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In this paper, on the basis of conservation laws suspensions filtration equations with 
forming a relaxing cake are derived. The equations are numerically solved. To solve the 
equation for cake growth a Stefan problem is posed and solved with using the method 
of catching a moving front. On the basis of numerical results influence of relaxation 
phenomena on filtration characteristics is established. It is shown that the relaxation 
slows down the increasing of local filter cake porosity and decreasing of cake 
permeability, as well as increase fluid relative velocity through cake for given applied 
pressure. Increasing of relaxation time leads to a faster growth of the cake thickness 
when all other conditions are constants, thus relaxation effects cause more intensive 
transfer of particles from suspension to the cake. It, in turn, alters all other filtration 
characteristics, such as fluid pressure distribution, compressive pressure, porosity and 
consolidation of the cake, fluid flow rate through the cake and effective hydrodynamic 
resistance. With increasing of relaxation phenomena dynamics of current and total 
outlet filtrate flow rate becomes more intensive. 
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1. Introduction 
 

Filtration refers to the processes of separation of heterogeneous systems using a porous medium 
(filter), which hold up one phase of these systems and let others pass through. These processes 
include separation of the suspension into pure liquid and solid particles. Processes of suspensions 
separation have wide applications in chemical, petrochemical, oil and gas, coal, food and some other 
industries. At filtration, solid particles contained in the suspension are retained on the surface of the 
filter and form a cake. This process is called as filtering with formation of a cake [1-7]. The cake 
formed during the filtration of different suspensions usually is a complex multi-component system 
consisting, in general, of liquid and solid particles of various shapes and sizes. Solid particles of the 
cake are under the influence of external and internal forces and interact with the surrounding 
medium and with each other. External fields influencing on cake particles include pressure drop and 
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gravitational forces. Internal fields are excited by inter particle interaction forces. These include: the 
forces of chemical nature, molecular, ion-electrostatic, capillary and magnetic forces [8-10]. To study 
the influence of these factors is very important in the design and construction of different filtering 
elements, for instance, ultrafiltration membranes (UF). UF has been recognized as one of the 
advanced technologies and is widely implemented in various field of industry. The performance of 
sandwich membrane with different configurations is studied in [11]. Separation properties and 
performance in membrane reactor systems are studied in [12]. 

The filtration with cake formation is based on the fundamental equations of the mechanics of 
multi-component media, the theory of filtration consolidation [13-20] and takes into account the 
influence of hydrodynamic and rheological factors. Differential equations of filtering are obtained on 
the basis of the two-phase flows mechanics equations, taking into account the changes in the filter 
parameters along the thickness of the cake with the time [9,10,21,22]. Since the cake-suspension 
interface is mobile, the equation describing the compressibility of the cake leads to Stefan's problems 
[14,23,24]. 

When we consider non-Newtonian systems, such as, highly concentrated suspensions, as well as 
suspensions with high-molecular polymers, the classical Darcy’s law is violated. In this case, the Darcy 
law is nonlinear or non-equilibrium. At filtration of dispersed systems in porous media due to 
deposition of some phase components in the pore space, the filtration flow can have relaxation 
behaviour. A number of works are devoted to this phenomenon [25-31]. In this case, we have a non-
equilibrium relationship between the filtration velocity and the pressure gradient. Relaxation 
phenomena in the filtration of liquids are reflected in the equations used for mathematical modeling 
of the filtration process. Usually, in the description of relaxation filtration, various phenomenological 
models are used, taking into account the delay in the dependences between the filtration velocity 
and the pressure gradient. In some cases, it is necessary also to take into account the delay in the 
equations of state. In our case liquid phase of suspension, we treat as polymer solution that exhibits 
non-equilibrium rheological properties, as a consequence, it leads to a non-equilibrium filtration law. 
So, we use here relaxation type filtration law, where pressure gradient relaxes with respect the 
filtration velocity. 

As one of the first in this direction, one can mention the work [32]. In this work on the basis of 
numerous experimental data, a relaxation changes in the velocity of filtration during the flow of a 
polymer solution through a porous medium at a constant pressure drop is shown. Khuzhayorov [31] 
research on some non-steady one-dimensional filtration problems under the elastic regime are 
considered with an assumption that the pressure gradient has relaxation behaviour with respect to 
the velocity of filtration. A systematic analysis of the relaxation theory of filtration is given in the 
research by Molokovich [34]. 

As far as we know, still the relaxation phenomena in the theory of cake filtration are not applied. 
However, it is important both in theoretical and practical point of view. The studies of relaxation 
phenomena allow us better understanding of suspensions separation processes when liquid phase 
of suspension has high viscosity and anomalous rheological properties. 

In this paper, we consider only phenomenological models for the filtration of disperse systems. 
Macroscopic modeling has recently been very intensively developed, which yet is not practically used 
yet in filtration problems of disperse systems. Some macroscopic models of relaxation mass transport 
in a porous medium are derived and analyzed in the research by Khuzhayorov [35]. We first derive 
cake filtration equations and an equation for the cake growth. Then we perform numerical analyses 
of equations and present results. On the basis of the last we make some conclusions. Note, here we 
emphasize our attention only on the relaxation effects in the filtration law. In general, relaxation 
effects can have other nature, for instance cake properties can have non-equilibrium dependences.  
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2. Mathematical Model 
2.1 Derivation of Cake Filtration Equations 
 

We consider cake filtration of suspensions (Figure 1). At filtration of suspensions with forming a 
cake, the Darcy's law establishes an equilibrium relationship between the relative velocity 𝑞𝑙𝑠 and 
the pressure gradient 𝜕𝑝𝑙 𝜕𝑥⁄ , which in one-dimensional scalar form can be written as [5] 
 
𝑞𝑙𝑠

𝜀
=

𝑞𝑙

𝜀
−

𝑞𝑠

𝜀
= −

1

𝜀

𝑘

𝜇

𝜕𝑝𝑙

𝜕𝑥
,  

 
where 𝑙 is index corresponding to the liquid phase, 𝑠 is index corresponding to solid particles, 𝜀𝑖 is 
porosity of the 𝑖-th phase (here and after we use 𝜀 instead of 𝜀𝑙 for simplicity), 𝑞𝑙 is liquid phase 
velocity, 𝑞𝑠 is solid phase velocity, 𝑝𝑙 is pressure in the liquid phase, 𝑘 is permeability coefficient, 𝜇 is 
viscosity. 

Suppose that this relationship is of a non-equilibrium nature. Non-equilibrium nature can occur 
both in the filtration velocity of the liquid and solid phases relative to the pressure gradient, and vice 
versa, in the pressure gradient relative to the filtration velocities. The non-equilibrium relationship is 
assumed in the linear differential form. In addition, since the velocities of solid and liquid phases can 
have different scales of variation, the relaxation effects can also occur with different characteristic 
times. 

Following to this idea the relaxation filtering law we take in the form 
 

(1 + 𝜆𝑞𝑙
𝜕

𝜕𝑡
)

𝑞𝑙

𝜀
− (1 + 𝜆𝑞𝑠

𝜕

𝜕𝑡
)

𝑞𝑠

𝜀𝑠
= −

1

𝜀

𝑘

𝜇
(1 + 𝜆𝑝𝑙

𝜕

𝜕𝑡
)

𝜕𝑝𝑙

𝜕𝑥
,      (1) 

 
where 𝜆𝑞𝑙 is the relaxation time of filtration velocities, 𝜆𝑝𝑙 is the relaxation time of the pressure 

gradient. 
In the cake, the velocity of the particles is much lower than the velocity of the liquid phase. The 

velocity of particles at the boundary of the suspension and the cake can be assumed to be equal to 
the velocity of the suspension, and at the boundary of the cake and the filter surface, this velocity is 
zero. So, the filtration velocity of solid particles decreases along the cake from the velocity of the 
suspension to zero. The velocity of the liquid phase increases along the cake from the boundary with 
the suspension to the boundary of the filter, while the overall filtration velocity 𝑞𝑙 + 𝑞𝑠 remains 
constant with respect to 𝑥. Because of this, the change rate in the velocity of filtration of the solid 
phase compared with the liquid phase can be considered to be slow. This circumstance makes it 
possible to neglect the relaxation effects in the filtration velocity of the solid phase in comparison 
with the liquid phase. Then Eq. (1) can be written in the form 
 

(1 + 𝜆𝑞𝑙
𝜕

𝜕𝑡
)

𝑞𝑙

𝜀
−

𝑞𝑠

𝜀𝑠
= −

1

𝜀

𝑘

𝜇
(1 + 𝜆𝑝𝑙

𝜕

𝜕𝑡
)

𝜕𝑝𝑙

𝜕𝑥
,          (2) 

 
For the sake of simplicity, let us first consider only relaxation of the pressure gradient, i.e. we take 

𝜆𝑞𝑙 = 0. Then Eq. (1) takes the form 

 
𝑞𝑙

𝜀
−

𝑞𝑠

𝜀𝑠
= −

1

𝜀

𝑘

𝜇
(1 + 𝜆𝑝𝑙

𝜕

𝜕𝑡
)

𝜕𝑝𝑙

𝜕𝑥
.           (3) 

At 𝑥 = 0 by taking into account 𝑞𝑠|𝑥=0 = 0 from Eq. (3) we have 
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𝑞𝑙|𝑥=0 = 𝑞𝑙𝑚 = −
𝑘

𝜇
(1 + 𝜆𝑝𝑙

𝜕

𝜕𝑡
)

𝜕𝑝𝑙

𝜕𝑥
|

𝑥=0
,          (4) 

 
where 𝑞𝑙𝑚 = 0 is the instantaneous filtration velocity at 𝑥 = 0. Because 𝑞𝑠|𝑥=0 = 0, the term 𝑞𝑙𝑚 
represents, in fact, filtrate velocity. 
 

 
Fig. 1. A schematic of cake filtration 

 
The flow 𝑞𝑙𝑚 is balanced by the flow through the filter, so in Eq. (4) we have 

 

𝑞𝑙|𝑥=0 = −
𝑘

𝜇
(1 + 𝜆𝑝𝑙

𝜕

𝜕𝑡
)

𝜕𝑝𝑙

𝜕𝑥
|

𝑥=0
= −

𝑝𝑙𝑚

𝜇𝑅𝑚
,          (5) 

 
where 𝑝𝑙𝑚 is the filtrate pressure at 𝑥 = 0, 𝑅𝑚 is relative resistance of the filtering element. We 
transform Eq. (3) into 
 
𝑞𝑙

𝜀
−

𝑞𝑙𝑚−𝑞𝑙

𝜀𝑠
= −

1

𝜀

𝑘

𝜇
(1 + 𝜆𝑝𝑙

𝜕

𝜕𝑡
)

𝜕𝑝𝑙

𝜕𝑥
  

 
and from that we have 
 

𝑞𝑙 = 𝜀𝑞𝑙𝑚 − 𝜀𝑠
𝑘

𝜇
(1 + 𝜆𝑝𝑙

𝜕

𝜕𝑡
)

𝜕𝑝𝑙

𝜕𝑥
.           (6) 

 
By taking into account Eq. (4), from Eq. (6) we obtain 
 

𝑞𝑙 = (1 − 𝜀𝑠) [
𝑘

𝜇
(1 + 𝜆𝑝𝑙

𝜕

𝜕𝑡
)

𝜕𝑝𝑙

𝜕𝑥
]

𝑥=0
− 𝜀𝑠 [

𝑘

𝜇
(1 + 𝜆𝑝𝑙

𝜕

𝜕𝑡
)

𝜕𝑝𝑙

𝜕𝑥
].       (7) 

 
To derive a filtration equation, we use the following balance equation 

 
𝜕𝜀

𝜕𝑡
= −

𝜕𝑞𝑙

𝜕𝑥
.              (8) 

 
After substitution Eq. (7) into Eq. (8) and with taking into account 𝜀 = 1 − 𝜀𝑠 we have 
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−
𝜕𝜀𝑠

𝜕𝑡
= −

𝜕

𝜕𝑥
{−𝜀𝑠

𝑘

𝜇
(1 + 𝜆𝑝𝑙

𝜕

𝜕𝑡
)

𝜕𝑝𝑙

𝜕𝑥
− (1 − 𝜀𝑠) [

𝑘

𝜇
(1 + 𝜆𝑝𝑙

𝜕

𝜕𝑡
)

𝜕𝑝𝑙

𝜕𝑥
]

𝑥=0
}  

 
or 
 

−
𝜕𝜀𝑠

𝜕𝑡
=

𝜕

𝜕𝑥
{−𝜀𝑠

𝑘

𝜇
(1 + 𝜆𝑝𝑙

𝜕

𝜕𝑡
)

𝜕𝑝𝑙

𝜕𝑝𝑠

𝜕𝑝𝑠

𝜕𝑥
} − 𝑞𝑙𝑚

𝜕𝜀𝑠

𝜕𝑥
,         (9) 

 
where 
 

𝑞𝑙𝑚 = −
𝑘

𝜇
(1 + 𝜆𝑝𝑙

𝜕

𝜕𝑡
)

𝜕𝑝𝑙

𝜕𝑥
|

𝑥=0
. 

 
There are different relations between 𝑝𝑙 and 𝑝𝑠. Some of the simplest possible relations are [5]: 
1) Type 1: 𝑑𝑝𝑙 + 𝑑𝑝𝑠 = 0; 
2) Type 2: (1 − 𝜀𝑠)𝑑𝑝𝑙 + 𝑑𝑝𝑠 = 0; 
3) Type 3: (1 − 𝜀𝑠)𝑑𝑝𝑙 + 𝜀𝑠𝑑𝑝𝑠 = 0; 
4) Type 4: 𝑑[(1 − 𝜀𝑠)𝑑𝑝𝑙] + 𝑑[𝜀𝑠𝑑𝑝𝑠] = 0. 

The general representation of these results can be written as [5]; 
𝜕𝑝𝑙

𝜕𝑝𝑠
= 𝑓′, where 𝑓′ for given 

above types is: 
1) Type 1: 𝑓′ = −1; 

2) Type 2: 𝑓′ = −
1

1−𝜀𝑠
; 

3) Type 3: 𝑓′ = −
𝜀𝑠

1−𝜀𝑠
; 

4) Type 4: 𝑓′ = −
(1−𝜀𝑠)𝑝0−𝑝𝑠

(1−𝜀𝑠)2

𝑑𝜀𝑠

𝑑𝑝𝑠
−

𝜀𝑠

1−𝜀𝑠
. 

So, from Eq. (9) we have 
 

−
𝜕𝜀𝑠

𝜕𝑡
=

𝜕

𝜕𝑥
{−𝜀𝑠

𝑘

𝜇
(1 + 𝜆𝑝𝑙

𝜕

𝜕𝑡
) 𝑓′

𝜕𝑝𝑠

𝜕𝑥
} − 𝑞𝑙𝑚

𝜕𝜀𝑠

𝜕𝑥
.                   (10) 

 

If we use the relations [5] 𝜀𝑠 = 𝜀𝑠
0 (1 +

𝑝𝑠

𝑝𝑙
)

𝛽

 and 𝑘 = 𝑘0 (1 +
𝑝𝑠

𝑝𝑙
)

−𝛿

 from Eq. (10) we obtain the 

following equation with respect to 𝑝𝑠  
 
𝜀𝑠

0𝛽

𝑝𝐴
(1 +

𝑝𝑠

𝑝𝑙
)

𝛽−1 𝜕𝑝𝑠

𝜕𝑡
= −

𝑘0𝜀𝑠
0

𝜇

𝜕

𝜕𝑥
[(1 +

𝑝𝑠

𝑝𝑙
)

𝛽−𝛿

(1 + 𝜆𝑝𝑙
𝜕

𝜕𝑡
) (𝑓′

𝜕𝑝𝑠

𝜕𝑥
)] −

𝜀𝑠
0𝛽

𝑝𝐴
𝑞𝑙𝑚 (1 +

𝑝𝑠

𝑝𝑙
)

𝛽−1 𝜕𝑝𝑠

𝜕𝑡
,     (11) 

 
where 𝜀𝑠

0 and 𝑘0 denote respectively the values of value of 𝜀𝑠 and 𝑘 at 𝑝𝑠 = 0, 𝑝𝐴 = 0 - characteristic 
pressure, 𝛽, 𝛿 signifies the compression effect due to 𝑝𝑠. 

In the case 𝑓′ = −1 (type 1) from Eq. (11) we have 
 
𝜀𝑠

0𝛽

𝑝𝐴
(1 +

𝑝𝑠

𝑝𝑙
)

𝛽−1 𝜕𝑝𝑠

𝜕𝑡
=

𝑘0𝜀𝑠
0

𝜇

𝜕

𝜕𝑥
[(1 +

𝑝𝑠

𝑝𝑙
)

𝛽−𝛿

(1 + 𝜆𝑝𝑙
𝜕

𝜕𝑡
)

𝜕𝑝𝑠

𝜕𝑥
] −

𝜀𝑠
0𝛽

𝑝𝐴
𝑞𝑙𝑚 (1 +

𝑝𝑠

𝑝𝑙
)

𝛽−1 𝜕𝑝𝑠

𝜕𝑡
,                  (12) 

 
where expression for 𝑞𝑙𝑚 with respect to 𝑝𝑠 is 

𝑞𝑙𝑚 =
𝑘

𝜇
(1 + 𝜆𝑝𝑙

𝜕

𝜕𝑡
)

𝜕𝑝𝑠

𝜕𝑥
|

𝑥=0
. 
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Eq. (12) is the basic equation of non-equilibrium filtration with cake formation. It can be solved 
with corresponding initial and boundary conditions, specified in particular on the moving boundary 
𝑥 = 𝐿(𝑡), which must be determined from the additional equation. 

The initial and boundary conditions for Eq. (12) can be taken in the form 
 

𝑝𝑠(0, 𝑥) = 0, 𝑝𝑠(𝑡, 𝐿(𝑡)) = 0, −𝑘 (1 + 𝜆𝑝𝑙
𝜕

𝜕𝑡
)

𝜕𝑝𝑠

𝜕𝑥
|

𝑥=0
=

𝑝0−𝑝𝑠

𝑅𝑚
|

𝑥=0
,                 (13) 

 
where 𝑝0 - suspension feed pressure. 
 
2.2 Derivation of Equation for The Cake Growth 
 

Now we proceed to the derivation of an equation for the mobile boundary 𝐿(𝑡), which 
characterizes the growth of the cake. The mobile boundary 𝐿(𝑡) expresses the thickness of the cake 
and continuously grows during the filtration process. The mobile boundary is determined on the basis 
of the mass conservation law on the surface of the cake, i.e. on the common boundary of the 
suspension and the cake. At 𝑥 < 𝐿(𝑡) we have the cake, and at 𝑥 = 𝐿(𝑡) we have the suspension. 
Then, the basic equation characterizing the growth of the cake can be taken in the form [5,6] 
 
𝑑𝐿

𝑑𝑡
=

−𝑞𝑙|
𝐿+−(−𝑞𝑙|𝐿−)

𝜀𝑠0−𝜀𝑠
0 ,                       (14) 

 
where 𝜀𝑠

0 is solid content at zero pressure, 𝜀𝑠0
 is concentration of solid particles in suspension, 𝑞𝑙|𝐿+ 

is filtration velocity at 𝑥 = 𝐿+, 𝑞𝑙|𝐿− is filtration velocity at 𝑥 = 𝐿−. 
For the relaxation filtration law, we have the following relationships 

 

𝑞𝑙|𝐿+ + 𝑞𝑠|𝐿+ = 𝑞𝑙|𝐿− + 𝑞𝑠|𝐿− = 𝑞𝑙𝑚 = [−
𝑘

𝜇
(1 + 𝜆𝑝𝑙

𝜕

𝜕𝑡
)

𝜕𝑝𝑙

𝜕𝑥
]

𝑥=0
.                 (15) 

 
The Darcy’s law at 𝑥 = 𝐿− can be written as 

 

𝑞𝑙|𝐿− −
1−𝜀𝑠

0

𝜀𝑠
0 𝑞𝑠|𝐿− = [−

𝑘

𝜇
(1 + 𝜆𝑝𝑙

𝜕

𝜕𝑡
)

𝜕𝑝𝑙

𝜕𝑥
]

𝑥=𝐿−
.                   (16) 

 
From Eq. (15) we obtain 

 

𝑞𝑙|𝐿− = −𝑞𝑠|𝐿− − [
𝑘

𝜇
(1 + 𝜆𝑝𝑙

𝜕

𝜕𝑡
)

𝜕𝑝𝑙

𝜕𝑥
]

𝑥=0
.                    (17) 

 
Eq. (16) and Eq. (17) give 

 

𝑞𝑙|𝐿− = −𝜀𝑠
0 [

𝑘

𝜇
(1 + 𝜆𝑝𝑙

𝜕

𝜕𝑡
)

𝜕𝑝𝑙

𝜕𝑥
]

𝑥=𝐿−
−(1 − 𝜀𝑠

0) [
𝑘

𝜇
(1 + 𝜆𝑝𝑙

𝜕

𝜕𝑡
)

𝜕𝑝𝑙

𝜕𝑥
]

𝑥=0
.                (18) 

 
In the suspension zone 𝑥 = 𝐿+ particles and liquid move with equal velocities 

 
𝑞𝑠|

𝐿+

𝜀𝑠0

=
𝑞𝑙|

𝐿+

1−𝜀𝑠0

,  
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that gives 
 

𝑞𝑠|𝐿+ =
𝜀𝑠0

1−𝜀𝑠0

𝑞𝑙|𝐿+,                       (19) 

 
By substitution Eq. (19) into Eq. (15) we obtain 

 

𝑞𝑙|𝐿+ = −(1 − 𝜀𝑠0
) [

𝑘

𝜇
(1 + 𝜆𝑝𝑙

𝜕

𝜕𝑡
)

𝜕𝑝𝑙

𝜕𝑥
]

𝑥=0
.                    (20) 

 
With taking into account Eq. (18) and Eq. (20), from the Eq. (14) we have 

 
𝑑𝐿

𝑑𝑡
=

𝜀𝑠
0

𝜀𝑠
0−𝜀𝑠0

[
𝑘

𝜇
(1 + 𝜆𝑝𝑙

𝜕

𝜕𝑡
)

𝜕𝑝𝑙

𝜕𝑥
]

𝐿−
+ 𝑞𝑙𝑚.                   (21) 

 
If we use the first type of the relationship between 𝑝𝑙 and 𝑝𝑠, i.e. 𝑓′ = −1, the Eq. (21) can be 

written with respect to 𝑝𝑠  
 
𝑑𝐿

𝑑𝑡
= −

𝜀𝑠
0

𝜀𝑠
0−𝜀𝑠0

[
𝑘

𝜇
(1 + 𝜆𝑝𝑙

𝜕

𝜕𝑡
)

𝜕𝑝𝑠

𝜕𝑥
]

𝐿−
+ 𝑞𝑙𝑚.                   (22) 

 
By integrating the Eq. (22) the mobile front 𝐿(𝑡) can be determined. This equation is solved 

together with the basic equation of filtration Eq. (12) with Eq. (13). 
We should note, that without relaxation effects, the analogous problems of filtration were 

considered in [5,9,10]. 
 
3. Numerical Analysis 
 

Eq. (12), we write in the following form 
 
𝜕𝑝𝑠

𝜕𝑡
=

𝑘0𝑝𝐴

𝛽𝜇
(1 +

𝑝𝑠

𝑝𝑙
)

1−𝛽 𝜕

𝜕𝑥
[(1 +

𝑝𝑠

𝑝𝑙
)

𝛽−𝛿

(1 + 𝜆𝑝𝑙
𝜕

𝜕𝑡
)

𝜕𝑝𝑠

𝜕𝑥
] − 𝑞𝑙𝑚

𝜕𝑝𝑠

𝜕𝑡
,                (23) 

 
We introduce the following notations 

 

𝑎(𝑝) = (1 +
𝑝𝑠

𝑝𝑙
)

1−𝛽

, 𝑏(𝑝) = (1 +
𝑝𝑠

𝑝𝑙
)

𝛽−𝛿

, 𝑐2 =
𝜀𝑠

0

𝜀𝑠
0−𝜀𝑠0

, 𝑐(𝑝) =
𝑘0

𝜇
(1 +

𝑝𝑠

𝑝𝑙
)

−𝛿

, 𝑐1 =  
𝑘0𝑝𝐴

𝛽𝜇
, 𝑐0(𝑝) =

𝑘0

𝜇
(1 +

𝑝𝑠

𝑝𝑙
)

−𝛿

|
𝑥=0

. 

 
With taking into account these notations, Eq. (23) can be transformed into the following form 

 
𝜕𝑝𝑠

𝜕𝑡
= 𝑐1𝑎(𝑝)

𝜕

𝜕𝑥
[𝑏(𝑝) (1 + 𝜆𝑝𝑙

𝜕

𝜕𝑡
)

𝜕𝑝𝑠

𝜕𝑥
] − 𝑞𝑙𝑚

𝜕𝑝𝑠

𝜕𝑡
.                   (24) 

 
 

The equation for the mobile boundary 𝐿(𝑡), Eq. (22), takes the form 
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𝑑𝐿

𝑑𝑡
= −𝑐2 [𝑐(𝑝) (1 + 𝜆𝑝𝑙

𝜕

𝜕𝑡
)

𝜕𝑝𝑠

𝜕𝑥
]

𝐿−
+ 𝑞𝑙𝑚,                    (25) 

 
where 
 

𝑞𝑙𝑚 = 𝑐0(𝑝) (1 + 𝜆𝑝𝑙
𝜕

𝜕𝑡
)

𝜕𝑝𝑠

𝜕𝑥
|

𝑥=0
. 

 
To solve the problem Eq. (24), Eq. (25) with Eq. (13) and 𝐿(0) = 0, we use the finite differences 

method. We introduce a uniform grid by 𝑡 with the step 𝜏 �̅�𝜏 = {𝑡| 𝑡 = 𝑡𝑗 = 𝑗𝜏, 𝑗 = 0,1, … , 𝑁, 𝜏𝑁 =

𝑇}, and a non - uniform grid by coordinate 𝑥 [36,37] 

 
�̅�ℎ = {𝑥 𝑥 = 𝑥𝑖 = 𝑥𝑖−1 + ℎ𝑖 , 𝑖 = 0,1, … , 𝑁, 𝑁 + 1, … 𝑥𝑁 = 𝐿}  
 
with the variable step ℎ𝑖 > 0. 

We are to choose the step ℎ𝑖  from the section [𝑥𝑖, 𝑥𝑖+1] so, that the mobile boundary moves 
exactly on one step along the time grid. This approach is known as the method of catching the front 

in a grid node. We denote by 𝜙𝑖
𝑗+1

 the grid function corresponding to 𝑝𝑠. We approximate Eq. (24) 

by an implicit difference scheme that is nonlinear with respect to the function 𝜙𝑖
𝑗+1

 

 

𝜙𝑖
𝑗+1

−𝜙𝑖
𝑗

𝜏
= 𝑐1

2𝑎(𝜙𝑖
𝑗
)

ℎ𝑖+ℎ𝑖+1

𝜕

𝜕𝑥
{𝑏 (𝜙

𝑖+
1

2

𝑗+1
)

𝜙𝑖+1
𝑗+1

+𝜙𝑖−1
𝑗+1

ℎ𝑖+ℎ𝑖+1
+

𝜆𝑝𝑙

𝜏
𝑏 (𝜙

𝑖+
1

2

𝑗+1
) [

𝜙𝑖+1
𝑗+1

+𝜙𝑖−1
𝑗+1

ℎ𝑖+ℎ𝑖+1
−

𝜙𝑖+1
𝑗

+𝜙𝑖−1
𝑗

ℎ𝑖+ℎ𝑖+1
] − 𝑏 (𝜙

𝑖−
1

2

𝑗+1
)

𝜙𝑖
𝑗+1

+𝜙𝑖
𝑗+1

ℎ𝑖
− −

𝜆𝑝𝑙

𝜏
𝑏 (𝜙

𝑖−
1

2

𝑗+1
) [

𝜙𝑖
𝑗+1

+𝜙𝑖−1
𝑗+1

ℎ𝑖
−

𝜙𝑖
𝑗
+𝜙𝑖−1

𝑗

ℎ𝑖
]} − (𝑞𝑙𝑚)0

𝑗+1 𝜙𝑖
𝑗+1

+𝜙𝑖−1
𝑗+1

ℎ𝑖
,  

𝑖 = 1, … 𝑁 − 1, 𝑗 = 0,1, … 𝑁 − 1,   (26) 
 
where 
 

𝑎(𝜙𝑖
𝑗
) = (1 +

𝜙𝑖
𝑗

𝑝𝐴
)

1−𝛽

, 𝑏 (𝜙
𝑖+

1

2

𝑗
) =

1

2
[(1 +

𝜙𝑖+1
𝑗+1

𝑝𝐴
)

𝛽−𝛿

+ (1 +
𝜙𝑖

𝑗+1

𝑝𝐴
)

𝛽−𝛿

],   

(𝑞𝑙𝑚)0
𝑗+1

= 𝑐0(𝜙0
𝑗+1

) (
𝜙1

𝑗+1
−𝜙0

𝑗+1

ℎ0
+

𝜆𝑝𝑙

𝜏
(

𝜙1
𝑗+1

−𝜙0
𝑗+1

ℎ0
−

𝜙1
𝑗

−𝜙0
𝑗

ℎ0
)), 𝑐0(𝜙0

𝑗+1
) =

𝑘0

𝜇
(1 +

𝜙0
𝑗+1

𝑝𝐴
)

−𝛿

. 

 

Eq. (25) when 
𝑑𝐿

𝑑𝑡
≈

ℎ𝑖+1

𝜏
 after the approximation can be written in the form 

 

ℎ𝑖+1

𝜏
= −𝑐2 [𝑐0 (𝜙

𝑖−
1

2

𝑗+1
) (

𝜙𝑖
𝑗+1

−𝜙𝑖−1
𝑗+1

ℎ𝑖+1
+

𝜆𝑝𝑙

𝜏
(

𝜙𝑖
𝑗+1

−𝜙𝑖−1
𝑗+1

ℎ𝑖+1
−

𝜙𝑖
𝑗
−𝜙𝑖−1

𝑗

ℎ𝑖+1
))] + (𝑞𝑙𝑚)0

𝑗+1
,               (27) 

 
where 
 

𝑐 (𝜙
𝑖−

1

2

𝑗
) =

𝑘0

2𝜇
[(1 +

𝜙𝑖
𝑗

𝑝𝐴
)

−𝛿

+ (1 +
𝜙𝑖−1

𝑗

𝑝𝐴
)

−𝛿

].  

 
Approximation of initial and boundary conditions Eq. (13) gives 
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−𝜇𝑐0(𝜙0
𝑗
) (

𝜙1
𝑗+1

−𝜙0
𝑗+1

ℎ1
+

1

𝜏
(

𝜙1
𝑗+1

−𝜙0
𝑗+1

ℎ1
−

𝜙1
𝑗

−𝜙0
𝑗

ℎ1
)) =

𝑝0+𝜙0
𝑗+1

𝑅𝑚
, 𝑗 = 0, 𝑁̅̅ ̅̅ ̅,  

𝜙𝑖
𝑗+1

= 0, 𝑖 = 𝑁 + 1, 𝑁 + 2, … , 𝑗 = 0,1, ….    (28) 

 
The obtained set of Eq. (26) is nonlinear, so to solve it we use the method of simple iteration 

 

(𝜙(𝑠+1))
𝑖

𝑗+1
−𝜙𝑖

𝑗

𝜏
= 𝑐1

2𝑎(𝜙𝑖
𝑗
)

ℎ𝑖+ℎ𝑖+1

𝜕

𝜕𝑥
{𝑏 ((𝜙(𝑠))

𝑖+
1

2

𝑗+1
)

(𝜙(𝑠+1))
𝑖+1

𝑗+1
+(𝜙(𝑠+1))

𝑖−1

𝑗+1

ℎ𝑖+ℎ𝑖+1
+

𝜆𝑝𝑙

𝜏
𝑏 ((𝜙(𝑠))

𝑖+
1

2

𝑗+1
) [

(𝜙(𝑠+1))
𝑖+1

𝑗+1
+(𝜙(𝑠+1))

𝑖−1

𝑗+1

ℎ𝑖+ℎ𝑖+1
−

𝜙𝑖+1
𝑗

+𝜙𝑖−1
𝑗

ℎ𝑖+ℎ𝑖+1
] − 𝑏 ((𝜙(𝑠))

𝑖−
1

2

𝑗+1
)

(𝜙(𝑠+1))
𝑖

𝑗+1
+(𝜙(𝑠+1))

𝑖

𝑗+1

ℎ𝑖
−

𝜆𝑝𝑙

𝜏
𝑏 ((𝜙(𝑠))

𝑖−
1

2

𝑗+1
) [

(𝜙(𝑠+1))
𝑖

𝑗+1
+(𝜙(𝑠+1))

𝑖−1

𝑗+1

ℎ𝑖
−

𝜙𝑖
𝑗
+𝜙𝑖−1

𝑗

ℎ𝑖
]} − (𝑞𝑙𝑚

(𝑠)
)

0

𝑗+1 (𝜙(𝑠+1))
𝑖

𝑗+1
+(𝜙(𝑠+1))

𝑖−1

𝑗+1

ℎ𝑖
,               (29) 

 
where 
 

𝑏 ((𝜙(𝑠))
𝑖+

1

2

𝑗
) =

1

2
[(1 +

(𝜙(𝑠))
𝑖+1

𝑗+1

𝑝𝐴
)

𝛽−𝛿

+ (1 +
(𝜙(𝑠))

𝑖

𝑗+1

𝑝𝐴
)

𝛽−𝛿

],  

(𝑞𝑙𝑚
(𝑠)

)
0

𝑗+1

= 𝑐0 ((𝜙(𝑠))
0

𝑗+1
) (

(𝜙(𝑠))
1

𝑗+1
−(𝜙(𝑠))

0

𝑗+1

ℎ0
+

𝜆𝑝𝑙

𝜏
(

(𝜙(𝑠))
1

𝑗+1
−(𝜙(𝑠))

0

𝑗+1

ℎ0
−

𝜙1
𝑗

−𝜙0
𝑗

ℎ0
)), 

 
𝑠 is the number of iteration. 

It can be seen that the system of Eq. (29) is now linear with respect to (𝜙(𝑠+1))
𝑖

𝑗+1
, which allows 

us to use the Tomas’ algorithm. As a condition to stop iteration procedure on this time layer, the 
following relationship can be used: 
 

max
𝑖

|(𝜙(𝑠+1))
𝑖

𝑗+1
− (𝜙(𝑠))

𝑖

𝑗+1
| ≤ Λ,                     (30) 

 
where Λ is a small parameter. 

When condition (30) is satisfied then (𝜙(𝑠+1))
𝑖

𝑗+1
= 𝜙𝑖

𝑗+1
. As an initial approach we can use 

(𝜙(𝑠=0))
𝑖

𝑗+1
= 𝜙𝑖

𝑗
. 

Eq. (29) leads to the system of linear algebraic equations 
 

𝐴𝑖
(𝑠)

(𝜙(𝑠+1))
𝑖−1

𝑗+1
− 𝐵𝑖

(𝑠)
(𝜙(𝑠+1))

𝑖

𝑗+1
+ 𝐶𝑖

(𝑠)
(𝜙(𝑠+1))

𝑖+1

𝑗+1
= −𝐹𝑖

(𝑠)
, 𝑖 = 1, 𝑁 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,                (31) 

 
where 
 
 
 
 

𝐴𝑖
(𝑠)

= −
1

ℎ𝑖+ℎ𝑖+1
(1 +

𝜆𝑝𝑙

𝜏
) 𝑏 ((𝜙(𝑠))

𝑖+
1

2

𝑗+1
) +

1

ℎ𝑖
(1 +

𝜆𝑝𝑙

𝜏
) 𝑏 ((𝜙(𝑠))

𝑖−
1

2

𝑗+1
) +

ℎ𝑖+ℎ𝑖+1

2𝑐1ℎ𝑖𝑎(𝜙
𝑖
𝑗
)

𝑞𝑙𝑚 ,  
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𝐵𝑖
(𝑠)

=
1

ℎ𝑖
(1 +

𝜆𝑝𝑙

𝜏
) 𝑏 ((𝜙(𝑠))

𝑖−
1

2

𝑗+1
) +

ℎ𝑖+ℎ𝑖+1

2𝜏𝑐1𝑎(𝜙
𝑖
𝑗
)

+
ℎ𝑖+ℎ𝑖+1

2𝑐1ℎ𝑖𝑎(𝜙
𝑖
𝑗
)

𝑞𝑙𝑚,  

𝐶𝑖
(𝑠)

=
1

ℎ𝑖+ℎ𝑖+1
(1 +

𝜆𝑝𝑙

𝜏
) 𝑏 ((𝜙(𝑠))

𝑖+
1

2

𝑗+1
),  

𝐹𝑖
(𝑠)

=
ℎ𝑖+ℎ𝑖+1

2𝜏𝑐1𝑎(𝜙
𝑖
𝑗
)

𝜙𝑖
𝑗

+
𝜆𝑝𝑙

(ℎ𝑖+ℎ𝑖+1)𝜏
𝑏 ((𝜙(𝑠))

𝑖+
1

2

𝑗+1
) (𝜙𝑖−1

𝑗
− 𝜙𝑖+1

𝑗
) −

𝜆𝑝𝑙

ℎ𝑖𝜏
𝑏 ((𝜙(𝑠))

𝑖−
1

2

𝑗+1
) (𝜙𝑖−1

𝑗
− 𝜙𝑖

𝑗
).  

 

The Eq. (27) is used to determine the step ℎ𝑖+1 and it can be written in the form  
 

(ℎ𝑖+1)2 − 𝜏(𝑞𝑙𝑚)0
𝑗+1

ℎ𝑖+1 + 𝜏𝑐2𝑐 (𝜙
𝑖−

1

2

𝑗
) (𝜙𝑖

𝑗+1
− 𝜙𝑖−1

𝑗+1
+

𝜆𝑝𝑙

𝜏
(𝜙𝑖

𝑗+1
− 𝜙𝑖−1

𝑗+1
− 𝜙𝑖

𝑗
+ 𝜙𝑖−1

𝑗
)) = 0 (32) 

 
By solving this nonlinear equation for each temporal layer, we can determine ℎ𝑖+1. The system of 

linear algebraic Eq. (31) is solved by the Tomas’ algorithm 
 

(𝜙𝑠+1)𝑖
𝑗+1

= 𝛼𝑖+1(𝜙𝑠+1)𝑖+1
𝑗+1

+ 𝛽𝑖+1, 𝑖 = 0,1, …,                    (33) 

 
where 
 

𝛼𝑖+1 =
𝐶𝑖

(𝑠)

𝐵𝑖
(𝑠)

−𝐴𝑖
(𝑠)

𝛼𝑖

, 𝛽𝑖+1 =
𝐹𝑖

(𝑠)
+𝐴𝑖

(𝑠)
𝛽𝑖

𝐵𝑖
(𝑠)

−𝐴𝑖
(𝑠)

𝛼𝑖

. 

 
The starting values of the coefficients 𝛼1 and 𝛽1 are determined from the boundary condition 

(33), which have the form 
 

𝛼1 =
𝑅𝑚𝜇𝑐0(𝜙0

𝑗
)(1+

𝜆𝑝𝑙

𝜏
)

𝑅𝑚𝜇𝑐0(𝜙0
𝑗

)(1+
𝜆𝑝𝑙

𝜏
)+ℎ0

, 𝛽1 =
𝑅𝑚𝜇𝑐0(𝜙0

𝑗
)(𝜙0

𝑗
−𝜙1

𝑗
)+ℎ0𝑝0

𝑅𝑚𝜇𝑐0(𝜙0
𝑗

)(1+
𝜆𝑝𝑙

𝜏
)+ℎ0

. 

 
4. Numerical Results 
 

Numerical results with using Eq. (31), Eq. (32) were obtained with the following values of the 
parameters: 𝑝𝐴 = 104Pa, 𝑝0 = 105Pa, 𝑅𝑚 = 10121/m, 𝜇 = 10−3Pa·s, 𝑘0 = 10−13m2, 𝜀𝑠

0 = 0.20, 
𝜀𝑠0

= 0.0076, 𝛽 = 0.13, 𝛿 = 0.57. These values are typical for cake filtration process [5,6]. 

Some results are graphically shown below. The dynamics of the compression pressure and the 
pressure in the liquid phase at a given point 𝑥 for different values of the relaxation time 𝜆𝑝𝑙 is shown 

in Figure 2(a). At constant values of the all other parameters increasing in the relaxation time leads 
to a slow grows of the compression pressure, i.e. in the dynamics of the pressure one can see the lag. 
This phenomenon effects on all other filtration characteristics. 

On the contrary, in pressure for the liquid phase relaxation effects lead to the advanced dynamics 
(Figure 2(b)). Within the framework of assumptions made above we have 𝑝0 = 𝑝𝑙 + 𝑝𝑠. Comparing 
two figures, Figure 2(a) and Figure 2(b), we can check the implementation of the 𝑝0 = 𝑝𝑙 + 𝑝𝑠. By 
summing values 𝑝𝑙  and 𝑝𝑠 from corresponding curves of Figure 2(a) and Figure 2(b) we obtain 𝑝0. In 
addition, the fulfilment of the condition 𝑝0 = 𝑝𝑙 + 𝑝𝑠 shows us correctness of numerical 
computations. 
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Fig. 2. Dynamics of 𝑝𝑠 (a), 𝑝𝑙 (b) in 𝑥 = 0.02 m 

 
Dynamics of 𝜀𝑠 and 𝑘 𝑘0⁄  at a given point of the cake is also determined (Figure 3). The curves 

indicate that the relaxation phenomena lead to slow dynamics of 𝜀𝑠 and faster dynamics of 𝑘 𝑘0⁄ . In 
other words, relaxation phenomena in filtration law cause slow dynamics of the volume fraction of 
particles, i.e. solidosity. As a result, relative permeability of the cake is greater at a given point and 
given time. So, one can conclude that relaxation phenomena increase fluid relative velocity through 
cake for a given pressure 𝑝0 and, consequently, for a given pressure gradient. 
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Fig. 3. Dynamics of 𝜀𝑠 (a), 𝑘 𝑘0⁄  (b) in 𝑥 = 0.02 m. 

 
The growth of the cake thickness for different values of the relaxation time 𝜆𝑝𝑙 is shown in Figure 

4. As one can see the increasing of relaxation time 𝜆𝑝𝑙 leads to the faster growth of the cake thickness 

at all other constant conditions. In other words, relaxation effects cause more intensive transfer of 
particles from suspension to the cake. It, in turn, alters all other filtration characteristics, such as fluid 
pressure distribution, compressive pressure, porosity and consolidation of the cake, fluid flow rate 
through the cake and effective hydrodynamic resistance. 
 

 
Fig. 4. Dynamics of the cake thickness 

 
Dynamics of 𝑞𝑙𝑚 at different relaxation time 𝜆𝑝𝑙 is shown in Figure 5(a). As we see from Figure 

5(a) with relaxation phenomena 𝑞𝑙𝑚 has more intensive dynamics for a same time period, duration 
of which is characterized by the value of 𝜆𝑝𝑙. Outside of this time period values of 𝑞𝑙𝑚 for different 

𝜆𝑝𝑙 are close, that indicates the ending of the influence of 𝜆𝑝𝑙. So, transient relaxation period is 

completed. 
With using curves of Figure 5(a) total filtrate flow rate 𝑄𝑙𝑚 is determined as 

 

𝑄𝑙𝑚 = ∫ 𝑞𝑙𝑚𝑑𝑡
𝑡

0
.  

 
Some representative curves of 𝑄𝑙𝑚 are shown in Figure 5(b). They show that for greater relaxation 

times 𝜆𝑝𝑙, the total mass of filtered liquid for a given time is greater. 
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All analyzed results show that relaxation phenomena cause considerable change of filtration 
characteristics.  
 

 

 
Fig. 5. Dynamics of 𝑞𝑙𝑚 (a), 𝑄𝑙𝑚 (b) 

 
5. Conclusions 
 

In the paper, relaxation cake filtration equations are derived. Filtration law for liquid/particle 
relative velocity is written in differential relaxation form with triple relaxations, one - with respect to 
superficial liquid velocity 𝑞𝑙, the second one-with respect to the superficial particle velocity 𝑞𝑠, the 
third one-with respect to liquid pressure gradient 𝜕𝑝𝑙 𝜕𝑥⁄ . There the only last case was analysed. 
Using power law dependences of solidosity 𝜀𝑠 and permeability 𝑘 of the cake with respect to 
compressive pressure 𝑝𝑠, as well as relations between 𝑝𝑙 and 𝑝𝑠 a relaxation filtration equation is 
derived, that is written with respect to 𝑝𝑠. Using balance law on the common boundary of suspension 
and cake, a relaxation equation for cake thickness 𝐿(𝑡) is also derived. 

Equations are numerically solved. Influence of the relaxation parameter 𝜆𝑝𝑙 on filtration 

characteristics is established. It is shown that relaxation effects lead to the slow dynamics of 𝑝𝑠 and 
more intensive dynamics of 𝑝𝑙 at a given point. Similarly, relaxation phenomena lead to slow 
dynamics of 𝜀𝑠  and faster dynamics of 𝑘 𝑘0⁄ . So, relaxation phenomena in filtration law cause slow 
dynamics of the solidosity and faster dynamics of relative permeability. All of obtained results 
indicate that relaxation phenomena in filtration law increase fluid relative velocity through the cake 
for a given inlet pressure 𝑝0 and, as a consequence, for a given pressure gradient. 
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It was established that the increasing of the relaxation time leads to the faster growth of the cake 
thickness, i.e. relaxation phenomena cause more intensive sedimentation of the particles from 
suspension to the cake. Relaxation phenomena alter also other filtration characteristics such as fluid 
pressure distribution, compressive pressure, porosity and consolidation of the cake, fluid flow rate 
through the cake effective hydrodynamic resistance etc. 

Dynamics of 𝑞𝑙𝑚 and total filtrate flow rate 𝑄𝑙𝑚 also analysed for different relaxation times. It 
was shown that with increasing of relaxation phenomena dynamics of 𝑞𝑙𝑚 becomes more intensive. 
This dependence we can observe in dynamics of 𝑄𝑙𝑚 also. 

On the basis of obtained results one can conclude that relaxation phenomena cause considerable 
change of filtration characteristics.  
 
Acknowledgements  
This work is supported by Ministry of innovative development of the Republic of Uzbekistan, research 
grant OT-F4-64. Authors greatly appreciated two anonymous reviewers for their extremely detailed 
and useful comments. 
 
References 
[1] Ruth, B. F. "Studies in Filtration III. Derivation of General Filtration Equations." Industrial & Engineering Chemistry 

27, no. 6 (1935): 708-723. 
https://doi.org/10.1021/ie50306a024 

[2] Parn-Anurak, Supalak, and Thomas W. Engler. "Modeling of Fluid Filtration and near-Wellbore Damage along a 
Horizontal Well." Journal of Petroleum Science and Engineering 46, no. 3 (2005): 149-160. 
https://doi.org/10.1016/j.petrol.2004.12.003 

[3] Windarto, AgusYodiGunawan, Pudjo Sukarno, and Edy Soewono."Modeling of Mud Filtrate Invasion and Damage 
Zone Formation." Journal of Petroleum Science and Engineering 77, no. 3-4 (2011): 359-364. 
https://doi.org/10.1016/j.petrol.2011.04.011 

[4] Ytrehus, Jan David, Pierre Cerasi, and Nils Opedal. "Dynamic Fluid Erosion on Filter Cakes." In 10th SPE International 
Conference and Exhibition on European Formation Damage. 2013. 

[5] Tien, Chi. Principles of Filtration. Elsevier, 2012. 
[6] Tien, Chi. Introduction to Cake Filtration. Elsevier Science, 2006. 

https://doi.org/10.1016/B978-044452156-9/50010-2 
[7] Olivier, J., J. Vaxelaire, and E. Vorobiev. "Modelling of Cake Filtration: An Overview." Separation Science and 

Technology 42, no. 8 (2007): 1667-1700. 
https://doi.org/10.1080/01496390701242186 

[8] Vyalov, S. Rheological Fundamentals of Soil Mechanics, 1st Edition. Elsevier Science, 1986. 
https://doi.org/10.1016/B978-0-444-42223-1.50005-3 

[9] Fedotkin, I. M., Vorob'ev, E. I., and V'yun, V. I. Hydrodynamic Theory of Filtration of Suspensions. VishchaShkola, 
1986. 

[10] Fedotkin, I. M. Separation of suspensions and hyperfiltration: Theory, calculation, design. Technique, 1972. 
[11] Mazlan, Nurul Ain, Khairul Faezah Md Yunos, MohdNazliMohdNaim, and AzhariSamsuBaharuddin. "Performances 

of Sandwich Membrane in Reclamation of Water from Final Discharged POME." Journal of Advanced Research in 
Materials Science 47, no. 1 (2018): 1-8. 

[12] MohdSyafiqSharip, NorazlianieSazali, Ahmad Shahir Jamaludin, Muhammad Atif Mohamed Azmi, Farhana Aziz, and 
Wan Norharyati Wan Salleh. "Current Advancement by Membrane Technology: A Review." Journal of Advanced 
Research in Fluid Mechanics and Thermal Sciences 59, no. 2 (2019): 283-290. 

[13] Corapcioglu, M. Yazuv, and Nelly M. Abboud. "Cake Filtration with Particle Penetration at the Cake Surface." SPE 
Reservoir Engineering 5, no. 3 (1990): 317-326. 
https://doi.org/10.2118/19021-PA 

[14] Atsumi, Kunio, and Tetsuo Akiyama. "A Study of Cake Filtration." Journal of Chemical Engineering of Japan 8, no. 6 
(1975): 487-492. 
https://doi.org/10.1252/jcej.8.487 

[15] Shirato, M., and A. Tsutomu. "Verification of Internal Flow Mechanism Theory of Cake Filtration." Filtration and 
Separation 9 (1972): 290-297. 

https://doi.org/10.1021/ie50306a024
https://doi.org/10.1016/j.petrol.2004.12.003
https://doi.org/10.1016/j.petrol.2011.04.011
https://doi.org/10.1016/B978-044452156-9/50010-2
https://doi.org/10.1080/01496390701242186
https://doi.org/10.1016/B978-0-444-42223-1.50005-3
https://doi.org/10.2118/19021-PA
https://doi.org/10.1252/jcej.8.487


Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 74, Issue 2 (2020) 168-182 

182 
 

[16] Smiles, De, and Rosenthal Mj. "The Movement of Water in Swelling Materials." Soil Research 6, no. 2 (1968): 237. 
https://doi.org/10.1071/SR9680237 

[17] Smiles, De, and Hg Poulos. "The One-Dimensional Consolidation of Columns of Soil of Finite Length." Soil Research 
7, no. 3 (1969): 285-291. 
https://doi.org/10.1071/SR9690285 

[18] Chen, Yi-Shun, and Shu-San Hsiau. "Cake Formation and Growth in Cake Filtration." Powder Technology 192, no. 2 
(2009): 217-224. 
https://doi.org/10.1016/j.powtec.2008.12.014 

[19] Vorobiev, E. "Derivation of Filtration Equations Incorporating the Effect of Pressure Redistribution on the Cake-
Medium Interface: A Constant Pressure Filtration." Chemical Engineering Science 61, no. 11 (2006): 3686-3697. 
https://doi.org/10.1016/j.ces.2006.01.010 

[20] Silva, Kelly Cristina Da, Isadora De Jesus Da Silva, Luís AméricoCalçada, and Cláudia Miriam Scheid. "The Effect of 
Previous Sedimentation on the Filtration and Mud cake Properties of Newtonian and Non-Newtonian Fluids." 
Powder Technology 346 (2019): 9-16. 
https://doi.org/10.1016/j.powtec.2019.01.038 

[21] Smiles, De. "Steady Flow Experiments in Saturated Clays." Soil Research 7, no. 2 (1969): 91. 
https://doi.org/10.1071/SR9690091 

[22] Smiles, De. "A Theory of Constant Pressure Filtration." Chemical Engineering Science 25, no. 6 (1970): 985-996. 
https://doi.org/10.1016/0009-2509(70)85043-6 

[23] Wakeman, R. G. "A numerical integration of the differential equations describing the formation of and flaw in 
compressible filter cakes." Trans. Inst. Chem. Eng. 56, no. 4 (1978): 258-265. 

[24] Iritani, Eiji, Nobuyuki Katagiri, and Haruki Masuda. "Simplified Estimate of Cake Porosity in Dead-End Ultrafiltration 
of Protein Solution." Journal of Chemical Engineering of Japan 51, no. 7 (2018): 589-595. 
https://doi.org/10.1252/jcej.18we033 

[25] Buevich, Yu. A., V. A. Ustinov, and B. Khuzhayorov. "Nonsteady Transfer in Disperse and Heterogeneous Media." 
Journal of Engineering Physics 56, no. 5 (1989): 552-558. 
https://doi.org/10.1007/BF01297605 

[26] Khuzhayorov, B. Kh. "Modeling of relaxation phenomena in the motion of non-Newtonian fluids." Uzbek Journal 
Problems of Mechanics 3-4 (1994): 55-56. 

[27] Zubarev, A. Yu., and B. Khuzhayorov. "Relaxational Filtration." Journal of Engineering Physics 55, no. 3 (1988): 1020-
1024. 
https://doi.org/10.1007/BF00870487 

[28] Khuzhayorov, B. Kh., and Makhmudov, Zh. M. Mathematical models of the filtration of non - homogeneous liquids 
in porous media. Tashkent, Fan, 2014. 

[29] Iwata, Masashi, and Toshiro Murase. "Expansion and Stress Relaxation of Expressed Cake." Drying Technology 11, 
no. 4 (1993): 749-767. 
https://doi.org/10.1080/07373939308916862 

[30] Loginov, Maksym, FlorianeDoudiès, Nicolas Hengl, Frédéric Pignon, and Geneviève Gésan-Guiziou. "Influence of 
Membrane Resistance on Swelling and Removal of Colloidal Filter Cake after Filtration Pressure Release." Journal 
of Membrane Science 595 (2020): 117498. 
https://doi.org/10.1016/j.memsci.2019.117498 

[31] Khuzhayorov, B. Kh. Filtration of non - homogeneous liquids in porous media. Tashkent, Fan, 2012. 
[32] Barenblatt, G. I., Yu. G. Mamedov, A. Kh. Mirzadzhanzade, and I. A. Shvetsov. "Nonequilibrium Effects in the 

Filtration of Viscoelastic Liquids." Fluid Dynamics 8, no. 5 (1975): 742-748. 
https://doi.org/10.1007/BF01023573 

[33] Alishayev, M. G. "On nonsteady filtration with pressure relaxation." Hydromechanics 111, no. 3 (1974): 166-171. 
[34] Molokovich, YuriiMatveevich. "On the theory of linear filtration with allowance for relaxation effects." 

IzvestiyaVysshikhUchebnykhZavedenii. Matematika 5 (1977): 66-73. 
[35] Khuzhayorov, B. Kh. "Macroscopic simulation of relaxation mass transport in a porous medium." Fluid Dynamics 

39, no. 5 (2004): 693-701. 
https://doi.org/10.1007/s10697-005-0003-x 

[36] Samarskiy, A. A., and Vabishchevich, P. N. Computational Heat Transfer. Wiley, 1995. 
[37] Caldwell, J., and Y. Y. Kwan. "Numerical Methods for One-Dimensional Stefan Problems." Communications in 

Numerical Methods in Engineering 20, no. 7 (2004): 535-545. 
https://doi.org/10.1002/cnm.691 

https://doi.org/10.1071/SR9680237
https://doi.org/10.1071/SR9690285
https://doi.org/10.1016/j.powtec.2008.12.014
https://doi.org/10.1016/j.ces.2006.01.010
https://doi.org/10.1016/j.powtec.2019.01.038
https://doi.org/10.1071/SR9690091
https://doi.org/10.1016/0009-2509(70)85043-6
https://doi.org/10.1252/jcej.18we033
https://doi.org/10.1007/BF01297605
https://doi.org/10.1007/BF00870487
https://doi.org/10.1080/07373939308916862
https://doi.org/10.1016/j.memsci.2019.117498
https://doi.org/10.1007/BF01023573
https://doi.org/10.1007/s10697-005-0003-x
https://doi.org/10.1002/cnm.691

