 + 𝑎𝐿−2𝑞2 +⋯+ 𝑎0𝑞𝐿 = 𝑝𝐿,

                    (31) 

 
and, 
  

{
 
 

 
 
𝑎𝐿+1 + 𝑎𝐿𝑞1 +⋯+ 𝑎𝐿−𝑀+1𝑞𝑀 = 0,   
𝑎𝐿+2 + 𝑎𝐿+1𝑞1 +⋯+ 𝑎𝐿−𝑀+2𝑞𝑀 = 0,
𝑎𝐿+3 + 𝑎𝐿+2𝑞1 +⋯+ 𝑎𝐿−𝑀+3𝑞𝑀 = 0,

⋮                               
𝑎𝐿+𝑀 + 𝑎𝐿−𝑀+1𝑞1 +⋯+ 𝑎𝐿𝑞𝑀 = 0,   

                    (32) 

 
If 𝑛 <  0, we take 𝑎𝑛 = 0 for consistency and 𝑞𝑗  = 0 for 𝑗 > 𝑀. On solving Eq. (31) and Eq. (32), 

we obtain: 
 

[𝐿/𝑀] =

|

𝑎𝐿−𝑀+1 𝑎𝐿−𝑀+1 ⋯     𝑎𝐿+1    
⋮ ⋮ ⋱          ⋮       
𝑎𝐿

∑ 𝑎𝑗−𝑀𝑥
𝑗𝐿

𝑗=𝑀

𝑎𝐿+1

∑ 𝑎𝑗−𝑀+1𝑥
𝑗𝐿

𝑗=𝑀−1

⋯    𝑎𝐿+𝑀      

⋯ ∑ 𝑎𝑗𝑥
𝑗𝐿

𝑗=0

|

|

𝑎𝐿−𝑀+1 𝑎𝐿−𝑀+1 ⋯     𝑎𝐿+1    
⋮ ⋮ ⋱          ⋮       
𝑎𝐿
𝑥𝑀

𝑎𝐿+1
𝑥𝑀−1

⋯    𝑎𝐿+𝑀      
⋯        1        

|

                   (33) 

 
The Eq. (31) and Eq. (32) normally determine the Padé numerator and denominator and are called 

Padé equations. The [𝐿/𝑀] Padé approximant is constructed in Eq. (33). 
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In addition, new algorithm named by Padé-DTM technique which is the combination between 
Pade' approximation and differential transform method has been adopted and used recently by 
Zheng [30] to overcome such a difficulty in DTM results and to get approximate solutions for a wide 
range. The solutions are obtained by using Pade'-DTM are extracted as the following steps: 

 
Firstly, the series solution of velocity profile are extracted from the obtained results by DTM 
 
𝑓 = 𝑆𝑢𝑚[𝐹[𝑖]𝑡^𝑖, {𝑖, 0,10}]/. 𝑄0/. 𝑎[[1]] 
𝑡 − 1.60409 𝑡3 + 1.66924 𝑡3 − 1.36504 𝑡4 + 0.877565 𝑡5 − 0.484399 𝑡6 + 0.196149 𝑡7 −
0.0148953 𝑡8 − 0.0987711 𝑡9 + 0.152201 𝑡10. 
 
Then, we apply the Laplace transformation on the obtained series and find  
 
𝐿𝑎𝑝𝑙𝑎𝑐𝑒𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚[𝑓, 𝑡, 𝑠] 
552305./𝑠11 − 35842./𝑠10 − 600.58/𝑠9 + 988.59/𝑠8 − 348.767/𝑠7 + 105.308/𝑠6

− 32.7609/𝑠5 + 10.0155/𝑠4 − 3.20817/𝑠3 + 1/𝑠2. 
 

To simplify the obtained series by Laplace transform we replace each 𝑠 by 
1

𝑠
 as: 

 
𝐿𝑎𝑝𝑙𝑎𝑐𝑒𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚[𝑓, 𝑡, 𝑠]/. (𝑠)−> 1/𝑠 
𝑠2 − 3.20817 𝑠3 + 10.0155 𝑠4 − 32.7609 𝑠5 + 105.308 𝑠6 − 348.767 𝑠7 + 988.59 𝑠8

− 600.58 𝑠9 − 35842. 𝑠10 + 552305. 𝑠11. 
 
Now, we apply the Pade' approximation technique on the last step at the convenient order 
 
𝑃𝑎𝑑𝑒𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑛𝑡[𝑔2, {𝑠, 0, {5,4}}] 
(1.000000000000 𝑠2 + 14.3733 𝑠3 + 17.7772 𝑠5 − 234.836 𝑠6)/(1.000000000000 +
17.5815 𝑠 + 64.1661 𝑠2 − 172.306 𝑠3 − 724.763 𝑠4). 
 
Then, we simplify the Pade' approximation and a part it series as the following form 
 
𝑔5 = 𝐴𝑝𝑎𝑟𝑡[𝑔4] 
0.324018/𝑠 − 0.00281611/(−3.1304 + 1. 𝑠) − 0.320238/(3.12978 + 1. 𝑠) − 0.00101442/
(6.9723 + 1. 𝑠) + 0.0000500677/(10.6098 + 1. 𝑠). 
 
Finally, we use the inverse of Laplace Transformation to obtain the following series by technique 
which is named by Pde'-DTM, 
 
𝑓(𝜂) = 𝜂 − 1.5119186579828328𝜂2 + 1.6689557041988523𝜂3 − 1.2889995595025034𝜂4

+ 0.8757527018964728𝜂5 − 0.4592545946185259𝜂6

+ 0.1986115514774606𝜂7 − 0.017838632237848876𝜂8

− 0.0875100499607522𝜂9 + 0.1400479877794983𝜂10. 
 

In addition we apply the same method for extracting the following solutions of the distributions 
to temperature and concentration: 
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𝜃(𝜂) = 1 − 0.5970052193316422𝜂 − 0.1246443420148𝜂2 + 0.07968855925387092𝜂3

− 0.03895310795120801𝜂4 + 0.013335133217300886𝜂5

+ 0.005286651538654442𝜂6 − 0.009736388406569228𝜂7

+ 0.008304896413733847𝜂8 − 0.004373202569979797𝜂9

+ 0.00124336436987618𝜂10. 
 
𝜙(𝜂) = 1 − 0.9477359031328704𝜂 + 0.5003238114793479𝜂2 − 0.318129518753323𝜂3

+ 0.15421570052051278𝜂4 − 0.05146528287277169𝜂5

− 0.022844828275703534𝜂6 + 0.04020898301367976𝜂7

− 0.033985771613456506𝜂8 + 0.01784536380911336𝜂9

− 0.0050528986902073575𝜂10. 
 
3.2 Multi-step Differential Transform Method 
 

The DTM is unworkable for solving partial differential equations with highly non-linear behavior 
at infinity, as in these cases the series solution does not exhibit the real behaviors of the problem but 
gives a good approximation to the true solution in a very small region and it has slow convergent rate 
or completely divergent in the wider region. For this meditate multi-step DTM [35] that has been 
deliberated for the analytical solution of the differential equations along the solicited domain. Multi-
step DTM can be defined as the following [36-39]. 

Let 𝑡 ∈ [𝑡0, 𝑡0 + 𝐿] be the domain of definition of the solution where subdivided into 𝑚 ∈ 𝑍 
pieces, 𝐿 = 𝑚ℎ, here ℎ is chosen sufficiently small so that the series converges in the subintervals 

[𝑡𝑖, 𝑡𝑖+1], 𝑡𝑖 = 𝑡0 + 𝑖ℎ, i = 1,2, … ,m of equal step size ℎ =
𝐿

𝑚
 by using the nodes 𝑡𝑖 = 𝑖ℎ, with the 

initial values 𝛼𝑖, here  𝛼𝑖 being approximately calculated by the sum of the Taylor series at the second 
boundary of the preceding subdomain, namely  𝛼𝑖 = ∑ [𝑌𝑘]𝑖−1ℎ

𝑘𝑛
𝑘=0 . Following this procedure, then 

eventually one gets, step by step, an approximate solution in the whole domain. The procedure has 
also been utilized to evaluate boundary value problems. In that case, the initial value 𝛼0 that 
corresponds to the first boundary condition is designed systematically via the parameters 𝛼𝑖, up to 
the second boundary 𝑡0 + 𝐿 where the desired condition is dictated. Series solution for boundary 
layer flow system Eq. (18)–(20) can be obtained as, 

 
𝑓(𝜂) = ∑ 𝐹(𝑘)𝜂𝑛𝑁

𝑘=0 ,                       (34) 
 
𝜃(𝜂) = ∑ Θ(𝑘)𝜂𝑛𝑁

𝑘=0 ,                       (35) 
 
𝜙(𝜂) = ∑ Φ(𝑘)𝜂𝑛𝑁

𝑘=0 ,                      (36) 
 
Now, according to the multi-step DTM, taking 𝐾 = 𝑛.𝑚, the series solution for boundary layer flow 
system Eq. (18)–(20) is given by, 
 

𝑓(𝜂) =

{
 

 
∑ 𝐹1(𝑘)𝜂

𝑛,                                   𝜂 ∈ [0, 𝜂1] 
𝐾
𝑘=0

∑ 𝐹2(𝑘)(𝜂 − 𝜂1)
𝑛𝑁

𝑘=0                       𝜂 ∈ [0, 𝜂1]
⋮

∑ 𝐹𝑚(𝑘)(𝜂 − 𝜂𝑚−1)
𝑛𝑁

𝑘=0        𝜂 ∈ [𝜂𝑚−1, 𝜂𝑚]

                  (37) 

 

https://www.wordhippo.com/what-is/another-word-for/consigned.html
https://www.wordhippo.com/what-is/another-word-for/dictated.html
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𝜃(𝜂) =

{
 

 
∑ Θ1(𝑘)𝜂

𝑛,                                   𝜂 ∈ [0, 𝜂1] 
𝐾
𝑘=0

∑ Θ2(𝑘)(𝜂 − 𝜂1)
𝑛𝑁

𝑘=0                       𝜂 ∈ [0, 𝜂1]
⋮

∑ Θ𝑚(𝑘)(𝜂 − 𝜂𝑚−1)
𝑛𝑁

𝑘=0        𝜂 ∈ [𝜂𝑚−1, 𝜂𝑚]

                  (38) 

 

𝜙(𝜂) =

{
 

 
∑ Φ1(𝑘)𝜂

𝑛,                                   𝜂 ∈ [0, 𝜂1] 
𝐾
𝑘=0

∑ Φ2(𝑘)(𝜂 − 𝜂1)
𝑛𝑁

𝑘=0                       𝜂 ∈ [0, 𝜂1]
⋮

∑ Φ𝑚(𝑘)(𝜂 − 𝜂𝑚−1)
𝑛𝑁

𝑘=0        𝜂 ∈ [𝜂𝑚−1, 𝜂𝑚]

                  (39) 

 
Where 𝐹𝑖 , Θ𝑖  and Φ𝑖 for 𝑖 =  1, 2, … ,𝑚 satisfy recurrence relations Eq. (18)–(20). 
 

The solutions of velocity, temperature and concentration distributions of system of Eq. (8)-(10) 
with associated boundary conditions Eq. (11) are offered as a series solutions using Pade'-DTM 
method as follows: 
 
𝑓(𝜂) = 𝜂 − 1.5209901699307298𝜂2 + 1.6689832933496183𝜂3 − 1.2964835568595185𝜂4

+ 0.8759383685206605𝜂5 − 0.46172512311191494𝜂6

+ 0.19839205704814702𝜂7 − 0.01756184409040212𝜂8

− 0.08858392735421694𝜂9 + 0.1412265681046618𝜂10. 
 
𝜃(𝜂) = 1 − 0.5970052193316422𝜂 − 0.1246443420148𝜂2 + 0.07968855925387092𝜂3

− 0.03932920100538327𝜂4 + 0.013220650335222814𝜂5

+ 0.0052605544233563315𝜂6 − 0.009834252666459554𝜂7

+ 0.008342696606379948𝜂8 − 0.004397588440885738𝜂9

+ 0.0012435741404654501𝜂10. 
 
𝜙(𝜂) = 1 − 0.9477359031328704𝜂 + 0.5003238114793479𝜂2 − 0.318129518753323𝜂3

+ 0.15571666916978166𝜂4 − 0.05100165474859062𝜂5

− 0.022747389505003282𝜂6 + 0.04060621561788177𝜂7

− 0.034140759418335775𝜂8 + 0.0179442462739804𝜂9

− 0.005053643736287518𝜂10. 
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Table 1 
Comparisons of velocity, temperature and concentration profile using Pade'-DTM and Ms-DTM techniques 
𝜂 𝑓(𝜂) 𝑃𝑎𝑑𝑒′

− 𝐷𝑇𝑀 
𝑓(𝜂) 𝑀𝑠
− 𝐷𝑇𝑀 

𝐸𝑟𝑟𝑜𝑟 𝜃(𝜂) 𝑃𝑎𝑑𝑒′

− 𝐷𝑇𝑀 
𝜃(𝜂) 𝑀𝑠
− 𝐷𝑇𝑀 

𝐸𝑟𝑟𝑜𝑟 𝜙(𝜂) 𝑃𝑎𝑑𝑒′

− 𝐷𝑇𝑀 
𝜙(𝜂) 𝑀𝑠
− 𝐷𝑇𝑀 

𝐸𝑟𝑟𝑜𝑟 

0.0 0 −2
× 10−16 

−2
× 10−16 

1 1 0 1 1 0 

0.1 0.0857865 0.0857868 3
× 10−7 

0.941192 0.941192 −2
× 10−10 

0.901668 0.901668 8 × 10−10 

0.2 0.148429 0.148433 4
× 10−6 

0.880358 0.880358 3 × 10−8 0.811483 0.811484 9 × 10−8 

0.3 0.1942 0.194216 0.00001 0.817833 0.817833 4 × 10−7 0.728100 0.728102 1 × 10−6 
0.4 0.227662 0.2277043 0.00004 0.753887 0.753885 2 × 10−6 0.650435 0.650444 8 × 10−6 
0.5 0.252142 0.2522270 0.00008 0.688741 0.68873 0.00001 0.577608 0.577643 0.00003 
0.6 0.270068 0.2702173 0.00014 0.622573 0.622542 0.00004 0.508900 0.508900 0.00010 
0.7 0.283215 0.2834563 0.00024 0.555533 0.555545 0.00007 0.443713 0.443960 0.00020 
0.8 0.292883 0.2932519 0.00036 0.487747 0.487585 0.00016 0.381539 0.382006 0.00050 
0.9 0.300029 0.3005697 0.00054 0.419014 0.419325 0.00031 0.321941 0.32295 0.00101 
1.0 0.305357 0.3061286 0.00077 0.359812 0.350361 0.00054 0.264531 0.26322 0.00179 
1.1 0.309395 0.3104718 0.00107 0.280945 0.280036 0.00090 0.208959 0.211931 0.00297 
1.2 0.312539 0.3140205 0.00148 0.211156 0.20973 0.00140 0.154901 0.159577 0.00467 
1.3 0.315102 0.3171144 0.00201 0.141070 0.138927 0.00214 0.102051 0.109096 0.00704 
1.4 0.317334 0.3200445 0.00270 0.070760 0.067625 0.00310 0.050114 0.050348 0.010234 
1.5 0.3194577 0.3230810 0.00362 0.000299 0.00406 0.00430 −0.001195 −0.013218 0.0144139 

 
4. Results and Discussions 
 

With the help of DTM-Padé and Ms-DTM techniques, we have found the analytical solutions of 
the transformed Eq. (8)-(10) under the boundary conditions Eq. (11). In addition, comparisons 
between those mentioned methods are computed and signified analytically through Table 1. To 
verify the accuracy of those techniques, we have compared our results as given in Table 2 with the 
corresponding results of Khan et al., [21] in case of 𝑀 = 𝑆𝑐 = 𝑆𝑟 = 𝐷𝑢 = 0. All obtained results show 
and approve to the accuracy of our proposed techniques. Series of solutions are offered by using two 
compared method Pade'-DTM and Ms-DTM as follows with the same values of parameters. 

Figure 2 and Figure 3 clarify the behaviour of both tangential velocity and temperature for 
different techniques, namely, DTM, Pade-DTM and Ms-DTM. 

To have a better physical insight into the problem, the effects of Porosity parameter (𝑘), the 
Hartmann number (𝑀) on the Stretching velocity profile 𝑓(𝜂). For this purpose, Figure 4 and Figure 
5 are plotted. It's obvious from Figure 4 and Figure 5 that the stretching velocity profile has a two 
opposite behavior under influences of 𝑘 and 𝑀 as in [12]. It can see that the velocity gradient reduces 
by increasing the values of Hartmann number 𝑀 because the momentum boundary layer thickness 
enhances as M increases as in [25], but variation in Lorentz force reduces the velocity profile. 
Physically, the application of a transverse magnetic field on an electrically conducting fluid gives rise 
to a resistive-type of force called the Lorentz force. This force has the propensity to reduce speed for 
the motion of the fluid in the boundary layer. Figure 6, Figure 7 and Figure 8 displayr the effect of 
thermophoresis parameter (𝑁𝑡), dimensionless Dufour number (𝐷𝑢) and Porosity parameter (𝑘) on 
temperature profile. It is seen from Figure 6 and Figure 7 that the effect of thermophoresis 
parameter (𝑁𝑡) and Dufour number (𝐷𝑢) are to increase temperature in the boundary layer as the 
heat flux is absorbed by the fluid which in turn increases the temperature of the fluid very close to 
the porous boundary layer and its effect diminishes far away from the boundary layer. Figure 8 
elaborates the variation of Porosity parameter (𝑘) on temperature profile. It is noticed that by 
enhancing the values of 𝑘 the temperature distribution decreases. Physically, as the porosity 
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increases, the temperature gradient steepens at the surface, accompanied by a decrease in the 
temperature in the outer boundary region. At a downstream location in the flow coming up from 
below, the outer region tends to have a temperature equal to the local ambient temperature. If the 
ambient temperature increase with height is rapid, the temperature in this region is unable to attain 
the local ambient temperature, even though the physical temperature does increase due to heat 
transfer mechanisms. Figure 9 shows the behavior of Porosity parameter (𝑘) on the profile of 
concentration. It observed that the higher values of 𝑘 increase the values of concentration profile. 
Figure 10 examines the variation on the profile of concentration for unlike values of heat generation 
parameter 𝛾 [21]. It is clear that the concentration rate decreases for higher values of heat source 
parameter 𝛾. Concentration profile decreases when heat generation parameter 𝛾 is greater than 
zero, also opposite behavior is noticed for 𝛾 less than zero. Soret number (𝑆𝑟) is considered 
increasing function in nanoparticle concentration distribution as shown in Figure 11. Furthermore, 
the increase in the fluid concentration brings about a commensurate increase in the level of collision 
of the fluid particles. And, this has the tendency of increasing the kinetic energy of the particles, 
which subsequently increases the velocity of fluid. 

 

 
Fig. 2. Behavior of 𝑓(𝜂) solutions against 𝜂 for 
different techniques 

 
 

 
Fig. 3. Behavior of 𝜃(𝜂) solutions against 𝜂 for 
different techniques 
 

 
Fig. 4. Behavior of 𝑓′(𝜂) against 𝜂 for several 
values 𝑘 

 

 
Fig. 5. Behavior of 𝑓′(𝜂) against 𝜂 for several 
values 𝑀 
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Fig. 6. Behavior of 𝜃(𝜂) against 𝜂 for several 
values 𝑁𝑡 

 

 
Fig. 7. Behavior of 𝜃(𝜂) against 𝜂 for several 
values 𝑀 

 

 
Fig. 8. Behavior of 𝜃(𝜂) against 𝜂 for several 
values 𝑘 
 

 
Fig. 9. Behavior of 𝜑(𝜂) against 𝜂 for several 
values 𝑀 
 

 
Fig. 10. Behavior of 𝜑(𝜂) against 𝜂 for several 
values 𝑀 

 
Fig. 11. Behavior of 𝜑(𝜂) against 𝜂 for several 
values 𝑆𝑟 

 
Table 2 
Comparison of −𝜃′(𝜂) when 𝑀 = 𝛼 = 𝛾 = 𝐿𝑒 = 𝑁𝑏 = 𝑁𝑡 = 0 and 𝑛 = 1 
𝑃𝑟 Khan et al. [21] Present results by Pade'-DTM Present results by Ms-DTM 

0.07 0.0645 0.0649 0.0656 
0.2 0.1663 0.1651 0.1661 
0.7 0.4554 0.4539 0.4559 
2.0 0.9100 0.9114 0.9100 
7.0 1.8929 1.8905 1.8928 
20.0 3.3505 3.3539 3.3504 
70.0 6.4598 6.4522 6.4598 
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5. Conclusions 
 

In this paper, we carefully present the Pade'-DTM and the multi-step DTM techniques, a reliable 
modifications of the DTM, which improves the convergence of the series solution. Those methods 
provide immediate and visible symbolic terms of solutions, as well as numerical approximate 
solutions to both linear and nonlinear differential equations. The validity of the proposed methods 
has been successful by applying it for boundary layer flow problem. The main outcomes of the 
present study are highlighted as: 

i. Solutions which are obtained approve the validity of the two new algorithms. 
ii. Pade'-DTM and Ms-DTM techniques doesn't need to any perturbation, linearization or 

restrictive assumptions to obtain the solutions related to highly nonlinear problems. 
iii. DTM doesn't valid in a highly non-linear systems of equation.  
iv. Porosity parameter and Hartmann number have an opposite effects on stretching velocity. 
v. Heat generations and Porosity parameters have an opposite influences on concentration. 
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