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In this article, an analytical technique has been proposed for solving the model of two-
dimensional viscous flow between slowly expanding or contracting walls with weak 
permeability. The idea of combining the Fourier transform and the homotopy 
perturbation method to yield a new technique was successful. The tables and graphs of 
the results of new analytical approximate solutions have illustrated the importance, 
usefulness, and necessity of using the new method. The results obtained showed the 
accuracy and efficiency of the new method compared to the previous methods, which 
were used to find the analytical approximate solutions for the current problem. 
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1. Introduction 
 

The study of viscous flow theory, especially the flow of Newtonian and non-Newtonian fluids, has 
attracted the eye of scientists and engineers because of its important applications in various 
branches of science and technology. Many of these applications are  based on non-linear ordinary or 
partial differential  equations [8-10,17,18,22,24,25]. In the last years, several powerful methods have  
been developed to construct approximate solution of non-linear differential equations [1-7,19]. One 
of the foremost important problems of the fluid flow and which has interested many researchers that 
is the laminar flow of viscous fluid through a porous channel with contracting or expanding 
permeable walls. The seek for theoretical solutions about static flow of this kind began, as Berman 
[11] was able for the first time to find a series solution for the two-dimensional streamline flow of a 
viscous incompressible fluid during a parallel walled channel for the case of a very low cross-flow 
Reynolds number. This study paved the way for several researchers and authors who have studied 
this problem by watching the various variations of this problem, for instance, Ganji et al., [13] used 
the homotopy perturbation method (HPM) to debate two-dimensional viscous fluid flow problem 
between slowly expanding or contracting walls. The comparison between the results of numerical 
method (NM) and the results of the homotopy perturbation method clarified that this method is very 
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effective and straight-forward and might be applied for other nonlinear problems. Rahimi et al., [23] 
applied the homotopy analysis method (HAM) and homotopy perturbation method (HPM) to 
review of two-dimensional viscous flow between slowly expanding or contracting walls with weak 
permeability. The results from the two methods are compared with numerical solution by fourth 
order Runge–Kutta–Fehlberg technique. Furthermore, the results of dimensionless parameters on 
the velocity distributions are investigated. Dinarvand [12] studied the viscous fluid flow through 
slowly expanding or contracting walls by using the differential transform method (DTM). The 
comparison between the simulation results using DTM with the simulation results using the shooting 
method coupled  with 4th-order Runge-Kutta showed remarkable accuracy. Moreover, he noticed that 
the differential transformation method can be used to solve many nonlinear differential equations 
and integral equations. Sobamowo [26] discussed two-dimensional flow of viscous fluid in an 
exceedingly porous channel through slowly expanding or contracting walls with injection or suction 
by using variation parameter method (VPM). From this study it was found that an increase in the 
Reynolds number of the flow process leads to a decrease in the axial velocity in the center of the 
channel during expansion. In addition, the axial velocity increases slightly near the surface of the 
channel when the wall contracts at the identical rate. Also, because the wall expansion ratio 
increases, the rate at the center decreases, but it increases near the wall. Sushila et al., [27] applied 
the Sumudu transform homotopy perturbation method (HPSTM) to unravel the matter of two-
dimensional viscous flow between slowly expanding or contracting walls with weak permeability. The 
numerical solutions showed that the proposed method is incredibly efficient and computationally 
attractive. Al-Saif and Al-Griffi [5] introduced a brand of a new technique to resolve two-dimensional 
viscous fluid flow among slowly expanding or contracting walls. This technique depends on combining 
the algorithms of Yang transform and the homotopy perturbation method. The results, obtained 
from the first iteration, showed the accuracy and efficiency of this method.  

Despite the improvements of some methods that researchers used during previous studies to 
solve nonlinear flow problems, some of these methods require large time and effort in order to get 
a solution for these problems, especially the HPM [14-16] and the VPM [26] to solve the current 
problem.  In addition to what was mentioned, many integral transformations (Fourier transform, 
Laplace transform, ...), are sometimes difficult to use to find exact solutions to some non-linear 
problems. These reasons prompted us to propose a new technique through which we seek to 
overcome some of the difficulties mentioned in the methods used to find a solution to such problems. 
Relying on previous studies and through our modest information, it was found that combining 
integrative transformations and analytical approximate methods may reduce many defects and 
difficulties facing each method individually. Therefore, we proposed merging Fourier transform (FT) 
with the homotopy perturbation method (HPM) to obtain a hybrid procedure that we will symbolize 
(FT-HPM). In addition to that, we did not find an application for this technique on non-linear flow 
problems, especially for the current problem in the previous literature. The most important 
characteristics of this method is to reduce the computations related to the integrative operations 
when using the homotopy perturbation method individually. Moreover, the property of convolution 
theory can be applied in the new method in order to reduce the difficulty of using Fourier transform 
in solving nonlinear differential equations. In this paper, the hybrid FT-HPM is used to find analytical 
approximate solutions to the problem of the two-dimensional flow of viscous fluid between slowly 
expanding or contracting walls. The new approximate solutions obtained using the proposed new 
method to address the current problem reflect the efficiency and high accuracy to FT-HPM, in 
addition, the analysis of solutions convergence was studied through a theorem-proof and the 
conclusion of the necessary convergence condition of these solutions. The tabular and graphical 
results and compared to the results available in previous works are showing the importance, 
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usefulness, and necessity of using the proposed new method with reasonable convergence and 
accuracy. The research is organized as the following. In section 2, the basic idea of the HPM is 
presented. In section 3, we show the main algorithm which is characterized by extending the 
homotopy perturbation method using Fourier transform. Sections 4 and 5 contain the governing 
mathematical equations and applying the new method to the mathematical model respectively. 
Section 6 contains results and discussion. In section 7, convergence analysis of the proposed method 
is studied. Finally, the conclusions are summarized. 
 
2. Basic Idea of Homotopy Perturbation Method 
 

The homotopy perturbation method (HPM) was established by He J. Huan in 1998 [15,16].  This 
method is a powerful and efficient technique for solving differential and integral equations, linear 
and nonlinear. This method has a great advantage because it provides an approximate solution to a 
wide variety of nonlinear problems in applied science. In  this method the solution is considered as 
the summation of an infinite series, [14]. To explain the idea of this method, let us consider the 
following non-linear differential equation: 

 
𝐴(𝑢) − 𝑞(𝑥) = 0, 𝑥 ∈ 𝛺,                                                                                                                      (1a) 
 
subject to the boundary conditions  
 

𝐵(𝑢,
𝜕𝑢

𝜕𝑛
) = 0, 𝑥 ∈ Γ,                                                                                                                                     (1b)  

 
where 𝐴 represent a general differential operator, 𝑢 is the unknown function, 𝑞(𝑥) is a known 
analytic function, 𝐵 is a boundary operator, and 𝛤 is the boundary of the domain 𝛺. The operator 𝐴 
can be generally decomposed into two operators, 𝐿 and 𝑁, where 𝐿 is a linear operator and 𝑁 is a 
nonlinear operator. Moreover, Eq. (1a) can be rewritten as follows: 
 
𝐿(𝑢) + 𝑁(𝑢) − 𝑞(𝑥) = 0.                                                                                                                           (1c) 
 
By using the homotopy perturbation technique, we construct a homotopy 𝑈(𝑥, 𝑝): 𝛺 × [0,1] ⟶ ℝ, 
which satisfies 
 
𝐻(𝑈, 𝑝) = (1 − 𝑝)[𝐿(𝑈) − 𝐿(𝑢0)] + 𝑝[𝐴(𝑈) − 𝑞(𝑥)] = 0,                                                          (2a) 
Or 
 
𝐻(𝑈, 𝑝) = 𝐿(𝑈) − 𝐿(𝑢0) + 𝑝𝐿(𝑢0) + 𝑝[𝑁(𝑈) − 𝑞(𝑥)] = 0,                                                         (2b) 
 
where 𝑝 ∈ [0,1] is an impeding parameter and 𝑢0 is an initial approximation for the solution of Eq. 
(1a), which satisfies the boundary conditions. Obviously, from Eq. (2a) or Eq. (2b), we will have 
 
𝐻(𝑈, 0) = 𝐿(𝑈) − 𝐿(𝑢0) = 0,

𝐻(𝑈, 1) = 𝐴(𝑈) − 𝑞(𝑥) = 0.  
                                                                                                                      (3) 

 
Therefore, the solution of Eq. (2a) or Eq. (2b) can be expressed as a power series in term of 𝑝 as 
follows: 
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𝑈 = ∑ 𝑝𝑗𝑈𝑗
∞
𝑗=0                                                                                                                                             (4) 

 
Setting 𝑝 = 1, then the approximate solution of Eq. (1a) can be given by 
 
𝑢 = lim

𝑝→1
𝑈 = ∑ 𝑈𝑗

∞
𝑗=0 .                                                                                                                         (5) 

 
3. Fundamental Algorithm of FT-HPM 
 

The main objective in this section is to develop the homotopy perturbation method using Fourier 
transform to obtain a new technique. To explain the fundamental algorithm of this technique, we 
reformulate Eq. (1a) as follows:  

 
𝐿(𝑈) + 𝑅(𝑈) + 𝑁(𝑈) = 𝑞(𝑥)                                                                                                            (6) 
 
with the initial condition 𝑈(𝑥, 0), where 𝐿 = 𝜕𝑛 𝜕𝑡𝑛⁄  is the linear differential operator, 𝑅 is the linear 
differential operator of less order than 𝐿, 𝑁 denotes the general nonlinear differential operator, and 
𝑞(𝑥) represents the source term. Moreover, the main steps of this method can be summarized as 
follows. By using the HPM, we have 
 
(1 − 𝑝)[𝐿(𝑈) − 𝐿(𝑢0)] + 𝑝[𝐴(𝑈) − 𝑞(𝑥)] = 0.                                                                                       (7) 
 
Taking the Fourier transform on both sides of Eq. (7), we get 
 

ℱ[(1 − 𝑝)[𝐿(𝑈) − 𝐿(𝑢0)] + 𝑝[𝐴(𝑈) − 𝑞(𝑥)]] = 0,                                                                                    (8) 

 

where, ℱ[𝑔(𝑡)] = ℱ(𝜔) = ∫ 𝑔(𝑡)𝑒−𝑖𝜔𝑡∞

−∞
𝑑𝑡. 

 

Postulate that 𝐴(𝑈) = 𝐿(𝑈) + 𝑅(𝑈) + 𝑁(𝑈) and 𝐿 =
𝜕𝑛

𝜕𝑡𝑛, then, we obtain 

 

ℱ [
𝜕𝑛

𝜕𝑡𝑛
(𝑈)] = ℱ[𝐿(𝑢0)] − 𝑝ℱ[𝐿(𝑢0)] − 𝑝ℱ[𝑅(𝑈) + 𝑁(𝑈) − 𝑞(𝑥)].                                             (9) 

 
According to the homotopy perturbation method, we assume that 
 

𝑈 = ∑ 𝑝𝑗𝑈𝑗
∞
𝑗=0 ,                                                                                                                                        (10a) 

 
and the non-linear term can be expressed as follows 
 

𝑁(𝑈) = ∑ 𝑝𝑗𝐻𝑗
∞
𝑗=0 .                                                                                                                                     (10b) 

 
where 𝐻𝑗(𝑈) are He’s polynomials [27] that are given by 

 

𝐻𝑗(𝑈0, 𝑈1, 𝑈2, . . . , 𝑈𝑗) =
1

𝑗!

𝜕𝑗

𝜕𝑝𝑗 [𝑁(∑ 𝑝𝑖𝑈𝑖
∞
𝑖=0 )]

𝑝=0
, 𝑗 = 0,1,2,3, …                                                              (11) 

 
Substituting Eq. (10a) and (10b) in to Eq. (9), we get 



 Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 97, Issue 2 (2022) 39-56 

43 
 

ℱ [
𝜕𝑛

𝜕𝑡𝑛
∑ 𝑝𝑗𝑈𝑗

∞
𝑗=0 ] = ℱ[𝐿(𝑢0)] − 𝑝ℱ[𝐿(𝑢0)] − 𝑝ℱ[𝑅(∑ 𝑝𝑗𝑈𝑗

∞
𝑗=0 ) + ∑ 𝑝𝑗𝐻𝑗

∞
𝑚=0 − 𝑞(𝑥)].                 (12) 

 
Using the differentiation property of the Fourier transform, we have 
 

(𝑖𝜔)𝑛ℱ[∑ 𝑝𝑗𝑈𝑗
∞
𝑗=0 ] = ℱ[𝐿(𝑢0)] − 𝑝ℱ[𝐿(𝑢0)] − 𝑝ℱ[𝑅(∑ 𝑝𝑗𝑈𝑗

∞
𝑗=0 ) + ∑ 𝑝𝑗𝐻𝑗

∞
𝑚=0 − 𝑞(𝑥)].              (13) 

 
The rearrangement of Eq. (13), leads to 
 

ℱ[∑ 𝑝𝑗𝑈𝑗
∞
𝑗=0 ] =

1

(𝑖𝜔)𝑛
ℱ[𝐿(𝑢0)] −

1

(𝑖𝜔)𝑛
𝑝ℱ[𝐿(𝑢0) + 𝑅(∑ 𝑝𝑗𝑈𝑗

∞
𝑗=0 ) + ∑ 𝑝𝑗𝐻𝑗

∞
𝑚=0 − 𝑞(𝑥)].               (14) 

 
Now applying the inverse Fourier transform on both sides of Eq. (14), we get 
 

∑ 𝑝𝑗𝑈𝑗
∞
𝑗=0 = ℱ−1 [

1

(𝑖𝜔)𝑛
ℱ[𝐿(𝑢0)]] − ℱ−1 [

1

(𝑖𝜔)𝑛
𝑝ℱ [

𝐿(𝑢0) + 𝑅(∑ 𝑝𝑗𝑈𝑗
∞
𝑗=0 )

+∑ 𝑝𝑗𝐻𝑗
∞
𝑚=0 − 𝑞(𝑥)

]].                                   (15) 

 
Comparing the coefficient of like powers of 𝑝, we have 
 

𝑝0: 𝑈0 = ℱ−1 [
1

(𝑖𝜔)𝑛
ℱ[𝐿(𝑢0)]], 

𝑝1: 𝑈1 = −ℱ−1 [
1

(𝑖𝜔)𝑛
ℱ[𝐿(𝑢0) + 𝑅(𝑈0(𝑥)) + 𝐻0(𝑈) − 𝑞(𝑥)]], 

𝑝2: 𝑈2 = −ℱ−1 [
1

(𝑖𝜔)𝑛
ℱ[𝑅(𝑈1(𝑥)) + 𝐻1(𝑈)]], 

   

𝑝𝑗: 𝑈𝑗 = −ℱ−1 [
1

(𝑖𝜔)𝑛
ℱ [𝑅 (𝑈𝑗−1(𝑥)) + 𝐻𝑗−1(𝑈)]].                                                                                    (16) 

 
Setting 𝑝 = 1, then the analytical approximate solution 𝑢 is given by  
 
𝑢 = lim

𝑝→1
𝑈 = ∑ 𝑈𝑗

∞
𝑗=0 .                                                                                                                                       (17) 

 
4. Mathematical Formulation 
 

Consider the laminar, isothermal and incompressible flow during a rectangular domain bounded 
by two permeable surfaces that enable the fluid to enter or exit during successive expansions or 
contractions [21]. A schematic diagram of the matter is shown in Figure 1. Both walls are assumed to 
own equal permeability and to expand uniformly at a time dependent rate  �̇�. Furthermore, the origin 
𝑥∗ = 0 is assumed to be the center of the classic squeeze film problem. This allows us to assume flow 
symmetry about 𝑥∗ = 0.  
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Fig. 1. Two-dimensional domain with expanding or contracting 
porous walls 

 
Under the above assumptions, the equations for continuity and motion become 
 
𝜕𝑈∗

𝜕𝑥∗ +
𝜕𝑉∗

𝜕𝑦∗ = 0                                                                                                                                                  (18) 

 
𝜕𝑈∗

𝜕𝑡
+ 𝑈∗ 𝜕𝑈∗

𝜕𝑥∗ + 𝑉∗ 𝜕𝑈∗

𝜕𝑦∗ = −
1

𝜌

𝜕𝑃∗

𝜕𝑥∗ + 𝑣∇2𝑈∗                    (19) 

 
𝜕𝑉∗

𝜕𝑡
+ 𝑈∗ 𝜕𝑉∗

𝜕𝑥∗ + 𝑉∗ 𝜕𝑉∗

𝜕𝑦∗ = −
1

𝜌

𝜕𝑃∗

𝜕𝑥∗ + 𝑣∇2𝑉∗                                                                                         (20) 

 
where the symbols, 𝑈∗ and 𝑉∗ represent the components of velocity in 𝑥∗ and 𝑦∗ directions, 𝑃∗, 𝜌, 
𝑣, and 𝑡 are the dimensional pressure, density, kinematic viscosity, and time. The boundary 
conditions can be specified as follows 
 
𝑦∗ = 𝑎(𝑡) ∶   𝑈∗ = 0, 𝑉∗ = −𝑉𝑤 = −𝑎 ̇/𝑐,                                                                                                    (21) 
 

𝑦∗ = 0 ∶   
𝜕𝑈∗

𝜕𝑦∗
(𝑥∗, 0) = 0, 𝑉∗(𝑥∗, 0) = 0,

𝑥∗ = 0 ∶   𝑈∗(0, 𝑦∗) = 0.                              
                                                                                                    (22) 

 
where, 𝑐(𝑐 = 𝑎 ̇/𝑉𝑤) indicates the wall permeance or suction/injection coefficient, that is a gauge 
for wall permeability. The velocity components 𝑈∗ and 𝑉∗ can be computed from the stream function 
(Ψ∗) as [21] 
 

𝑈∗ =
𝜕Ψ∗

𝜕𝑦∗ , 𝑉∗ = −
𝜕Ψ∗

𝜕𝑥∗                                                                                                                                        (23) 

 
and mean flow vorticity (𝜂∗) can be defined by putting [21] 
 

𝜂∗ =
𝜕V∗

𝜕𝑥∗ −
𝜕U∗

𝜕𝑦∗,                                                                                                                                                      (24) 

 
𝜕𝜂∗

𝜕𝑡
+ 𝑈∗ 𝜕𝜂∗

𝜕𝑥∗ + 𝑉∗ 𝜕𝜂∗

𝜕𝑦∗ = 𝑣 [
𝜕2𝜂∗

𝜕𝑥∗2 +
𝜕2𝜂∗

𝜕𝑦∗2].                                                                                                            (25) 

 
Substituting Eq. (24) into Eq. (25), we get 
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𝑉∗
𝑥∗𝑡 − 𝑈∗

𝑦∗𝑡 + 𝑈∗(𝑉∗
𝑥∗𝑥∗ − 𝑈∗

𝑦∗𝑥∗) + 𝑉∗(𝑉∗
𝑥∗𝑦∗ − 𝑈∗

𝑦∗𝑦∗) = 𝑣 [
𝑉∗

𝑥∗𝑥∗𝑥∗ − 𝑈∗
𝑦∗𝑥∗𝑥∗ +

𝑉∗
𝑥∗𝑦∗𝑦∗ − 𝑈∗

𝑦∗𝑦∗𝑦∗     
].          (26) 

 
According to the mass conservation, a similar solution can be developed with respect to 𝑥∗ 

starting with [13] 
 

Ψ∗ =
𝑣𝑥∗ℎ∗(𝑦,𝑡)

𝑎
, 𝑈∗ = 𝑣𝑥∗𝑎−2ℎ𝑦

∗ , 𝑉∗ = −𝑣𝑎−1ℎ∗(𝑦, 𝑡), 𝑦 =
𝑦∗

𝑎
, ℎ𝑦

∗ =
𝜕ℎ∗

𝜕𝑦
 .                                             (27) 

 
From Eq. (26) and (27), we deduce 
 

𝑈∗
𝑦∗𝑡 + 𝑈∗𝑈∗

𝑦∗𝑥∗ + 𝑉∗𝑈∗
𝑦∗𝑦∗ = 𝑣[𝑈∗

𝑦∗𝑥∗𝑥∗ + 𝑈∗
𝑦∗𝑦∗𝑦∗].                                                                        (28) 

 
In order to solve Eq. (25), one uses the chain rule to get the following 
 

ℎ𝑦𝑦𝑦𝑦
∗ + 𝛼(𝑦ℎ𝑦𝑦𝑦

∗ + 3ℎ𝑦𝑦
∗ ) + ℎ∗ℎ𝑦𝑦𝑦

∗ − ℎ𝑦
∗ℎ𝑦𝑦

∗ − 𝑎2𝑣−1ℎ𝑦𝑦𝑡
∗                                                                    (29) 

 
Together with the following boundary conditions 
 
𝑦 = 0 ⟹ ℎ∗ = 0, ℎ𝑦𝑦

∗ = 0,

𝑦 = 1 ⟹ ℎ∗ = 𝑅𝑒, ℎ𝑦
∗ = 0,

                                                                                                                             (30) 

 
where 𝛼(𝑡) = 𝑎�̇�/𝑣 denotes the non-dimensional wall dilation rate, which is positive for expansion 
and negative for contraction. Furthermore, 𝑅𝑒 = 𝑎𝑉𝑤/𝑣 refers to the Reynolds number which is 
positive for injection and negative for suction through the walls. Eqs. (27), (29) and (30) can be 
normalized as follows [20] 
 

Ψ =
Ψ∗

aȧ
, U =

U∗

ȧ
, 𝑉 =

𝑉∗

�̇�
, ℎ =

ℎ∗

𝑅𝑒
.                                                                                                                        (31) 

 
Thus,  
 

Ψ =
𝑥ℎ

𝑐
, U =

xℎ′

c
, 𝑉 =

−ℎ

𝑐
, 𝑐 =

𝛼

𝑅𝑒
.                                                                                                                        (32) 

 
Therefore, Eq. (29) becomes 
 
ℎ′′′′ + 𝛼(𝑦ℎ′′′ + 3ℎ′′) + 𝑅𝑒 ℎℎ′′′ − 𝑅𝑒ℎ′ℎ′′ = 0                                                                                            (33) 
 
with the boundary conditions 
 
ℎ(0) = 0, ℎ′′(0) = 0 and ℎ(1) = 1, ℎ′(1) = 0                                                                                               (34) 
 

where, 𝑦 =
𝑦

𝑎

∗
, ℎ = −

𝑎

𝑣
𝑉∗, ℎ′ =

𝑑

𝑑𝑦
 , ℎ′′ =

𝑑2

𝑑𝑦2
, ℎ′′′ =

𝑑3

𝑑𝑦3
 and ℎ′′′′ =

𝑑4

𝑑𝑦4
. Note that Berman’s [11] 

well-known ODE can be viewed as a special case of Eq. (33) with 𝛼 = 0. 
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5. Application of FT-HPM 
 

In this section, we apply FT-HPM to get an approximate analytical solution of the Eq. (33) with 
the boundary conditions (34). The essential steps of this  method are illustrated as follows 

 
Applying the HPM, we have 
 
ℎ′′′′ − ℎ0

′′′′ + 𝑝ℎ0
′′′′ + 𝑝[𝛼(𝑦ℎ′′′ + 3ℎ′′) + 𝑅𝑒 (ℎℎ′′′ − ℎ′ℎ′′) − 𝑞(𝑦)] = 0,                                          (35) 

 
Since, ℎ0(𝑦) = 𝑞(𝑦) = 0, then Eq. (35) become 
 
ℎ′′′′ = −𝑝[𝛼(𝑦ℎ′′′ + 3ℎ′′) + 𝑅𝑒 (ℎℎ′′′ − ℎ′ℎ′′)].                                                                                       (36) 
 
By taking the Fourier transform on both sides of Eq. (36), we get 
 
ℱ[ℎ′′′′] = −𝑝ℱ[𝛼(𝑦ℎ′′′ + 3ℎ′′) + 𝑅𝑒 ℎℎ′′′ − 𝑅𝑒ℎ′ℎ′′],                                                                            (37) 
 
According to the assumption of the homotopy perturbation method, we have 
 

ℎ = ∑ 𝑝𝑗ℎ𝑗
∞
𝑗=0 ,                                                                                                                                                    (38) 

 
and the nonlinear terms can be decomposed as 
 

ℎℎ′′′ = ∑ 𝑝𝑗𝐻𝑗
∞
𝑗=0  and ℎ′ℎ′′ = ∑ 𝑝𝑗𝐻𝑗

∗(𝑦)∞
𝑗=0                                                                                                (39) 

 
Substituting Eq. (38) and (39) in Eq. (37), we get 
 

ℱ[∑ 𝑝𝑗ℎ𝑗
′′′′(𝑦)∞

𝑗=0 ] = −𝑝ℱ [
𝑅𝑒 (∑ 𝑝𝑗𝐻𝑗(𝑦)∞

𝑗=0 − ∑ 𝑝𝑗𝐻𝑗
∗(𝑦)∞

𝑗=0 ) +

𝛼(𝑦 ∑ 𝑝𝑗ℎ𝑗
′′′(𝑦)∞

𝑗=0 + 3∑ 𝑝𝑗ℎ𝑗
′′(𝑦)∞

𝑗=0 )
].                                                    (40) 

 
Comparing the coefficient of like powers of 𝑝, we get 
 
𝑝0: ℱ[ℎ0

′′′′] = 0 ⟹ ℎ0
′′′′ = 0,                                                                                                                          (41a) 

 
ℎ0(0) = 0, ℎ0

′′(0) = 0, ℎ0(1) = 1, ℎ0
′ (1) = 0.                                                                                           (41b) 

 
𝑝1: ℱ[ℎ1

′′′′] = −ℱ[𝑅𝑒(𝐻0 − 𝐻0
∗) + 𝛼(𝑦ℎ0

′′′ + 3ℎ0
′′)],                                                                                 (42a) 

 
ℎ1(0) = 0, ℎ1

′′(0) = 0, ℎ1(1) = 0, ℎ1
′ (1) = 0.                                                                                             (42b) 

 
𝑝2: ℱ[ℎ2

′′′′] = −ℱ[𝑅𝑒(𝐻1 − 𝐻1
∗) + 𝛼(𝑦ℎ1

′′′ + 3ℎ1
′′)],                                                                                (43a) 

 
ℎ2(0) = 0, ℎ2

′′(0) = 0, ℎ2(1) = 0, ℎ2
′ (1) = 0.                                                                                               (43b) 

 

𝑝𝑗: ℱ[ℎ𝑗
′′′′] = −ℱ[𝑅𝑒(𝐻𝑗−1 − 𝐻𝑗−1

∗ ) + 𝛼(𝑦ℎ𝑗−1
′′′ + 3ℎ𝑗−1

′′ )],                                                                        (44a) 
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ℎ𝑗(0) = 0, ℎ𝑗
′′(0) = 0, ℎ𝑗(1) = 0, ℎ𝑗

′(1) = 0.                                                                                               (44b) 

To solve Eq. (41a), we use the integration with the boundary conditions in Eq. (41b), to get 
 

ℎ0(𝑦) =
3

2
𝑦 −

1

2
𝑦3.                                                                                                                                              (45) 

 
Eq. (42a), (43a) and (44a) represent a non homogeneous ordinary differential equations. Moreover, 
its general solution can be written in the following form 
 

ℎ𝑗(𝑦) = ℎ𝑗𝑝
(𝑦) + ℎ𝑗𝑐

(𝑦), where ℎ𝑗𝑐
(𝑦) =

𝑎𝑗

6
𝑦3 +

𝑏𝑗

2
𝑦2 + 𝑐𝑗𝑦 + 𝑑𝑗, 𝑗 ≥ 1,                                           (46a) 

 
Subject to the B. Cs. ℎ𝑗(0) = 0, ℎ𝑗

′′(0) = 0, ℎ𝑗(1) = 0, ℎ𝑗
′(1) = 0.                                                         (46b) 

 
The particular solutions ℎ𝑗𝑝

(𝑦) can be found by applying the fundamental steps of FT-HPM as below: 

Using the differentiation property of the Fourier transform on Eqs. (42a), (43a) and (44a) we get  
 

ℱ [ℎ1𝑝
] = −

1

𝜔4 ℱ[𝑅𝑒(𝐻0 − 𝐻0
∗) + 𝛼(𝑦ℎ0

′′′ + 3ℎ0
′′)],                                                                                   (47) 

 

ℱ [ℎ2𝑝
] = −

1

𝜔4 ℱ[𝑅𝑒(𝐻1 − 𝐻1
∗) + 𝛼(𝑦ℎ1

′′′ + 3ℎ1
′′)],                                                                                    (48) 

 

ℱ [ℎ𝑗𝑝] = −
1

𝜔4 ℱ[𝑅𝑒(𝐻𝑗−1 − 𝐻𝑗−1
∗ ) + 𝛼(𝑦ℎ𝑗−1

′′′ + 3ℎ𝑗−1
′′ )].                                                                          (49) 

 
The inverse Fourier transform on both sides of Eq. (47), (48) and (49) gives  
 

ℎ1𝑝
= −ℱ−1 [

1

𝜔4 ℱ[𝑅𝑒(𝐻0 − 𝐻0
∗) + 𝛼(𝑦ℎ0

′′′ + 3ℎ0
′′)]],                                                                                (50) 

 

ℎ2𝑝
= −ℱ−1 [

1

𝜔4 ℱ[𝑅𝑒(𝐻1 − 𝐻1
∗) + 𝛼(𝑦ℎ1

′′′ + 3ℎ1
′′)]],                                                                                 (51) 

 

ℎ𝑗𝑝 = −ℱ−1 [
1

𝜔4 ℱ[𝑅𝑒(𝐻𝑗−1 − 𝐻𝑗−1
∗ ) + 𝛼(𝑦ℎ𝑗−1

′′′ + 3ℎ𝑗−1
′′ )]].                                                                      (52) 

 
where,  
 
𝐻0(𝑦) = ℎ0ℎ0

′′′ and 𝐻0
∗(𝑦) = ℎ0

′ ℎ0
′′, 

 
𝐻1(𝑦) = ℎ0ℎ1

′′′ + ℎ1ℎ0
′′′ and 𝐻1

∗(𝑦) = ℎ0
′ ℎ1

′′ + ℎ1
′ ℎ0

′′, 
 
The simplification of Eq. (46a) leads to the following solutions  
 

ℎ1(𝑦) = −
𝑅𝑒

560
𝑦7 −

𝛼

20
𝑦5 +

1

6
(

9

280
𝑅𝑒 +

3

5
𝛼)𝑦3 + (−

1

280
𝑅𝑒 −

1

20
𝛼) 𝑦,                                                    (53) 
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ℎ2(𝑦) =

[
 
 
 
 (

703

2587200
𝑅𝑒2 +

37

8400
𝛼𝑅𝑒 −

𝛼2

175
) 𝑦 +

1

6
(

−219

107800
𝑅𝑒2 −

37

1050
𝛼𝑅𝑒 +

39

350
𝛼2) 𝑦3 − (

1

50
𝛼2 +

3

2800
𝛼𝑅𝑒)𝑦5 +

(
1

140
𝛼2 +

3

1400
𝛼𝑅𝑒 −

1

39200
𝑅𝑒2) 𝑦7 + (

𝑅𝑒2

6720
+

𝛼𝑅𝑒

2520
) 𝑦9 −

𝑅𝑒2

184800
𝑦11

]
 
 
 
 

.                                   (54) 

 
The approximate analytical solution ℎ is given by truncated series 
 

ℎ = lim
𝑁⟶∞

∑ ℎ𝑗
𝑁
𝑗=0 .                                                                                                                                               (55) 

 
6. Results and Discussion 
 

Figure 2 shows the effect of different values of α on ℎ′(𝑦) at 𝑅𝑒 =  0. Figure 3 and 4 explain how 
the  derivative of velocity ℎ′(𝑦) is affected by the different values of α at 𝑅𝑒 = −5,5. These figures 
show  the expanding wall (𝛼 > 0) and contracting wall (𝛼 < 0) for the  suction case (𝑅𝑒 = −5) and 
injection case (𝑅𝑒 = 5), respectively. In addition, Figure 5 indicates the effect of different values of 
𝑅𝑒 on ℎ′(𝑦) at α =  0.5. 
 

  
Fig. 2. The influence of various values of α on 
the derivative of velocity ℎ′(𝑦) at 𝑅𝑒 = 0 

Fig. 3. The influence of various values of α on 
the derivative of velocity ℎ′(𝑦) at 𝑅𝑒 = −5 
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Fig. 4. The influence of various values of α on the  
derivative of velocity ℎ′(𝑦) at 𝑅𝑒 = 5 

Fig. 5. The influence of various values of 𝑅𝑒 on 
the derivative of velocity ℎ′(𝑦) at 𝛼 = 0.5 

 
Figure 6 and Figure 7 present a comparison of the results obtained by FT-HPM, YT-HPM [5], HPM 

[28], VPM [26],  and RK-4th of the velocity ℎ(𝑦), when α=0.4 and 𝑅𝑒 = 6, 10 respectively. Figures 8 
and 9 provide a comparison of the results obtained by  present method (FT-HPM) and YT-HPM [5], 
HPM [28], VPM [26] and RK-4 of velocity ℎ(𝑦), when choosing 𝑅𝑒 = 4 and α=0.1, 0.3 respectively. 
Figures 10 and 11 explain the  comparison of the results between FT-HPM, YT-HPM [5], HPM [28], 
VPM [26], and RK-4th when α=0.4 and 𝑅𝑒 = 6, 10 for ℎ′(𝑦), respectively. 
 

  
Fig. 6. Comparison of results between FT-HPM, 
YT-HPM [5], HPM [28], VPM [26] and RK-4th 
when 𝛼 = 0.4 and 𝑅𝑒 = 6 for ℎ(𝑦)  

Fig. 7. Comparison of results between FT-HPM, 
YT-HPM [5], HPM [28], VPM [26] and RK-4th when 
𝛼 = 0.4 and 𝑅𝑒 = 10 for ℎ(𝑦)  
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Fig. 8. Comparison of results between FT-
HPM, YT-HPM [5], HPM [28], VPM [26] 
and RK-4th when 𝛼 = 0.1 and 𝑅𝑒 = 4 for 
ℎ(𝑦)  

 

Fig. 9. Comparison of results between FT-
HPM, YT-HPM [5], HPM [28], VPM [26] 
and RK-4th when 𝛼 = 0.3 and 𝑅𝑒 = 4 for 
ℎ(𝑦)  

 

  
Fig. 10. Comparison of results between FT-
HPM, YT-HPM [5], HPM [28], VPM [26] and RK-
4th when 𝛼 = 0.4 and 𝑅𝑒 = 6 for ℎ′(𝑦) 

Fig. 11. Comparison of results between FT-
HPM, YT-HPM [5], HPM [28], VPM [26] and RK-
4th when 𝛼 = 0.4 and 𝑅𝑒 = 10 for ℎ′(𝑦)  

 
In Table 1 and 2, the velocity ℎ(𝑦) obtained by FT-HPM is compared with FY-HPM [5], HPM [28], 

VPM [26] and the numerical results of RK-4th when (𝛼 = 0.4, 𝑅𝑒 = 7) and (𝛼 = 0.2, 𝑅𝑒 = 4), 
respectively. The tables showed a good agreement between the analytical results of FT-HPM and 
numerical results of RK-4th. 

Table 3 represents the comparison of the absolute errors of the approximate solutions between 
the two methods FT-HPM and HPM. In the upper half of the table, 𝑅𝑒 = 5 was chosen with different 
values for α (𝛼 = −0.4, 0, 0.4), while in the lower half of the table, the comparison was made at 𝛼 =
0.1 with different values for Reynolds number (𝑅𝑒 = −9, 1, 9). It is clear from this table that the 
absolute errors of the approximate solutions obtained using FT-HPM is less than HPM, and therefore 
we can say that the new method (FT-HPM) has higher accuracy and efficiency than HPM. 
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   Table 1 
   Comparison of results of ℎ(𝑦) when 𝛼 = 0.4, 𝑅𝑒 = 7 

y FT-HPM YT-HPM [5] HPM [28] VPM [26] RK-4th 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.1000 0.1475 0.1583 0.1535 0.1494 0.1495 
0.2000 0.2923 0.3128 0.3034 0.2955 0.2958 
0.3000 0.4316 0.4594 0.4462 0.4347 0.4359 
0.4000 0.5626 0.5945 0.5787 0.5640 0.5667 
0.5000 0.6824 0.7146 0.6977 0.6803 0.6854 
0.6000 0.7879 0.8163 0.8002 0.7811 0.7892 
0.7000 0.8758 0.8971 0.8840 0.8641 0.8755 
0.8000 0.9427 0.9550 0.9466 0.9282 0.9416 
0.9000 0.9852 0.9891 0.9861 0.9730 0.9844 
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 
   Table 2 
   Comparison of results of ℎ(𝑦) when 𝛼 = 0.2, 𝑅𝑒 = 4 

y FT-HPM YT-HPM [5] HPM [28] VPM [26] RK-4th 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.1000 0.1479 0.1543 0.1528 0.1495 0.1495 
0.2000 0.2929 0.3051 0.3022 0.2957 0.2959 
0.3000 0.4323 0.4489 0.4448 0.4356 0.4363 
0.4000 0.5633 0.5824 0.5775 0.5660 0.5677 
0.5000 0.6828 0.7022 0.6969 0.6840 0.6871 
0.6000 0.7879 0.8052 0.8002 0.7866 0.7917 
0.7000 0.8755 0.8886 0.8846 0.8714 0.8785 
0.8000 0.9423 0.9500 0.9474 0.9362 0.9445 
0.9000 0.9850 0.9875 0.9865 0.9794 0.9863 
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 
  Table 3 
  Absolute errors comparison between FT-HPM and HPM [28] of ℎ(𝑦) 

 
𝑅𝑒 

 
α 

𝑦 = 0.1                       𝑦 = 0.5             

 FT-HPM HPM [28]  FT-HPM  HPM [28] 

 -0.4 5.0060×10-9 0.5865×10-3 0.1916×10-4 0.1856×10-2 
5 0 6.9832×10-11 0.3743×10-3 0.6701×10-5 0.1441×10-2 
  0.4 1.4221×10-8 0.5049×10-3 0.7515×10-4 0.2362×10-2 

-9  4.1252×10-9 0.1351×10-2 0.8945×10-5 0.4821×10-2 

1  0.1 1.5199×10-10 0.4479×10-5 7.3247×10-7 0.2038×10-4 

9  7.1299×10-9 0. 2709×10-2 0.7768×10-4 0.1073×10-1 

 
After obtaining the field of the flow, the remainder of the important properties of the flow may 

be found. One amongst these important properties is pressure. The pressure gradient may be 
obtained by substituting the components of velocity into the Eq. (18)-(20). Then  

 

𝑃𝑦 = −(
1

𝑅𝑒
ℎ𝑦𝑦 + ℎℎ𝑦 +

𝛼

𝑅𝑒
[ℎ + 𝑦ℎ𝑦]) ; 𝑃 =

𝑃∗

𝜌𝑈𝑊
2 .                           (56) 

 
The normal distribution of pressure can be determined by integrating Eq. (56). 

The pressure distribution within the normal direction for the permeation Reynolds number 𝑅𝑒 =
 {−4,−1, 1, 4}  over a variety of the non-dimensional wall dilation rate α, are plotted in Figures 12-
15, respectively. For each level of injection or suction shown in these figures, the pressure changes 
in the normal direction until it reaches a minimum near the central part. 
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Fig. 12. The Pressure distribution over a range of 
α at 𝑅𝑒 = −1 

Fig. 13. The Pressure distribution over a range of 
α at 𝑅𝑒 = −4 

  
Fig. 14. The Pressure distribution over a range of 
α at 𝑅𝑒 = 1 

Fig. 15. The Pressure distribution over a range of 
α at 𝑅𝑒 = 4 

 
The other property of flow is the shear stress, which can be obtained from Newton's law for viscosity 
in the following form 
 

𝜏∗ = 𝜇(𝑉𝑥∗
∗ + 𝑈𝑦∗

∗ ) =
𝜌𝑣2𝑥∗ℎ𝑦𝑦

𝑎3                                                                                                                             (57) 

The non-dimensional shear stress is defined as: 𝜏 =
𝜏∗

𝜌𝑉𝑤
2, then, 

 

𝜏 =
𝑥ℎ𝑦𝑦(1)

𝑅𝑒
 .                                                                                                                                                              (58) 

 
The wall shear stress which given in Eq. (58) for the permeation Reynolds number 𝑅𝑒 =
 {−1,−4, 1  4}  over a spread of the non-dimensional wall dilation rate α, is plotted in Figure 16-19, 
respectively. It's clear from these figures that the shear stress increases along the wall surface in 
proportion to 𝑥∗. Thus, if α decreases, the wall shear stress increases with wall stretching (𝛼 > 0), 
but increases as α increases with wall contraction (𝛼 < 0). 
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Fig. 16. The shear stress over a range of α at 
𝑅𝑒 = −1 

Fig. 17. The shear stress over a range of α at 
𝑅𝑒 = −4 

  
Fig. 18. The shear stress over a range of α at 
𝑅𝑒 = 1 

Fig. 19. The shear stress over a range of α at 
𝑅𝑒 = 4 

 
7. Convergence Analysis of FT-HPM 
 

In this part, we will provide some important definitions for the study of convergence analysis with 
finding the necessary condition for the convergence of the approximate analytical solution (55) 
obtained using the approved method (FT-HPM) as follows 
 
Definition 7.1 Suppose that ℋ is the Banach space and 𝒩:ℋ ⟶ ℝ is a nonlinear mapping where ℝ 
is the set of real numbers. Then, the sequence of the solutions can be written in the  following form  
 
𝐸𝑛+1 = 𝒩(𝐸𝑛), 𝐸𝑛 = ∑ ℎ𝑗

𝑛
𝑗=0 , 𝑗 = 0,1,2,3, …                                                                                              (59) 

 
where, 𝒩 satisfies the Lipschitz condition, such that ∀𝛾 ∈ ℝ, 
 
‖𝒩(𝐸𝑛) − 𝒩(𝐸𝑛−1)‖ ≤ 𝛾‖𝐸𝑛 − 𝐸𝑛−1‖, 0 < 𝛾 < 1.                                                                                  (60) 
 
Theorem 7.1 The convergence of the analytical-approximate solution ℎ(𝑦) = ∑ ℎ𝑗(𝑦)∞

𝑗=0  that is 

resulted from the application of FT-HPM converges if it satisfies the following condition 
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‖𝐸𝑛+1 − 𝐸𝑛‖ → 0 as 𝑛 → ∞ for 0 < 𝛾 < 1.                                                                                                   (61) 
 
Proof:  
 

‖𝐸𝑛+1 − 𝐸𝑛‖ = ‖∑ ℎ𝑗
𝑛+1
𝑗=0 − ∑ ℎ𝑗

𝑛
𝑗=0 ‖ = ‖ℎ0 + ∑ ℎ𝑗

𝑛+1
𝑗=1 − [ℎ0 + ∑ ℎ𝑗

𝑛
𝑗=1 ]‖  

           = ‖
 ℎ0 + ∑ 𝐿−1[𝑅𝑒(𝐻𝑗−1 − 𝐻𝑗−1

∗ ) + 𝛼(𝑦ℎ𝑗−1
′′′ + 3ℎ𝑗−1

′′ )]𝑛+1
𝑗=1 −

{ℎ0 + ∑ 𝐿−1[𝑅𝑒(𝐻𝑗−1 − 𝐻𝑗−1
∗ ) + 𝛼(𝑦ℎ𝑗−1

′′′ + 3ℎ𝑗−1
′′ )]𝑛

𝑗=1 } 
‖  

           = ‖
 ℎ0 + 𝐿−1 ∑ [𝑅𝑒(𝐻𝑗−1 − 𝐻𝑗−1

∗ ) + 𝛼(𝑦ℎ𝑗−1
′′′ + 3ℎ𝑗−1

′′ )]𝑛+1
𝑗=1 −

{ℎ0 + 𝐿−1 ∑ [𝑅𝑒(𝐻𝑗−1 − 𝐻𝑗−1
∗ ) + 𝛼(𝑦ℎ𝑗−1

′′′ + 3ℎ𝑗−1
′′ )]𝑛

𝑗=1 } 
‖   

 
Since, 𝐸𝑛+1 = 𝒩(𝐸𝑛), then 
 

‖𝐸𝑛+1 − 𝐸𝑛‖ = ‖
 𝐿−1𝒩 ∑ [𝑅𝑒(𝐻𝑗−1 − 𝐻𝑗−1

∗ ) + 𝛼(𝑦ℎ𝑗−1
′′′ + 3ℎ𝑗−1

′′ )]𝑛
𝑗=0 −

𝐿−1𝒩 ∑ [𝑅𝑒(𝐻𝑗−1 − 𝐻𝑗−1
∗ ) + 𝛼(𝑦ℎ𝑗−1

′′′ + 3ℎ𝑗−1
′′ )] 𝑛−1

𝑗=0

‖  

           = ‖  𝐿−1𝒩[∑ ℎ𝑗
𝑛
𝑗=0 ] − 𝐿−1𝑁[∑ ℎ𝑗

𝑛−1
𝑗=0 ]  ‖  

≤ |𝐿−1|‖  𝒩[∑ ℎ𝑗
𝑛
𝑗=0 ] − 𝑁[∑ ℎ𝑗

𝑛−1
𝑗=0 ]  ‖  

≤ 𝛾‖𝐸𝑛 − 𝐸𝑛−1‖ = 𝛾 ‖
 ∑ 𝐿−1[𝑅𝑒(𝐻𝑗−1 − 𝐻𝑗−1

∗ ) + 𝛼(𝑦ℎ𝑗−1
′′′ + 3ℎ𝑗−1

′′ )]𝑛
𝑗=0 −

(∑ 𝐿−1[𝑅𝑒(𝐻𝑗−1 − 𝐻𝑗−1
∗ ) + 𝛼(𝑦ℎ𝑗−1

′′′ + 3ℎ𝑗−1
′′ )]𝑛−1

𝑗=0 ) 
‖  

≤ 𝛾2 ‖
 ∑ 𝐿−1[𝑅𝑒(𝐻𝑗−1 − 𝐻𝑗−1

∗ ) + 𝛼(𝑦ℎ𝑗−1
′′′ + 3ℎ𝑗−1

′′ )]𝑛−1
𝑗=0 −

(∑ 𝐿−1[𝑅𝑒(𝐻𝑗−1 − 𝐻𝑗−1
∗ ) + 𝛼(𝑦ℎ𝑗−1

′′′ + 3ℎ𝑗−1
′′ )]𝑛−2

𝑗=0 ) 
‖  

⋮ 

≤ 𝛾𝑛 ‖
 ∑ 𝐿−1[𝑅𝑒(𝐻𝑗−1 − 𝐻𝑗−1

∗ ) + 𝛼(𝑦ℎ𝑗−1
′′′ + 3ℎ𝑗−1

′′ )]1
𝑗=0 −

(∑ 𝐿−1[𝑅𝑒(𝐻𝑗−1 − 𝐻𝑗−1
∗ ) + 𝛼(𝑦ℎ𝑗−1

′′′ + 3ℎ𝑗−1
′′ )]0

𝑗=0 ) 
‖  

= 𝛾𝑛‖𝐸1 − 𝐸0‖ → 0 as 𝑛 → ∞ for 0 < 𝛾 < 1,  𝐿−1(∙) = ℱ−1 [
1

𝜔4 ℱ(∙)].                  ∎ 

 
From the results of theorems 7.1, the values of the parameter 𝛾𝑛 can be calculated by using the  

following definition. 
 

Definition 7.2 For 𝑛 = 1,2,3, … 
 

𝛾𝑛 = {

‖𝐸𝑛+1−𝐸𝑛‖

‖𝐸1−𝐸0‖
=

‖ℎ𝑛+1‖

‖ℎ1‖
, ‖ℎ1‖ ≠ 0, 𝑛 = 1,2,3, …  

0,                                           ‖ℎ1‖ = 0                            
                                                                        (62) 

 
Definition 7.2 can be used to find the convergence of approximate solutions to the problem under 

study. Moreover, the results of convergence of solutions that were found were compared using the 
two methods FT-HPM, HPM, as shown in the following Table 4. 
 

Table 4 
Comparison of the values of the parameter 𝛾𝑛 between FT-HPM and HPM [28] 
Re α Method 𝛾 𝛾2 𝛾3 

1 0.5 FT-HPM 0.3778×10-1 4.6039×10-7 5.1247×10-9 
HPM 0.3778×10-1 0.6861×10-2 0.8406×10-3 

5 0.5 FT-HPM 0.3846494238 0.4509×10-5 2.3727×10-8 
HPM 0.3846494239 0.7062×10-1 0.2050×10-1 
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It is clear from Table 4 that 𝛾𝑛 → 0 as 𝑛 → ∞ for 0 < 𝛾 < 1. In addition, this table shows that the 
powers of 𝛾 which were calculated based on FT-HPM approach to zero faster than the powers of 𝛾 
calculated by HPM. Therefore, FT-HPM can be considered as a development of HPM with better 
convergence. 
 
8. Conclusions 
 

In this paper, the FT-HPM has been successfully used for solving two-dimensional viscous flow 
between slowly expanding or contracting walls with weak permeability. The graphical results of the 
present study show the influence of the non-dimensional wall dilation rate α and permeation 
Reynolds number 𝑅𝑒 on the velocity, normal pressure distribution and wall shear stress . Moreover, 
we noted that for each level of injection or  suction, when the wall is expanding (𝛼 > 0), an increase 
α lead up to the velocity becomes higher close to the center and lower near the wall. This happens 
because the flow becomes larger  toward the center to compensate the area resulting from the  
expansion of the wall. As a result, the velocity also becomes  larger close to the center. Also, for all 
levels of suction or  injection, if the wall is contracting (𝛼 < 0), increase α lead to the  axial velocity 
becomes low close to the center and high near the wall, the reason that the velocity becomes larger 
close to  the wall because the flow towards the wall becomes larger.  Also, we found that this method 
is a powerful mathematical tool and can be applied to a large class of linear and non-linear problems 
with very efficiently in various fields of science and engineering, especially equations that describe 
fluid flow. 
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