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Acoustic interaction toward jet flame in a combustion system is essential to 
understand the characteristic of combustion instability. Combustion device such as 
turbine, ramjets, industrial processor, jet rocket and other mostly occurrence for self-
excited due to mechanical part and coupling. The combustion driven oscillation can 
affect the combustion system life and performance. This paper is mainly focused on 
the characteristic of the flame, which having interacted with the acoustic excitation. 
This paper is organized into three parts. First part is the introduction, follows by the 
literature review, which mainly focused on the physical characteristic of the flame, the 
structure, the length, the shape, and the color of the flame. Then the last part consists 
of the subject goes toward the application of acoustic perturbation – utilizing acoustic 
excitation toward good intention, the formation of soot and nitride oxide reduction. 
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1. Introduction 
 

There are a lot of problems arise in a combustion system that affect the combustion process, 
mainly known as the combustion instability. Study on combustion instability are important due to 
under certain circumstances, it can become extremely detrimental that will eventually affect the 
combustion system process [1–5]. It exists in a wide range of applications such as the rocket 
propulsion engines, industrial burner, industrial processing, ramjets, afterburners and gas turbine [6–
10]. 
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Advances combustion system have a low emission characteristic without undermined it 
operational advantages [11–15]. There are many sources and conditions that affect the stability of a 
combustion system [16–18]. Moreover, there are some researchers that focus on controlling the 
blending of fuel ratio to influence the effect of instability in a combustion system [19-24]. This paper 
reviews focus on to the primary interaction of acoustic perturbation that affect the stability of a 
combustion system. 

For an acoustic perturbation that interact with a premixed combustion, the issues related are the 
interaction between acoustic and flames. Those two interactions have an important role in 
influencing the behavior of combustion systems stated earlier. Interaction between both arise 
instabilities, for an instance. The unsteady heat release that produced due to the disturbances add 
energy to the acoustic field when both fields are in phase. It will lead to enhance of vibration thus 
affecting the whole combustion process. 

Not all interaction between acoustic and flame is bad for the combustion process. It is noted that, 
by utilizing these effects, there are possibilities to improve combustion control of such phenomena 
as high-load combustion [25–28], soot suppression, NOx reduction [29–34] and noise control [35-
36]. 

The objective of this paper is mainly focused on reviewing the behavior of a premix flame 
subjected to an acoustic propagation; effect of the behavior on the characteristic and behavior, then 
the discussion describes the destruction and importance on understanding the relationship between 
acoustic and flame. 

 
2. Effect of Acoustic Excitation on Flame Characteristics  
 

Interaction between acoustic and flame in a combustion system can be classified into two 
categories, called as direct interaction and indirect interaction. Both categories are differentiated by 
the position or the direction of the wave contact [37]. 

For direct interaction, it occurs in the flame zone where the incident scatters the flame zone and 
amplifies it due to the steep gradients in a gas property at the flame front. Further information about 
the effect of this direct interaction has been discussed for both premixed and diffusion flames [38–
40]. The indirect interaction, on the other hand, is occurred in the flow field, regardless of the flame 
characteristics. It has been discovered that the acoustic forcing on a non-reacting jet or flow induces 
velocity fluctuations [41–43], sinuous oscillations [44–49], or steady streaming [50–52] has major 
effect on the change of behavior of jet flames under acoustic perturbation. Further discussion onto 
the effect of acoustic perturbation whether direct or indirect interaction toward the jet flame 
behavior are discuss in this paper. 
 
2.1 Flame Structure 
 

Figure 1 shows the interaction between acoustic responses and flame [53]. This interaction 
provides linear change with the increasing of number of frequency (f) detest to the flame. When no 
acoustic perturbation f = 0 Hz, the flame has a single-layer structure for all values of volume 
concentration, ΩE. 

Double layer of flame structure can be observed when the frequencies start to be increased. The 
change of the structure concerning the outer flame part can been seen by the increase of brightness 
and the size become wider than the burner exit. However, the change difference concerning the 
inner flame core where the color become luminous and the size is much smaller than the burner exit. 
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Fig. 1. Flame interaction with frequency [52] 

 
Result shows that the flame during lower range of frequencies experience acoustic excitation 

near the natural flickering frequency or been called as acoustically resonant. The linear change of 
flame structure with the increase of frequencies has also been analyze by Camacho and Ahsan [54], 
Chung and Ta-Hui [55] and Lakshminarasimhan et al., [56] thus the effect of flame structure also 
influence the flame spread behavior [57-61]. All results have been in agreement that at certain 
frequencies, flame will have natural flickering frequency that creates the flame to wave and change 
of its color intensity. 
 
2.2 Flame Length and Liftoff Height 
 

A liftoff height is a point measured from the centerline distance of the duct exit to the plane of 
flame stabilization [52–65]. Oh et al., [30] proved the correlation of interaction between flame length 
and liftoff height during acoustic excitation. The result shows liftoff height increases as the flame 
height decreases by increasing amount of acoustic excitation, as shown in Figure 2. 

The phenomenon shows an increased amount of coaxial air velocity. However, different 
phenomenon is occurred during resonance frequency; when the flame length seems to be prominent 
[66]. This is due to the larger amplitude during resonance frequency compare with non-resonance 
frequency. 

The fluctuation is occurred due to the flame surface distortion at the fuel and air reaction zone. 
The distortion is caused by a large coherent vortex produce during acoustic forcing, making the flame 
base move upstream as vortices become larger [67]. Vortices or vorticity plays a major role in flame 
lift off stabilization due to its ability to induce a premixing layer between fuel and air [18,68]. 
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Fig. 2. Visible flame appearance (left image for non-excitation, center for f= 340 Hz, 
and right for f = 490 Hz) [30] 

 
2.3 Flame Shape 
 

During acoustic excitation, it has been observed that the flame changes its shape with the 
increased level of excitation. As seen in Figure 3, the flame shape is categorized to five stages of 
region [69]. By examining the correlation of flame to the length mode for the unforced flame, the 
outer vortex motion is owed to a flame flickering; which is caused by a buoyancy motion [70]. The 
shape is typical for most jet flame shape [71–73]. 

The next region, the length of flame increases and decreases substantially with the increased 
amount of excitation; this mode of shape is called fat flame [74] moreover the excitation disturbs the 
gas mixture influencing the thermophoretic parameter of the flame [75-77]. Further increasing of the 
amplitude, the flame length starts to decrease after reaching its maximum height at an elongated 
flame and the shape start passing through an in-burning flame. 

By exciting the flame, an inner vortex appears irrespective of the outer structure related with the 
in-burning flame mode shape. The flame is believed to be in a threshold phenomenon, respectively 
its collapsible mixing [78,79]. This is referred to the entrainment of air caused by an acoustic cycle 
under the influence of a strong positive pressure gradient [80]. By increasing the amount of 
excitation, the negative part of the acoustic starts to influence the flame and induce the entrained 
air [81]. 
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Fig. 3. Flame shape based on flame region curve [69] 

 
Another flame shape visualizing from the acoustic excitation is “Y” shape flame [82]. The “Y” 

shape flame, as shown in Figure 4, is seen under certain condition of acoustic excitation. Figure 4(a) 
and Figure 4(b) represent the flame without and with acoustic excitation, respectively. The shape of 
flame meanders without acoustic excitation and starts to separate when an acoustic being excite to 
the flame. This result agrees with the experiment conduct by Monkewitz et al., [83] and Yoshida et 
al., [84]. 

This branching behavior inside the flame is the key to the notable change in the shape of the 
flame. Reynolds et al., [85] has found similar bifurcating behavior that allows the merging of axial and 
circumferential excitations at the nozzle exit. This bifurcation occurs due to mutual induction 
between the consecutive vortices induced by the axial disturbances. 
 

  
(a) (b) 

Fig. 4. Formation of Y- Flame Shape [72]; (a) without an acoustic excitation, (b) with an 
acoustic excitation 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 74, Issue 1 (2020) 151-164 

156 
 

2.4 Flame Color Characterization 
 

Color of flame plays significant role in understanding the change of behaviour under acoustic 
excitation. Method used to characterize the color spectrum using RGB and HSV color model [86]. 
Flame, during acoustic excitation and non-excitation releases various discontinuous spectra that 
emitted radiant energy and distributed it around the narrow wavelength, an attribute to the release 
of photon energy [87]. The discontinuous spectra or signal is used as ‘fingerprints’ because of its 
unique characterization [88–92]. 

Figure 5 shows the variety of color diffusion in a premixed methane flame. Each set of flame is 
characterized using digital image processing. It has been found that the hue distribution obtained 
from the flame chemiluminescence allow us to identify any radical emission change from the flame 
[91,92]. 
 

 
Fig. 5. Characterizing flame using RGB and HSV [86] 

 
3. Acoustic Excitation Application 
3.1 NOx Reduction 
 

Nitric Oxide (NOx) emission can cause serious environmental problems such as chemical smog, 
acid rain and ozone depletion [93–97]. It has been found that acoustic excitation with a proper 
frequency and amplitude is able to enhance entrainment by manipulating the coherent vortices 
produce by acoustic excitation [98]. Table 1 shows some of list researches that have been done. 
 

Table 1 
Research on NOx - Acoustic excitation application 
Name Amount of NOx Reduce References 

Oh et al., Up to 7% reduction [30] 
Delabroy et al., 15% reduction [31] 
Kim et al., Up to 25% reduction [33] 
Keller and Hongo Three times smaller compare to quiet burner [99] 
McManus et al., 40% reduction [100] 

 
Based on the current research, the quantity of NOx reduction is caused by the large-structure 

vortices. This is due to the flame based that consists of laminar non-premixed flamelets. The 
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stabilization point is believed to be affected by the local extinction and the reduction of local mixture 
concentration gradient [101,102]. The vortex generated by the acoustic excitation promotes air 
entrainment and enhances fuel-air mixing. Moreover, the large-structure vortices induce a large 
strain rate and curvature that lead to extinction and quenching of combustion reaction [103–106]. 
 
3.2 Soot Formation 
 

Soot is a deep black powdery that consist of largely amorphous carbon produced by an 
incomplete burning in a combustion system [107]. Soot is one quarter of the total hazardous pollution 
in air [108]. Long term exposure of soot will increase the risk of coronary artery disease [109]. 

Previous study on examining the mechanism of soot formation discover that acoustic excitation 
will improve atomization characteristic thus making it possible to reduce the amount of soot 
produced [72]. Table 2 listed some of the work study in suppressing the soot formation in combustion 
system by using acoustic excitation technique. 
 

Table 2 
Soot Formation - Acoustic excitation application 
Name Frequencies Range  Findings References 

Dworkin et al., 20 Hz Maximum soot volume fraction increased 
with fuel flow modulation 

[110] 

Sapmaz and Ghenai 
 

10 to 200 Hz using Increase in total, volume averaged soot 
volume fraction when increasing the 
oscillation frequency 

[111] 

Shaddix et al., 10 Hz Decrease in total, volume averaged soot 
volume fraction when increasing the 
oscillation frequency 

[112] 

Jocher et al., 
 

20 to 40 Hz Maximum soot volume fraction is 
overpredicted by 36% compared with the 
current measurements 

[113] 

Saito et al., 
 

Below 100 Hz Laminar flow region (Re* < 2000), the 
efficiency of soot suppression was less than 
50%, while the efficiency exceeds 90% in the 
turbulent flow region (Re* > 3000) 

[114] 

 
4. Conclusions 
 

The problem of flame-acoustic interaction is a concern in the discipline of combustion. Based on 
the review presented in this paper, the following conclusions are made 

i. The effect of the acoustic excitation towards flame shape is depending upon the amplitude 
and the value of frequency upon excitation. The shape of flame change and as the excitation 
become higher it may lead to flame extinction. The experiment done to study the change of 
shape flame is mostly transverse excitation, where the position for the source of excitation is 
located below the flame. Less work has been done to predict the change of shape with a 
different position for the source of acoustic excitation.  

ii. The interaction of flame and acoustic largely been influenced by a vortex. However, less work 
is done to simplify the models of vortex-flame interaction. Most existing work is largely 
numeric and needed to be extended to further study the effect of the interaction. 

iii. Flame-acoustic interaction in a combustion system in realistic environment occurs in a very 
hasty space. Any model that had been done to understand the effect of acoustic excitation in 
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laboratory usually has a control space. Fundamental issues, such as method of the model 
should response to the work must be address. 
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