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In this paper, unsteady flow of fractionalized Maxwell fluid over an inclined vertical plate 
is considered by using thermo diffusion and slip effects. The flow model is solved using 
Constant proportional Caputo fractional derivative. Initially, the governing equations are 
made non-dimensional and then solved by Laplace transform. To see the impact of 
different flow parameters on the velocity, temperature and concentration, we have drawn 
some graphs. In addition, it is observed that magnetic field has decreasing effect on fluid 
motion whereas thermo-diffusion have increasing effect on fluid motion. 
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1. Introduction 
 

Now a days, magnetohydrodynamic (MHD) has been extended into wide areas of basic and 
applied research in sciences and engineering. The study of non-Newtonian fluid becomes very 
interested due to variety of technological applications like making of plastic sheets, lubricant’s 
performance and motion of biological fluid. 

Numerous non-Newtonian fluid models have been presented to demonstrate the distinction 
between Newtonian and non-Newtonian fluids. Kai-Long Hsiao [1] worked on MHD heat transfer 
thermal extrusion system using non-Newtonian Maxwell fluid with radiative and viscous dissipation 
effects. Shah et al., [2] discussed the Convective flow of a maxwell hybrid nanofluid due to pressure 
gradient in a channel. Akage et al., [3] has analyzed the impacts of Nonlinear thermal radiation on 
stagnation point of an aligned MHD Casson nanofluid flow with Thompson and Troian slip boundary 
condition. Ali et al., [4] discussed the Convection flow of a Maxwell hybrid nanofluid due to pressure 
gradient in a channel. Ahmad et al., [5] compared the generalized form of Jeffrey fluid flow acquired 
by contemplating fractional derivative of singular kernel (Caputo) and non-singular kernel (Caputo-
Fabrizio). During the last decade, different generalized fractional derivatives have appeared in the 
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literature that are derivatives of Caputo, Caputo-Fabrizio, constant proportional Caputo [6-7]. Some 
studies of free convection on an inclined plane in various thermal and mechanical situations have 
recently been presented by mathematicians [8-14]. Some mathematical models of second grade 
fluids are industrial oils, slurry streams, and dilute polymer solutions with different geometry and 
boundary conditions. The solution of unsteady second grade fluid at plate with the assistance of the 
Fourier sine transformation was described by Fetecau et al., [15]. Ahmed et al., [16] has analyzed 
MHD heat transfer into convective boundary layer with a minimal pressure gradient. Convective 
mixed MHD flow studied by Narayana [17], while Nadeem et al., [18] worked on MHD stagnation 
point fluid slanted viscoelastic fluid above the convective field. Because of its rising significance, 
engineering needs to incorporate non-Newtonian fluid. Khan et al., [19] presented a fractional flow 
of the second grade fluid on a vertical surface driven by temperature as well as concentration 
gradients. Khan et al., [20] discussed magnetohydrodynamic flow in the existence of permeable 
media through plate. Seth et al., [21] discussed the MHD convection flow over a vertical plate with 
ramped temperature. Tran et al., [22] worked on mandatory stability of fractional derivatives for 
fractional calculus equations, and the mathematical model used for transference of COVID-19 with 
Caputo fractional derivatives also discussed by Tuan et al., [23]. 

Shateyi et al., [24] presented the convection flow of MHD fluid past an infinite vertical plate using 
a heat generation. Ramzan et al., [25] analyzed the problem of Casson fluid through a channel. 
Authors in [26] investigated the Brinkman fluid effect between two side walls. Ali et al., [27] worked 
on the MHD fluid with heat and mass transport immersed in a porous medium. Ramzan et al., [28] 
discussed the Brinkman fluid over a plate. Authors in [29,31] studied Casson fluid over a vertical plate. 

In this problem, an unsteady flow of fractionalized Maxwell fluid over an inclined vertical plate is 
considered with slip and sorret effects. Initially, the dimensional equations have been made non-
dimensional and then solved these equations via Laplace transform. All velocity, temperature, and 
concentration distribution results have been obtained and evaluated graphically. 
 
2. Mathematical Model 
 

The flow of fractionalized Maxwell fluid over an inclined vertical plate is studied in the presence 
of thermo-diffusion and slip effect. The fluid is flowing vertically upward along 𝑦⋅-axis and the 𝑥⋅-axis 
is normal to the plate. The plate is inclined to vertical direction with an angle A. The fluid and plate 
have concentration 𝐶∞

⋅  and temperature 𝑇∞
⋅  at time 𝑡 ⋅ = 0 with zero velocity. But for 𝑡⋅ > 0, the plate 

starts to move in the plane with uniform velocity 𝑈1𝑓(𝑡⋅). The concentration and temperature of the 
plate is increased to 𝐶𝑤

⋅  and 𝑇⋅ = 𝑇𝑤
⋅ (1 − 𝑐1𝑒−𝑑1𝑡 .

) + 𝑇∞
⋅  with time 𝑡⋅as shown in Figure 1.  
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Fig. 1. Flow diagram of physical model 

 
In view of above assumption, the convection flow of viscous fluid with Sorret effect over a plate 

[28, 31], linear momentum equation is 
 

(1 + 𝜆1
𝜕

𝜕𝑡⋅)
𝜕𝑢1(𝑥⋅,𝑡⋅)

𝜕𝑡⋅ =
𝜕𝜏(𝑥⋅,𝑡⋅)

𝜕𝑥⋅ + (1 + 𝜆1
𝜕

𝜕𝑡⋅)𝑔𝛽𝑇⋅(𝑇⋅ − 𝑇∞
⋅ )𝑐𝑜𝑠(𝐴) + (1 + 𝜆1

𝜕

𝜕𝑡⋅)𝑔𝛽𝐶 ⋅(𝐶⋅ −

𝐶∞
⋅ )𝑐𝑜𝑠(𝐴) − (1 + 𝜆1

𝜕

𝜕𝑡⋅)
𝜎𝛽0

2𝑢1(𝑥⋅,𝑡1
⋅ )

𝜌
− (1 + 𝜆1

𝜕

𝜕𝑡⋅)
𝜇𝑢1(𝑥⋅,𝑡1

⋅ )

𝜌𝐾2
,       (1) 

 
shear stress 𝜏 is 
 

𝜏 =
𝜕𝑢1(𝑥⋅,𝑡1

⋅ )

𝜕𝑥⋅               (2) 

 
thermal equation is  
 
𝜕𝑇⋅(𝑥⋅,𝑡⋅)

𝜕𝑡⋅ = −
𝜕𝑞(𝑥⋅,𝑡⋅)

𝜌𝐶𝑝𝜕𝑥⋅ + 𝐻1(𝑇⋅ − 𝑇∞
⋅ )           (3) 

 
According to Fourier’s Law, 𝑞1(𝑥⋅, 𝑡1

⋅ ) is given by 
 

𝑞1(𝑥⋅, 𝑡1
⋅ ) = −𝛼0

𝜕𝑇⋅(𝑥⋅,𝑡1
⋅ )

𝜕𝑥⋅
            (4) 

 
Diffusion equation is  
 
𝜕𝐶 ⋅(𝑥⋅,𝑡⋅)

𝜕𝑡⋅
= −

𝜕𝐽(𝑥⋅,𝑡⋅)

𝜕𝑥⋅
−

𝐷𝐾𝑇

𝑇𝑚

𝜕𝑞(𝑥⋅,𝑡⋅)

𝜕𝑥⋅
− 𝑆1(𝑇⋅ − 𝑇∞

⋅ )         (5) 

 
According to Fick’s Law, 𝐽1(𝑥⋅, 𝑡1

⋅ ) is given by  
 

𝐽1(𝑥⋅, 𝑡1
⋅ ) = −𝐷𝑚

𝜕𝐶 ⋅(𝑥⋅,𝑡1
⋅ )

𝜕𝑥⋅             (6) 
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The conditions for the model are 
 
𝑢1(𝑥⋅, 𝑡⋅) = 0,   𝑇⋅(𝑥⋅, 𝑡⋅) = 𝑇∞,   𝐶⋅(𝑦⋅, 𝑡⋅) = 𝐶∞

⋅ ,   𝑦⋅ > 0,    𝑡⋅ = 0,       (7) 
 

𝑢1(0, 𝑡⋅) − 𝑅1
𝜕𝑢1

𝜕𝑥⋅
= 𝑈1𝑓(𝑡⋅),   𝑇⋅(0, 𝑡⋅) = 𝑇∞

⋅ + 𝑇𝑤
⋅ (1 − 𝑐1𝑒−𝑑1𝑡⋅

),   𝐶⋅(0, 𝑡⋅) = 𝐶𝑤
⋅ ,   𝑡⋅ > 0,   (8) 

  
𝑢1(𝑥⋅, 𝑡⋅) → 0,   𝑇⋅(𝑥⋅, 𝑡⋅) → 0,   𝐶⋅(𝑥⋅, 𝑡 ⋅) → 0,     𝑥⋅ → ∞,     𝑡⋅ > 0.       (9) 
 
 
3. Generalized Model 
 

Dimensionless form of the variables are  
 

𝑥∗ =
𝑈2𝑥⋅

𝜈2 , 𝑡∗ =
𝑈𝑡⋅

𝜈2 , 𝑇∗ =
𝑇⋅−𝑇∞

⋅

𝑇𝑤
⋅ −𝑇∞

⋅ ,   𝑢∗ =
𝑢1

𝑈⋅
,   𝐽1

∗ =
𝐽1

𝐽
, 𝑞1

∗ =
𝑞1

𝑞
, 𝐺𝑟∗ =

𝑔𝛽𝑇⋅(𝑇𝑤
⋅ −𝑇∞

⋅ )𝑈2

𝜈2 , 𝐶∗ =
𝐶 ⋅−𝐶∞

⋅

𝐶𝑤
⋅ −𝐶∞

⋅ ,

𝐺𝑚∗ =
𝑔𝛽𝐶⋅(𝐶𝑤

⋅ −𝐶∞
⋅ )𝑈2

𝜈2
, 𝑀 =

𝜎𝛽0
2𝑈3

𝜌𝜈2
,

1

𝐾
=

𝜇𝑈3

𝜌𝜈2𝐾2
, 𝜆 =

𝜆1𝑈

𝜈2
.                  (10) 

 
Eq. (1) is generalized fractionally by [32] 
 

         𝜏 = 𝐿𝛽𝐷𝑡
𝛽 𝜕𝑢(𝑥,𝑡)

𝜕𝑥
,       1 ≥ 𝛽 > 0,                    (11) 

 
where 𝐿𝛽 = 𝑛1𝐾𝛽 = 1 when 𝛽 → 1. Put Eq. (11) into Eq. (1) and using non-dimensional parameters 

from Eq. (10), we have  
 

(1 + 𝜆
𝜕

𝜕𝑡
)

𝜕𝑢(𝑥,𝑡)

𝜕𝑡
= 𝐿𝛽𝐷𝑡

𝛽 𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2 − (1 + 𝜆
𝜕

𝜕𝑡
)(𝐾−1 + 𝑀)𝑢(𝑥, 𝑡) + (1 + 𝜆

𝜕

𝜕𝑡
)𝐺𝑟𝑇(𝑥, 𝑡)𝑐𝑜𝑠(𝐴) +

(1 + 𝜆
𝜕

𝜕𝑡
)𝐺𝑚𝐶(𝑥, 𝑡)𝑐𝑜𝑠(𝐴),                      (12) 

 
Eq. (2) is generalized fractionally by [33, 34]  
 

𝑞 = −𝐵𝛾𝐷𝑡
𝛾 𝜕𝑇(𝑥,𝑡)

𝜕𝑥
,      1 ≥ 𝛾 > 0,                     (13) 

 
where thermal conductivity has generalized coefficient 𝐵𝛾. Put Eq. (13) into Eq. (2) and making non-

dimensional results, we have 
 
𝜕𝑇(𝑥,𝑡)

𝜕𝑡
=

1

𝑃𝑟
𝐷𝑡

𝛾 𝜕2𝑇

𝜕𝑥2 + 𝐻𝑇,                      (14) 

 

where 𝑃𝑟 =
𝜌𝜈𝐶𝑝

𝐵𝛾
. 

Eq. (3) is generalized by using Fick’s Law defined by  
 

𝐽 = −𝐶𝛼𝐷𝑡
𝛼 𝜕𝐶(𝑥,𝑡)

𝜕𝑥
,      1 ≥ 𝛾 > 0.                     (15) 

 
where molecular diffusion has generalized coefficient 𝐶𝛼. Put Eq. (15) into Eq. (3) and making non-
dimensional results, we have  
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𝜕𝐶(𝑥,𝑡)

𝜕𝑡
=

1

𝑆𝑐
𝐷𝑡

𝛼 𝜕2𝐶(𝑥,𝑡)

𝜕𝑥2 + 𝑆𝐶(𝑥, 𝑡) + 𝑆𝑟𝐷𝑡
𝛾 𝜕2𝑇(𝑥,𝑡)

𝜕𝑥2 ,                   (16) 

 

where 𝑆𝑐 =
𝜈

𝐶𝛼
 is the generalized Schimdt number. 

Initial and boundary conditions are  
 
𝑢(𝑥, 𝑡) = 𝑇(𝑥, 𝑡) = 𝐶(𝑥, 𝑡) = 0,       𝑡 = 0,                    (17) 
 

𝑢(0, 𝑡) − 𝑅
𝜕𝑢

𝜕𝑥
= 𝑓(𝑡), 𝑇(0, 𝑡) = 1 − 𝑐𝑒−𝑑𝑡,   𝐶(0, 𝑡) = 𝑡,   𝑡 > 0,                 (18) 

 
𝑢(𝑥, 𝑡) → 0,     𝑇(𝑥, 𝑡) → 0,     𝐶(𝑥, 𝑡) → 0, 𝑥 → ∞,   𝑡 > 0,                  (19) 
 
where 𝐺𝑚, 𝑅, 𝑀, 𝐻, 𝐺𝑟, 𝜆, and 𝑢 represents the mass Grashof number,slip parameter , magnetic field, 
non-dimensional heat generation parameter, mass Grashof number, Maxwell parameter, and motion 

of fluid respectively and 𝐷𝑡
𝛽

𝑢(𝑥, 𝑡) is the CPC derivative of 𝑢(𝑥, 𝑡) given by 
 

𝐷𝑡
𝛽

𝑢(𝑥, 𝑡) =
1

𝛤(1−𝛽)
∫ [𝐾1(𝛽)𝑢(𝑥, 𝜏) + 𝐾0(𝛽)𝑢′(𝑥, 𝜏)](𝑡 − 𝜏)−𝛽𝑑𝜏

𝑡

0
                 (20) 

 
4. Solution of Problem 
 

Eqs. (12, 14, 16) with conditions have been solved semi-analytically. 
 
4.1 Temperature Profile 
 

From Eq. (14), we have 
 

𝑠𝑇(𝑥, 𝑠) =
1

𝑃𝑟
[

𝐾1(𝛾)

𝑠
+ 𝐾0(𝛾)]𝑠𝛾 𝜕2𝑇(𝑥,𝑠)

𝜕𝑥2 + 𝐻𝑇(𝑥, 𝑠)                   (21) 

 
Eq. (21) is satisfied by  
 

𝑇(0, 𝑠) =
1

𝑠
−

𝑐

𝑠+𝑑
,       𝑇(𝑥, 𝑠) → 0,   𝑥 → ∞                    (22) 

 
Put Eq. (22) in Eq. (21) 
 

𝑇(𝑥, 𝑠) = (
1

𝑠
−

𝑎

𝑠+𝑏
)𝑒

−𝑥√
𝑃𝑟(𝑠−𝐻)

(
𝐾1(𝛾)

𝑠
+𝐾0(𝛾))𝑠𝛾

                    (23) 

 
4.2 Calculation of Concentration 
 

Solution of Eq. (16) with conditions 
 

𝑠𝐶(𝑥, 𝑠) =
1

𝑆𝑐
[

𝐾1(𝛼)

𝑠
+ 𝐾0(𝛼)]𝑠𝛼 𝜕2𝐶(𝑥,𝑠)

𝜕𝑥2 + 𝑆𝐶(𝑥, 𝑠) + 𝑆𝑟[
𝐾1(𝛾)

𝑠
+ 𝐾0(𝛾)]𝑠𝛾 𝜕2𝑇(𝑥,𝑠)

𝜕𝑥2               (24) 
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𝐶(0, 𝑠) = 𝑠−2,       𝐶(𝑥, 𝑠) → 0,   𝑥 → ∞                    (25) 

 
Using Eq. (25) in Eq. (24) for 𝛼 = 𝛾, 
 

𝐶(𝑥, 𝑠) = [𝑠−2 +
𝑆𝑟𝑆𝑐𝑃𝑟(𝑠−𝐻)(

1

𝑠
−

𝑐

𝑠+𝑑
)

(𝑠−𝐻)𝑃𝑟−(𝑠+𝑆)𝑆𝑐
]𝑒

−𝑥√
𝑆𝑐(𝑠+𝑆)

[
𝐾1(𝛼)

𝑠
+𝐾0(𝛼)]𝑠𝛼

−  

𝑆𝑟𝑆𝑐𝑃𝑟(𝑠−𝐻)(
1

𝑠
−

𝑐

𝑠+𝑑
)

(𝑠−𝐻)𝑃𝑟−(𝑠+𝑆)𝑆𝑐
𝑒

−𝑥√
𝑃𝑟(𝑠−𝐻)

[
𝐾1(𝛼)

𝑠
+𝐾0(𝛼)]𝑠𝛼

                     (26) 

 
4.3 Calculation of Velocity 
 

Solution of Eq. (12) with conditions  
 

𝑠(1 + 𝜆𝑠)𝑢(𝑥, 𝑠) = 𝐿𝛽[
𝐾1(𝛽)

𝑠
+ 𝐾0(𝛽)]𝑠𝛽 𝜕2𝑢(𝑥,𝑠)

𝜕𝑥2
− (1 + 𝜆𝑠)(𝐾−1 + 𝑀)𝑢(𝑥, 𝑠) + (1 +

𝜆𝑠)𝐺𝑟𝑇(𝑥, 𝑠)𝑐𝑜𝑠(𝐴) + (1 + 𝜆𝑠)𝐺𝑚𝐶(𝑥, 𝑠)𝑐𝑜𝑠(𝐴),                   (27) 

  

𝑢(0, 𝑠) − 𝑅
𝜕𝑢(0,𝑠)

𝜕𝑥
= 𝑓(𝑠),       𝑢(𝑥, 𝑠) → 0,   𝑥 → ∞                   (28) 

 
Putting Eq. (28) in Eq. (27) for 𝛼 = 𝛽 = 𝛾 

𝑢(𝑥, 𝑠) =
1

𝑠𝑒+1

1+𝑅√
(𝑠+𝐾−1+𝑀)(1+𝜆𝑠)

𝐿𝛽[
𝐾1(𝛼)

𝑠
+𝐾0(𝛼)]𝑠𝛼

𝑒

−𝑥√
(𝑠+𝐾−1+𝑀)(1+𝜆𝑠)

𝐿𝛽[
𝐾1(𝛼)

𝑠
+𝐾0(𝛼)]𝑠𝛼

+ (1 + 𝜆𝑠)𝑐𝑜𝑠(𝐴)[
1

𝑠
−

𝑐

𝑠+𝑑
][

𝐺𝑟−
𝑃𝑟𝑆𝑐𝐺𝑚𝑆𝑟(𝑠−𝐻)

𝑃𝑟(𝑠−𝐻)−(𝑠+𝑆)𝑆𝑐

𝐿𝛽𝑃𝑟(𝑠−𝐻)−(𝑠+𝑘−1+𝑀)(1+𝜆𝑠)
]  

 [

1+𝑅√
𝑃𝑟(𝑠−𝐻)

[
𝐾1(𝛼)

𝑠
+𝐾0(𝛼)]𝑠𝛼

1+𝑅√
(𝑠+𝐾−1+𝑀)(1+𝜆𝑠)

𝐿𝛽[
𝐾1(𝛼)

𝑠
+𝐾0(𝛼)]𝑠𝛼

𝑒

−𝑥√
(𝑠+𝐾−1+𝑀)(1+𝜆𝑠)

𝐿𝛽[
𝐾1(𝛼)

𝑠
+𝐾0(𝛼)]𝑠𝛼

− 𝑒
√

𝑃𝑟(𝑠−𝐻)

[
𝐾1(𝛼)

𝑠
+𝐾0(𝛼)]𝑠𝛼

] +

[
(1+𝜆𝑠)𝑐𝑜𝑠(𝐴)[

𝐺𝑚

𝑠2 +[
1

𝑠
−

𝑐

𝑠+𝑑
]]

𝑃𝑟𝑆𝑐𝐺𝑚𝑆𝑟(𝑠−𝐻)

𝑃𝑟(𝑠−𝐻)−(𝑠+𝑆)𝑆𝑐

𝐿𝛽(𝑠+𝑆)𝑆𝑐−(𝑠+𝑘−1+𝑀)(1+𝜆𝑠)
] ×   

[

1+𝑅√
(𝑠+𝑆)𝑆𝑐

[
𝐾1(𝛼)

𝑠
+𝐾0(𝛼)]𝑠𝛼

1+𝑅√
(𝑠+𝐾−1+𝑀)(1+𝜆𝑠)

𝐿𝛽[
𝐾1(𝛼)

𝑠
+𝐾0(𝛼)]𝑠𝛼

𝑒

−𝑥√
(𝑠+𝐾−1+𝑀)(1+𝜆𝑠)

𝐿𝛽[
𝐾1(𝛼)

𝑠
+𝐾0(𝛼)]𝑠𝛼

− 𝑒
√

(𝑠+𝑆)𝑆𝑐

[
𝐾1(𝛼)

𝑠
+𝐾0(𝛼)]𝑠𝛼

]                 (29) 

 
5. Results and Discussion 
 

The solution for the impact of thermo-diffusion, magnetic field, and heat generation on flow of 
Maxwell fluid past over a vertical plate are developed by using Laplace transform technique. The 
effect of numerous parameters used in the governing equations of velocity fields have been analyzed 
in the figures. 
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Figure 1(a) represent the result of 𝐺𝑟 on 𝑢(𝑥, 𝑡). The fluid motion rises up with maximizing the 
values of𝐺𝑟, and it represents the impact of thermal buoyancy force to viscous force. Therefore 
maximizing the values of 𝐺𝑟 exceed the temperature gradient due to which velocity field rises. Figure. 
1(b) represent the result of 𝐺𝑟 on 𝑢(𝑥, 𝑡) with slippage. The impact of 𝐺𝑚 on fluid velocity u(x, t) 
without slippage is illustrate in Figure 2(a). It is highlighted that fluid motion raises as values of Gm 
increasing. Physically higher the values of 𝐺𝑚 increase the concentration gradients which make the 
buoyancy force significant and hence it is examined that velocity field is raising. The impact of 𝐺𝑚 on 
𝑢(𝑥, 𝑡) with slip effect is reported in Figure 2(b). 

The behavior of 𝜆 on 𝑢(𝑥, 𝑡) with non slippage is reported in Figure 3(a). It is highlighted that fluid 
motion raises as values of 𝜆 decreases. Figure 3(b) display the effect of 𝜆 on 𝑢(𝑥, 𝑡) with slippage. 
The behavior of 𝐾 on 𝑢(𝑥, 𝑡) with non slippage is reported in Figure 4(a). It is highlighted that fluid 
motion decays down as values of 𝐾 decreases. Figure 4(b) display the effect of 𝐾 on 𝑢(𝑥, 𝑡) with 
slippage. The impact of 𝑀 on 𝑢(𝑥, 𝑡) without slip effect is reported in Figure 5(a). Graph shows that 
fluid speed u(x, t) is reduced with accelerating values of parameter 𝑀. Resistivity becomes dominant 
with raising 𝑀 which reduced the speed of fluid. The impact of 𝑀 on 𝑢(𝑥, 𝑡) with slip effect is 
reported in Figure 5(b). The effect of 𝑆𝑟 on 𝑢(𝑥, 𝑡) without slippage is depicted in Figure 6(a). The 
𝑢(𝑥, 𝑡) increases with increasing the values of 𝑆𝑟. Physically, mass buoyancy force is significant with 
raising effect of 𝑆𝑟 which raises the fluid motion. Figure 6(b) represents the effect of 𝑆𝑟 on 𝑢(𝑥, 𝑡) 
with slippage. The impact of inclination angle 𝐴 on 𝑢(𝑥, 𝑡) with non-slip effect is shown in Figure 7(a). 
Fluid motion is speed up with decreasing values of inclination angles. The impact of inclination angle 
𝐴 on 𝑢(𝑥, 𝑡) with slip effect is shown in Figure 7(b). Figure 8(a) indicates the impact of 𝑃𝑟 on 𝑇(𝑥, 𝑡). 
Figure 9(b) indicates the effect of 𝐻 on 𝑇(𝑥, 𝑡). The 𝑇(𝑥, 𝑡) increases with increasing values of 𝐻 as 
reported in the figure. The behavior of 𝑆𝑐 on 𝐶(𝑥, 𝑡) are shown in Figure 9(a). The behavior of 𝑆 on 
𝐶(𝑥, 𝑡) are shown in Figure 10(b). 

Figure 10(a) shows the comparison of present work with Siyal et al., [30]. If we put 𝛽 = 𝛾 = 𝛼 →
1,𝐴 = 𝑆𝑟 = 𝑅 = 𝑆𝜆 = 0, and 𝐵 = 𝜔 = 0 of Siyal et al., [30] work, the both fluid are identical. Figures 
10(b) to 11(b) are drawn for for authenticity of inverse algorithms.  
 

  
Fig. 1(a). Velocity profile u(x,t) for 
various values of Gr at λ=0.6, Sr=0.5, 
M=0.3, R=0.0, K=3.5, Sc=6.2, Gm=10 

Fig. 1(b). Velocity profile u(x,t) for 
various values of Gr at λ=0.6, Sr=0.5, 
M=0.3, R=0.6, K=3.5, Sc=6.2, Gm=10 
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Fig. 2(a). Velocity profile u(x,t) for 
various values of Gm at λ=0.6, Sr=0.5, 
M=0.3, R=0.0, K=3.5, Sc=6.2, Gr=10 

Fig. 2(b). Velocity profile u(x,t) for 
various values of Gm at λ=0.6, Sr=0.5, 
M=0.3, R=0.6, K=3.5, Sc=6.2, Gr=10 

 

  
Fig. 3(a). Velocity profile u(x,t) for 
various values of λ at Gr=5, Sr=0.5, 
M=0.3, R=0.0, K=3.5, Sc=6.2, Gm=10 

Fig. 3(b). Velocity profile u(x,t) for 
various values of λ at Gr=5, Sr=0.5, 
M=0.3, R=0.6, K=3.5, Sc=6.2, Gm=10 

 

  
Fig. 4(a). Velocity profile u(x,t) for 
various value of K at Gr=5, Sr=0.5, 
M=0.3, R=0.0, λ=0.6, Sc=6.2, Gm=10 

Fig. 4(b). Velocity profile u(x,t) for 
various value of K at Gr=5, Sr=0.5, 
M=0.3, R=0.8, λ=0.6, Sc=6.2, Gm=10 

 



 Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 99, Issue 2 (2022) 155-167 

163 
 

  
Fig. 5(a). Velocity profile u(x,t) for 
various value of M at Gr=5, Sr=0.5, K=3.5, 
R=0.0, λ=0.6, Sc=6.2, Gm=10 

Fig. 5(b). Velocity profile u(x,t) for 
various value of M at Gr=5, Sr=0.5, 
K=3.5, R=0.8, λ=0.6, Sc=6.2, Gm=10 

 

  
Fig. 6(a). Velocity profile u(x,t) for 
various value of Sr at Gr=5, M=0.3, K=3.5, 
R=0.0, λ=0.6, Sc=6.2, Gm=10 

Fig. 6(b). Velocity profile u(x,t) for 
various value of Sr at Gr=5, M=0.3, 
K=3.5, R=0.8, λ=0.6, Sc=6.2, Gm=10 

 

  
Fig. 7(a). Velocity profile u(x,t) for 
various value of angle (A) at Gr=5, 
M=0.3, K=3.5, R=0.0, λ=0.6, Sc=6.2, 
Gm=10 

Fig. 7(b). Velocity profile u(x,t) for various 
value of angle (A) at Gr=5, M=0.3, K=3.5, 
R=0.8, λ=0.6, Sc=6.2, Gm=10 
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Fig. 8(a). Temperature profile T(x,t) for 
various values of Pr 

Fig. 8(b). Temperature profile T(x,t) for 
various values of H 

 

  
Fig. 9(a). Concentration profile C(x,t) for 
various values of SC 

Fig. 9(b). Concentration profile C(x,t) for 
various values of S 

 

  
Fig. 10(a). Comparison of present work 
with [29] 

Fig. 10(b). Temperature obtained by 
Stehfest’s and Tzou’s algorithms [35,36] 
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Fig. 11(a). Comparison obtained by 
Stehfest’s and Tzou’s algorithms [35,36] 

Fig. 11(b). Velocity obtained by 
Stehfest’s and Tzou’s algorithms [35,36] 

 
6. Findings 
 

The flow of fractional Maxwell fluid model has been taken and solved using Laplace transform 
with solution. The conditions of flow problem are satisfied by the results. Different graphs have been 
plotted for flow parameters and then discussed. 

The key points of this flow model are 
 

i. With higher Magnetic values, the velocity distribution slows down. 
ii. Thermal buoyancy forces accelerate the fluid velocity. 

iii. The fluid velocity increased for higher values of sorret effect. 
iv. The fluid velocity increased for decreasing inclination angle. 
v. The Temperature of fluid decays down for larger values of 𝑃𝑟. 

vi. The Temperature of fluid rises up for larger values of 𝐻. 
vii. The concentration of fluid is a decreasing function of 𝑆. 

viii. The concentration level is an decreasing function of smidth number. 
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