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field perpendicular to the magnetic surfaces. The aim of this paper is the analytical
solution of magnetohydrodynamic (MHD) flow. The equilibrium equations of motion
for gravitating MHD plasmas are derived in the presence of incompressible mass
flows with helical symmetry. The gravitational field is taken to be a variable vector
function in a space of a cylindrical coordinates (r,¢,z). A similarity reduction
approach is used to obtain exact solutions for several cases of the considered plasma
flows with variable Mach number.
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1. Introduction

A screw axis is a combination of a rotation and a translation along the axis of rotation in three-
dimensional geometry. Within the context of ideal MHD theory, the equilibrium of helically
symmetric plasmas with incompressible flows was investigated [1]. The motion of particles forming
helical vortex filaments in a circular tube was considered in [2-5].

Most of the energy found in the matter that is beyond the black hole’s gravitational force is
ejected in jet form. Several models have been suggested for the formation of jets [6-9]. New
evidence has emerged to support the theory that active galactic nuclei have helical magnetic fields,
which could naturally collimate the jets. The properties of steady incompressible laminar flow of a
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Newtonian fluid in helical pipes were studied in [10-13]. Completely designed flow was studied in a
helical pipe with a view to modeling blood flow around the commonly non-planar bends in the
arterial system [14].

The simplest mathematical model of fusion plasmas is provided by the set of MHD equations
that provide a fluid explanation of the behavior of macroscopic plasma. Many researchers have
achieved MHD equilibria with incompressible flows in cylindrical domains [15-25]. The
mathematical complexity of the MHD equations has stood in the way of understanding
hydromagnetic phenomena such as stellar winds [26-29], magnetic fields of solar prominence, and
the confinement of laboratory plasma [30-31]. Several researchers [32-34] performed the
derivation of the equilibrium equations of MHD plasmas in the literature. These are still expectedly
general solutions for which few representative classes of MHD flows have been revised. The
existence of stationary points for the dynamical system of Arnold-Beltrami-Childress flow was
considered by Ershkov [35]. For this flow it has been shown that a three-parameter velocity field
that provides a simple stationary solution of three dimensional Euler’s equations for
incompressible, inviscid fluids is the prototype for the study of turbulence.

Recently, non-stationary helical flows of the Navier-Stokes equations for incompressible fluids,
with variable coefficient of proportionality between velocity and the curl field of flow, are
investigated by Ershkov et al, [36]. The case of constant proportionality was successfully
investigated in Ershkov [37]. Some basic properties of helicity with reference to the constraining
role of the magnetic helicity in the determination of stable magnetostatic structures are reviewed
in [38]. A mathematical model for MHD slip Darcy boundary layer flow of viscoelastic fluid over a
stretching surface with the presence of thermal radiation and viscous dissipation in a porous
medium is formulated in [39].

Many helically symmetric MHD equilibria with incompressible flows are considered in the
present work. The paper is structured as follows: in section 2, we discuss derivations of ideal
incompressible MHD flows equations. Section 3 describes how to obtain the physical equilibrium
variables of the examined MHD flows in section 2. In section 4, we derive the equation of motion of
a gravitating plasma with incompressible flow and obtain exact solutions to the equilibrium
equations for such flow. In section 5, we summarize the results.

2. Governing Equations for Helically Symmetric Incompressible Flows
In this section we consider stationary case of a quasi-neutral plasma with incompressible flow.
In according to formulation in Sl units convention, we assume the magnetic permeability of free
space equals to 1. This MHD plasma is governed by the following set of equations. The
incompressibility condition
V-v=0, (1)
The momentum equation:
p(v-V)v=—-VP +jAB, (2)

Faraday’s law:

VAE =0, (3)
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Ampére’s law:

VAB=j, (4)
The divergence-free Gauss law:

V-B=0, (5)
Ohm'’s law for MHD:

E+vAB=0, (6)

where p,v,P,B, j and E stand as usual for the mass density, flow velocity field, gas pressure,
magnetic field (induction), vector of displacement current and electric field, respectively. The
system under consideration is a magnetically confined plasma of a helically symmetric
incompressible flow. To describe this configuration, we introduce cylindrical coordinates (7, ¢, z),
with z along the axis of rotation. Helical symmetry implies that any physical quantity depends only
onrandu:

u=1¢ + kz, (7)

where [ and k are constant parameters characterize helical domain (with mandatory restriction to
them of being not equal to zero).

The divergence-free fields, B, j and pv can be expressed in terms of stream functions Y (r,u),
I(r,u), F(r,u) and O(r,u) as

B = /h +h x Vi), (8)

j = (E — 2klR21)h —h x VI, (9)
and

v= %(@h +h X VF). (10)

The electric field is expressed by
E=-Vo. (11)
Using Eq. (8)-(11) and the vector h defined by

_ WVz—kr?v¢
T 12+k2r2

(12)

The MHD system in Eq. (1)-(6) is reduced to the following generalized Grad-Shafranov equation
[1]:
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!

(1 - MD)Ep — L2y |92 — 2hin?x + 2 () + L (p - 222 £ L (222 —o,  3)

1-M? h2 1-M? 2h* \ 1-M?

with £y, P, I and O determined as:

£ =5V W) = [+ () 5+ s ¥ (14)
P =) —p (5 +22) (15)
o=1IF -Lo =% (17)

The dash denotes differentiation with respect to 1. The symbol M denotes the Mach number
which is defined by

vh _ (F)?
M? =t = O (18)

where vy, is the helical velocity and vy, is Alfvén velocity. For the above MHD flows, there are six
surface quantities F(Y), (W), X)), p(¥), ps(¥) and M(yp) five of them are arbitrary. These
guantities are induced from the governing equations in Eq. (1)-(6) after using Eq. (7)-(12). They
satisfy the relation B - Vf (1)) = 0 where the magnetic surfaces are defined by the relation Y =
const. Under the transformation [1, 18-19, 24]:

v) = [ JT-M2Qu) du, M2<1, (19)

Eqg. (13) is reduced to

Coklhr X pld(X* )\, 1d(p ydrd®), 1 d[ de\E]
EW — 2kl (I_MZ)%+2d‘{—'(1—M2)+h2d‘P(PS Xd‘Ple)+2h4d‘P[’D(d'~P)]_O (20)

For more details about the derivation of Eq. (20) [1].

3. Derivation of the Equations of Motion of A Gravitating Plasma Flow

The MHD equilibrium state of a gravitating plasma flow is governed by the set of Eq. (1), (3)-(6)
in addition with the following momentum equation:

p(v-V)v=—-VP —-pVQ+jAB, (22)
where () is the gravitational potential.

Using Eq. (8)- (10), (16) and (17), the component of Eq. (21) along B and along Vi are put in the
consecutively forms:
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vZ 0 ., VP _

B-(V(7+;¢)+7+VQ)—O, (22)
and

(1 —ED?Y 2 F'F" 0o 2 _ 4 2 {B[ 2 _p2 22] 2 V12
v](x ; ) 2wy + 2| VY| 2kl X} V)% +1 2| Vo hV(p) +h2 I+ VP +
pVQ} -V =0. (23)

Using p = p(¥), Eq. (22) can be integrated to yield an expression for the pressure as:

)

P=ps()—p (% + > + -Q): (24)

where p () is the static part of the pressure. In accordance with Eq. (15), we notice appearance of
the gravitational potential at the right hand side. Eq. (24) is a generalization of Bernoulli invariant
for steady flow of incompressible fluid.

Using Eq. (14), (16)-(19) and (24) into Eq. (23), we obtain the following elliptic PDE:

1— M?E - M?)'|Vy|? — 2klh*X + (X ,—i- ! XFo'y
1

~Lap+ L (220 <o, (25)

Using the transformation (19), Eq. (25) is reduced to

£W — 2kih? —— —— (P X———) - =0Q—
kh (1_M2)%+2d‘}’ 1-mz) " ae\s " qwaw) Trtaw

wa o)) =o

In the next sections, we show how to obtain the associated physical quantities to the full MHD
system in Eq. (1)-(6). Moreover, we obtain several classes of exact solutions to Eq. (26) for some
choices of the Mach number M.

1d<X2>1d< dFddD)ldp

4. Construction for Determination of The Equilibrium Physical Variables

In this section we explain how to obtain the equilibrium physical variables, B, j, E, g, P and p for
the MHD system in Eq. (1)-(6) given in section 2. Form Eq. (19) we have

—a__1
Q= av ~ V1i-m? (27)
Hence,
[Vy|* = Q*|VW|?, (28)
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£ = QEW + =2 |VW|2. (29)

To express the physical quantities in terms of the new variable ¥ we introduce the following
new vector:

B=hxVV¥. (30)

Using Eq. (27)-(30) in Eq. (8)-(11) and (24), the equilibrium physical variables v, B, j, P can be
determined as

=%(@h+2—i§)=1(5“—’°—i@h), (31)
B = QB + Ih, (32)
i = [(0e¥ + S |V¥|?) - 2kih2l|h — h A VI = [(QEY + S |VW|?) - 2kin?I|h— 2B (33)

E=-2yy (34)
A Y

_ — o0 — ol Lo (2] = _ o0 _1[L 24 P (A4%y; ae
P=p)—pa—p[S+ ()] == W) —po - [ (S G2 + £ E) +0 5] 39)

To obtain the solution W (7, u) of the original equation in Eq. (13), the Mach number should be
chosen as a function of Y (see Table 1).

Table 1
Some choices for the Mach number appeared in Eqg. (18) and corresponding quantities {5, Q and dQ/d¥ as
functions of ¥

No M y(¥) Q(¥) dQ/d¥
1 € =const< 1 1 v 1 0
V1 —¢€? V1 — g2
2 JU 1-(1-29)%, 0<w<s, w2 V2 V2
2-39)15  (2-3W)s
3 sin(y) arcsin(¥), ¥?2 < 1 1 ks
1_wz (1 — 2)3/2
4 cos(y) arccos(1-¥), 0<¥ <2 1 -1
V2w — w2 QY —w2)3/2
5 tanh () In[tan(¥/2)], ¥ >0 sec(¥) sec(W)tan(¥)
6 sech(y) arccosh(e™), ¥ >0 e? e?
2% _ ] - (e2¥ — 1)3/2

5. Exact Solution Classes for Eq. (26) and (21)

Case 1. Put

dF d® d 1d Ao\ 2
20k = A, (B - XL L) w2, L2 g2, 1L (p (&) >=A3‘P2 (36)

in Eq. (26) we get the PDE:
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azlp+1 1?2 — k%r? a‘P+ 12 + k?r? aztp+< 1
orz  r\l%2+k?r2) or T2 du? 12 + k2r2
(12 + k2r2) (A, — 4,Q) + (12 + k2r?)24) W2 = 0.

)40+

(37)

where A, A1, A, # 0 and A3 are constants. We restrict A, of being not equal to zero, according Eq.

(43) mentioned below.
To seek exact solutions for Eq. (37), we consider the following new variable

Y(r,u) =a(r,u) + u?z,[?(r, u).

Substituting Eq. (38) into Eq. (37) and equating the coefficients of like powers of u we get

ut (@2 + k2 (A, - 4,0) + (2 + Kr2)?4,) = 0,

(12 + k?r?) 1 (1% — k?r?
u?:aB[(1? + k2r?)(A; — A,Q) + (1% + k*r?)2A45] + 2 Pu + >
1
+E.Brr =0,
12 +Kk2r2
ul:—( rzr)ﬁu:()’
0 (12 + k?r?)
u":—l2 ezt a?[(IP + k*r?) (A — A0) + (12 + k*1r?)?A3] + —
(1% +Kk%1?) 1 (1?-Kk?r?
7z Quu T (12+k2r2) ar + &y = 0.

Eqg. (39) gives

Q= Ai[A1 + (12 + k212 4,).
2
Substitution of Eq. (41) and (43) into Eq. (40) yields
k?r?
B(r) =c; + ¢ (S + ().
2

Put

B(r) = —ayu,

in Eqg. (44) and solve Eq. (42) and (45), we get:

1
a(r,u) = ) [4b, + 2b k?*r? + u(4a, — 2cu + k?r?(2a, — cyu)) +
= (Ao + k212(2b; +u(2a, — c;w))In(r)],

12 + k2r2

g+

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)
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where ¢4, ¢,, a4, a,, b; and b, are integration constants.
Thus, from Eq. (46) we get a solution for Eq. (26) as:

1
Y(r,u) = [4b2 + 2bk?*r? + u(4a, — 2cou + k?r?(2a; — cqu)) +
> (A0 + k?12(2by +u(2a; — c;w)))In(r)] + 5 [cz +c (T + ?In())| (47)

Using Eq. (7), solution (47) takes the form:

LP(r b,2) =~ S [4b; + 2b1k*r? + (I¢p + kz)(4a, — 2¢,(1¢p + kz) + k*r?(2a, —
c1 (1 + k) + 5 (A + 1«212(2191 +2a,(1¢ + k2))In@)] + L2 e, 4 ¢, (K1), (48)

Using the solution in Eq. (48), the quantity B is obtained as:

_ a,(1? + k?r 1
B = —lg e ) —a1k2 218 + k27) + 4ay 22 + KPr)le, + [ (4b, k2T +
2k2r (10 + k2) (2a; — ¢y (10 + k2)) + 2 ¢ kP (1D + k2)? + 25 (2b + 2a, (10 +
leg+kre,
D)o ljj:kz:ze ] (49)

The solution of Eq. (21) can be obtained using Table 1. If we choose M = sin(y)) as shown in
Table 1, then y; = arcsin(¥;). Hence we obtain an exact solution to Eq. (21) as follows:

1
1,[)1 = aI‘CSIH[ [4b2 + 2b1k27"2 + (l¢ + kZ)(4‘a2 — 2C2(l¢) + kZ) + k2 Z(Zalcl(l(ﬁ + kZ))) +

2 (A + K212(2by + 20, (1§ + k)] + L2 [¢, + ¢, (EOT). (50)

Using Eq. (31)-(35), we obtain the magnetic field, velocity field, electric field, vector of
displacement current and gas pressure as:

B=—2_+ (le, — krey), (51)

24 )22
’1—1}'1 l“+k“r

where W2 < 1 and B is given by Eq. (49),
1 w2 Ed_F _ @ le;—kreg
1= (p ¥  d¥ (12+k2r2)2)’ (52)

dd 1 , , 1 , 202
— =[G (4bykr + 2K2r (19 + k2) (241 — ¢ (19 + k2)) + 5 1k (10 + k) + — (2by +

rm
I

2a, (10 + k2)))e, + (azl + 5 k2Ir? + 4a, 1P In(r))eq + (azk +5ask’r? +
4a,k1%In(r))e,], (53)
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. £V, ¥, 2| _ 21| lez—kreg _ ﬂ—
o \/E * (1-w$)3/2 V¥4l Lo 12+k?r2  d¥ B, (54)
1
JI-Y1 g2 ar ao ao
P =py(¥) =T -2 Fo— (S G? + p (2 + 2rDH (D) + 6 35| (55)
with
B2 = 1 aZ(lz + kzr) 1 k2r2(13 + k2 4a.12(12 + k27))2
@Ry Ty Tkt a0+ )T
(G (4byk?r + 2k (1D + kz)(2a; — ¢, (I + k2)) + S ¢ k27 (1D + kz)? + % (2b, +
12
2a, (1P + k2))*] + oo (56)
—6k21%(b
By, == BT (57)
and
1 1
VW, |? = r—2(412 + k2r?)2(by + ka,z + a;ld)? + (ak + Ek3r2 + 4a,kl?In(1))? +
(azl + 5 k2ayIr? + 4a; PIn(r)?. (58)
Case 2. Put
2k X w 1d X? o d(P XdFdCD)_ w
Aoz % gul\t—mz) =" qu\s T qugy) T 220
dp 1d do\2\
2 — g0, 12 (p(32) ) = auw (59)

in Eq. (26) we get the PDE:

] L )0 + 01 + K2r2)(a — 42 +
(I + k*r?)2q,]¥ = 0, (60)

0°W  1/[12 —k*>r2\o¥Y [I? +Kk*r?\o%v¥ N ( 1
12+ k?r2) or du? 12 + k272

where qy, 91, 92, q3 # 0 and g, are constants. We restrict g; of being not equal to zero, according
(66) below.
To seek exact solutions to Eq. (60), we consider the following new variable [40]:

Y(r,u) = a(r,u) +uf(r,u). (61)

Substituting this form into Eq. (60) and equating the coefficients of like powers of u we get
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9o 2 2,.2 2 2,.2\2 (lz+k2 2)
B(prmz + @+ +IPr2) (@ = 450 + (12 +kPr?)2q,) + ——— B+

lZ kZ 2
(12+k2r2)'8T + B =0, (62)

2(1% + k?r?
@ (2 by (4 K275 — 450) + (02 + kPr2y7q,) + T g

12 + k272 r2 u
(P+k?r?) 12—k?r? _
o+ () @+ e =0, (63)

We consider the case a = a(r), f = [(r) where @ = [ # 0. For this case, we have

(2 + 1) (g = ) + (P + k21?2, = —— (5250, (64)

D)
124+ k272 rB(r) \I2+k2r2

Substituting this form into Eq. (62) and (63) then solve them, we get
B(r) = a(r) = 1, — 7 + 5 k1 k1% + 1 [PIn(7). (65)

From Eq. (64)-(65), the gravitational potential is obtained as:

N S — + (12 + k?r?)q, — il (66)

T g3 F(12+k2r2)2 lz+k2 2 ‘r'(lz+k2T2)2(K2—T+%K1k2T2+K11211‘1(T)) ’

where k4, k,, are integration constants provided that the denominator of the last term at the right
part of Eq. (66) is not equal to zero.
Thus, we get a solution for Eq. (60) as:

Y(r,u) = (1+u) (Kz -r+ %Klkzrz + Kllzln(r)). (67)
Using Eq. (7), solution (67) takes the form:
W(r, ¢,2) = (1+ 1 + kz) (i, = 7 + 35 K1k2r% + 16, 2In(r)). (68)

Using solution fo Eq. (68) to obtain the quantity B as

K1l lep+kre,

124Kk2r2°

B =—>(k; — 7+ k2r? + 1 PIn(r))e, + (1+ kz + 1) (—1 + 2 + k1) (69)

From Table 1 if we choose M = sin(y), then 1, = arcsin(¥,). Hence we obtain an exact
solution to Eq. (21) as follows:

W, = arcsin l(1 + 1 + kz)? <c2 v (S + lzln(r))>l. (70)

Using Eq. (31)-(35), the magnetic field, velocity field, electric field, vector of displacement
current and gas pressure are obtained as:
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B

B= + (le, —kreg),

2 242
/1_q,% 12+k2r

where W2 < 1 and B is given by Eq. (69),

B dF d® le,—kreg
v=,1-W2? (—————
2\pd¥ AW (12+k212)2

do Kyl 2 1 2
E= -Gl +kz +1d)(=1+—F+ ke, + (g =7 + 1 ker? +

K1 2In(r) s eq + key)],

=2 Ak

j =
,1—"1"2 a- W2)3/2

1—‘~P
P = p(¥,) —T— 93 [{—

with

1

B? = el [ (ky — 7+ %Klkzrz + Kk In ()% +

)

— 2klh?1

lez kre¢
+k2r2

)

2
12+k2r2’
£W _ (L+kz+1p) (K27 (—2K11%+7)+12(-1+2K1k>T))
2= r(12+k?r2)
and

VW, |2 = (1 + kz + lp)*(—1 +

Case 3: Put

X d
—2lk ——— = d,, —(PS -

1— M2 da¥
1d dd\?\ 2
quJ(p (d_‘l’) >_ d,'¥

In Eg. (26) we get the PDE:

Kql?
1_+K1

k2r2

XdFdCD)_d
dvav/ %

12+k2 2

dal =
—_ B,
ay

dp

dw

62‘P+1 12 — k2r2 6‘P+ 12 +
or?  r\l2+k?r2) or T

(—ds(12 + K2r)Q + (12 +

2

-y 1 ) -
o (zz X kzrz)dl + (2 + k2r?)d, +
k2rE)2d,)W? = 0,

(S G0+ + P ED?) + 6

k*r)? + (ky — 7+ %Klkzrz + Kllzln(r))z(i_zzkz)'

= d3l.l.]2’

(71)

(72)

(73)

(74)

(75)

k?r)?] +

(76)

(77)

(78)

(79)

(80)
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where d4, d,, d3 # 0 and d, are constants. We restrict d3 of being not equal to zero, according Eq.
(84) below.
Using Eq. (61) into Eq. (80) and equating the coefficients of like powers of u, we get

u?: B2(—(12 + k2r2)d;Q + (12 + k?r?)2d,) = 0, (81)

(lZ kZ 2)

ul: 2Ba(—(1% + k?r2)d;Q + (2 + k?r2)2d,) + Bui + 2 () By + B =0, (82)

uO: [ (2 + kP2 dy | + a?(— (1% + K7 2)d3Q + (2 + k2r2y2d) + 2D g
+(lz+rk# " ;(%) ar + apr = 0. (83)

Eq. (81) gives

Q= Z—:(lz + k2r?), (84)
We put

Buw = 0, (85)
and solve Eq. (82) and (85) to get:

Brw) = (L +w) (12 + 11 [+ PIn()] ). (86)
Also, put

Ayu = —2Py, (87)
and solve Eq. (83) with using of Eq. (81), (84) and (86) in Eq. (87), we get

a(r,u) = (u—1u?) ()(2 + 10 [kzz—rz + lzln(r)]) +m; — %dzkzr4 + mor? + myIn(r). (88)

1

We use my = 1/2(—1?d, + k?y,) and m; = — (

are integration constants.
Therefore, using Eq. (88) we get a solution for Eq. (80) and (26) as:

d, — I*d, + 2k?1?y,) where ¥4, x» and m,

Y(r,u) = 2u ()(2 + 11 [kzz—rz + lzln(r)]) +m, — %dzkzr“ + myr? + myIn(r). (89)

Using Eq. (7) solution (89) takes the form:

2..2

V(r, ¢,z) = 2(l¢p + kz) ()(2 + X [ >
+myr? + myIn(r). (90)

1
+ lzln(r)l) +m, — §d2k2r4

Using the solution in Eq. (90) to obtain the quantity B as:
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. 2 2..2 1
B= =00+ 1l +Pn@m)e + [—+ 2mor — 5 dak?r? +4 = (k*r?) (kz
leg+k legtkre,

For M = sin(y) as shown in Table 1, ;3 = arcsm(lP3) Hence we obtain an exact solution to
Eq. (26) as follows:

. kZTZ 2 1 2.4 2
3 = arcsin [Z(d) + kz) ()(2 + x1 [T +1 ln(r)D +m, — gdzk " +myr® + mlln(r)]. (92)
The other physical quantities are obtained using Eq. (31)-(35) as:
B I

B = o + 2R 2 (lez — kTe¢), (93)
]

where W2 < 1 and B is given by Eq. (91),
[Tz (BAF _ d® le,—kreg
1-1; (p av  aw (12+k2r2)2)’ (94)
dd mm 1
E= —@{[71 + 2myr — —d k?r3 + )ﬁ(lz + k2r?)(kz + l¢)] e,

+2n(n)| (% eo + 2ke, )}, (95)

+[)(2+X1(

j=| ===+ VW, |2 | — 2klR?1

2
/1—q13 a-v )3/2

P = py(Ws) — /T — W2 \/1—%[3 (%) 4 a2 + k2r?) (g)z]w@ , (97)

awy

lez;—kreg dl =
12+Kk?r? alpB (36)

with
" 1 4 k*r? X 1 my 1,
B _1 LIJZ[ [){2+){1( > +lln(r))] +m[7+2mor—§d2kr +
2
B2+ k22 (kz + 1)) + ) (98)
1?mg—2k?mq,—2d,k?1?r>—d, k*r*
B, = (99)
and
mq 1 X1 2
|VW5|% = [T + 2myr — §d2k2r3 + 7(12 + k?r?)(kz + lqb)] +
k272 2 42
[XZ + 1 (Tr + lzln(r))] (% + 4k2). (100)
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Case 4: Put
2l X — 4 d (P XdFdCD)_ dp — 4
Viemz Y aw\* “dwaw/ " Y ay T ¥
1d dd\%\ 1,3
Eﬁ(p (&) ) =34 (101)

in Eq. (26) we get the PDE:

92y L1 12— k2r2\ 9¥ (12 + k2r?\ 92W ( 1 )A s
ar2  r\12+k?r2) or 72 uz = \I2 + k2r2)"°
(2 + k2r2)(Ay — A, Q) + (12 + k*r?)243 = 0, (102)

where Ay A4, and A, # 0 are constants. We restrict A, of being not equal to zero, according (108)
below.
To seek exact solutions to Eq. (102), we consider the following new variable

Y(r,u) = u?p(r,uw). (103)

Substituting this form into Eq. (102) and equating the coefficients of like powers of u we get

u?: (I + k2r?)2Byy + (1> — k*r®)B. + r2( + k*r?) B = 0, (104)
ul:4(12 + k?r?)%p, =0, (105)
u®:2(12 + k2r2)?B + r2A, + 7'2_2 (12 + k?r?)3 43 + r2(1% + k*r?)% (A, — 4,Q) = 0. (106)

Substitution of Eq. (105) into Eq. (104) yields
2,.2
B(r) =, + i (S + In(r)). (107)

Substitution of Eq. (107) into Eq. (106) gives

2,2

2
2(lz+k2r2)2[cz+c1(k 5 +lzln(r)>]+r2Ao+%(lz+k2r2)3A§+r2(lz+k2r2)2A1
Q= (108)

r2(12+k212)24, ’

where c¢; and ¢,, a; are integral constants.
Thus, we get a solution for Eq. (103) as:

2,.2
W(rw) = |c; + ¢ (S + PIn() )| u2. (109)
Using Eq. (7) the solution of Eq. (26) takes the form:

W@, ,2) = (1§ + k2)?[e + o (S + 2In(n) )| (110)

119



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences
Volume 73, Issue 2 (2020) 106-125

Using the solution of Eq. (110) to obtain the quantity B as:

= -2 k2r? o5 2 2
B="2(l¢ +kz) |c; + o (- + 2In(r) ) | e, + c1(1p + k)2 (Irey + kr2e,).

(111)

From Table 1 if we choose M = sin(y), then ¥ = arcsin(¥). Hence we obtain an exact

solution to Eq. (21) as:

W, = arcsin l(lqb + kz)? (cz +c (@ + lzln(r))>l.

The other physical variables are obtained using Eq. (31)-(35) as follows:
B I
b= e e, k)

where W2 < 1, and B is given by Eq. (111),

B dF ao lez—kT8¢
v=,1 —‘PZ (—————)
pd¥Y  d¥ (12+k2r2)2)’

2,.2

do ker
E=- d—lp{clr(l2 + k*r?)(l¢p + kz)?e. + (Ip + kz) |c; + ¢4 5

(271 ep + Zkez)},

+ lzln(r)> X

j= || ==+ VW, |2 | — 2kih2I

2y3/2
/1—1114 (- q’)/

} _\.pi
P=p5(lp)_ 1_IIJZ 1T( (d‘{J)2+p(l2+k2 2)(d‘~l’) ) 93_3 ’

le,—kre dl =
_E___Jk =B,
+k2r2 d¥

with
2 _ 4(¢tkz)? K2 oo S v A 12
B =i [e2+ e (5= + )] + e G N e e
2 2 2
£w, = X0 e o (S5 4 2 )|
and

VW, ]2 = c2(lp + kz)* (kr + 5 ) + (U + k2)* (42 +25) [e + e (5 + PIn(r)]2

(112)

(113)

(114)

(115)

(116)

(117)

(118)

(119)

(120)
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Case 5: Put
Colk—X_— g A (p _xdFd®) _, dp _ 1d (o (d)2) 1
Zlkm =dy, aw (PS Xdl{!dqi) = da, av ds'¥, 2 d¥ (p (d‘P) ) - zd3qj’ (121)

in Eq. (26) we get the PDE:

52 T = dy + (12 + k2r¥)d, +

(—(2 + K2r2)Q + - (12 + k*r))dsW = 0, (122)

0°W  1/12 —k*r2\o¥ [1? + k*r?\o%V¥ N ( )
12+ k?r2) or du? 12 + k2r2

where d4, d, # 0 and d3 are constants. We restrict d, of being not equal to zero, according (127)
below.
Substituting Eq. (103) into Eq. (122) and equating the coefficients of like powers of u, we get

1 12 — k272
u?:r2p (—(12 + )20+ 5 (1 + k2r2)3d§) + (1% + k2r?) 2B r | ——— | Br

[ + k2r?
+7r2(12 + k*r?) B, = 0, (123)
ul:B8, =0, (124)
u%: 2(12 + k*r®)2B + r2d, + r2(1? + k*r?)%d, = 0. (125)

Eqg. (125) gives

_ —r2dy-r?(12+k%r?)?d,

b= 2(12+k272)2 (126)
Substitution of Eq. (126) and (124) into Eq. (123) yields

g ‘”2(’4‘(51’;fi§i;)2’3"4r4)d1 HAL2r2dy 4 2d3rt (14K 2) (dy + (2 +K2T2)Pdy) .

B r4(d,+(12+k212)2)d, : (127)
Therefore, we get a solution for Eq. (122) and (26) as:
_ o (—ridy-ri(P+kPr?)2d,
Yrw =u ( 2(12+k2r2)2 ) (128)
_ —r2d-r?(1*+k?r?)%d

W(r,¢,7) = (¢ + kn)? (T ) (129)
Using solution in Eq. (129) to obtain the quantity B as:

— 2 2,.2

B = (Autde T DD 112 4 k2r2)e, — I(kz + Ip)ey — kr(kz + Lp)e,]. (130)

(lz+k21"2)3

For M = sin(y) as shown in Table 1, 1 = arcsin(Ws). Hence we obtain an exact solution to Eq.
(21) as follows:
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P = arcsin [(lqb + kz)? (_rzdl_rz(ZZJrkzrz)zdz)]. (131)

2(12+k2r2)?2
The other physical variables are obtained as follows:

B=—+ (le, — kreg), (132)

24 )22
’1—‘1’§ l“+k“r

where W2 < 1 and B is given by Eq. (130),

_ w2 Ed_F . B le;—kreg
=V1-%; (p a¥  d¥ (12+k2r2)2)’ (133)
d® (di+dy(12+k*r?)(Ip+kz)
E=-—[~ 2(12+k2r2)2 (—=r(lp + kz)e, — lrey, — kre,)], (134)
j= -2y VWs|? | - 2kinl| =22 — 2L (135)

2
1z O-¥ )3/2

[1-w2
P = pu(¥s) ~ T W2 S (2 (52 4 p(i2 + k) (D)) + 092 (136)

with
B? — 2<d1+(g2+(;22+r§)2 (21)) qﬂi"’”z) [(1* + k*r®)? + 1?(kz + ) + k*r?(kz + 1$p)*] + lz+',j2r2, (137)
£, = 2d212(lz+k2r2)3(';i(j:2(::)—45k2lzr2+2k4r4), (138)
and
VY| = (d1+da (P +k212)? (1p+kz)? (r2(lp + kz)? + 2r% + k2r%). (139)

(lz+k27‘2)4
Thus, we have obtain exact solution classes to the whole ideal MHD system.
6. Conclusions

In this paper, the equilibrium equations of helically symmetric ideal MHD plasmas with
incompressible flows in the presence of a variable gravitational field are derived. Self-similar
transformations are proposed to deal with many nonlinear cases of the equilibrium equations.
Several exact solutions to the whole ideal MHD system are obtained.

Previously, the equilibrium equations with incompressible flows are considered for an
axisymmetric gravitating magnetically confined plasma [41-43]. Examples of MHD equilibria with
constant Mach number were constructed [43], and analytical solutions were obtained [44] for a
plasma confined to a dipolar magnetic field subject to massive body gravitational forces. In [43-44]

122



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences
Volume 73, Issue 2 (2020) 106-125

it was shown that for the poloidal magnetic flux function, the MHD equilibrium states of an
axisymmetric toroidal plasma with finite resistivity and flows parallel to the magnetic field are
controlled by a second order nonlinear PDE [43] coupled with a Poisson’s equation for the
gravitational potential [44].

Here, we considered the problem in the case of helically symmetric domain that is more general
than axisymmetric one. Moreover, we considered gravitating plasmas with variable Mach number
and variable gravitational field. We have dealt with several nonlinear cases of the equations of
motion for these plasmas and obtained exact solutions for them.
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