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The influence of boundary roughness on suppressing of Rayleigh-Taylor instability (RTI) 
at the interface between two superposed couples-stress fluids is investigated in the 
present paper. This is a theoretical study is based on fully developed approximations 
for deriving the growth rate of RTI at the interface between two fluids. Thus, it is found 
that the couple-stress parameter and boundary roughness have stabilization effect, 
whereas the buoyancy force (surface tension) has destabilize the system. Hence the 
study favors to control the growth rate of RTI. 
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1. Introduction 
 

Rayleigh-Taylor instability (RTI) deals the instability between a less dense fluid below a high dense 
fluid has gained tremendous interest in both macrofluid and nano-fluid [1]. RTI plays a significant role 
in several natural processes extending from coastal upwelling, which supports to renew the nutrients 
near sea surface [2] to ignition of a supernova at the end of life of some stars [3]. The RTI is present 
in the formation of some astrophysical structures such as the supernova remnants in the Eagle and 
Crab-nebula [4], in the air bubble formation, in the blood of deep-sea divers [5] and in various 
industrial processes [6]. It is one of the main subjects of concern in ICF [7]. Presently RTI is being 
investigated in nano-composite fluid [8]. 

Along with these applications, RTI also occurs frequently in nature and hence it is required to 
study linear evolution of RTI, which involves precise mathematics based on normal mode analysis, 
producing exact solutions. However, it does not render an insight into the physical 
mechanisms underlying the instability [9]. Few studies describe RTI uses a physical argument based 
on energy balances, to make the mechanism of the instability more spontaneous may be due to Fermi 

                                                           
* Corresponding author. 
E-mail address: ckrishna2002@yahoo.com 
 
https://doi.org/10.37934/arfmts.75.2.110 

Open 

Access 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 75, Issue 2 (2020) 1-10 

2 
 

[10]. Nevertheless, the energy balancing between kinetic and potential energies requires the use of 
different masses for the calculation of each energy, which appears similar to a mathematical trick. 
Moreover, to describe more realistic situations involving viscous fluids and surface tension, such an 
argument cannot be extended easily [11,12]. 

Bhatia [13] deliberated the impact of the viscosity on the stability of plane interface that 
separates two incompressible superposed conducting fluids in the presence of uniform magnetic 
field. He analyzed the stability of two highly viscous fluids with equal kinematic viscosity and different 
uniform densities. Shankar et al., [14] presented the work on stability of couple stress fluid flow 
through a horizontal porous layer and stability of natural convection in a vertical dielectric couple 
stress fluid layer in the presence of a horizontal ac electric field [15]. In the existence of a uniform 
horizontal magnetic field, Sunil [16] discusses the RTI of two superposed couples-stress fluids with 
uniform densities in a porous medium. Rudraiah and Chandrashekar [17] showed the effects of 
couple-stress fluid in controlling RTI at the interface between dense fluids. However, due to the 
importance of biomechanical and biomedical problems, the growth rate of RTI in non-Newtonian 
fluids are understood essentially (see Sharma and Sharma [18] and Rudraiah et al., [19]). The 
problems related to biomedical field viz., in synovial joints the synovial fluid is bounded by the porous 
nature of cartilages and in coronary artery diseases (CAD), the blood in the arteries is bounded by the 
porous nature of endothelium, the boundaries of the arteries. When joints degenerate the irregular 
shape of the interface between Cartilages and Synovial fluid deforms, producing surface instabilities 
In CAD the cholesterol and other fat substances accumulate on the endothelium and form the 
plaques (i.e., the growth) on the endothelium. If the plaques reach a critical stage it blocks the flow 
of blood in the arteries and a cardiologist resort to by-pass or other devices like anagrams and so on. 
Coexistence of laminar, transitional and turbulent flow regimes is very common in 
blood flowing through arteries, air flows in human respiratory systems, and indoor airflow etc. Due 
to the complexity of flow physics involved, most Reynolds-averaged Navier-Stokes (RANS) turbulence 
models are not suitable for these flows because they are designed primarily for high Reynolds 
number turbulent flows [20]. In recent days, a high intensity laser is used to melt the plaque but it 
erodes the endothelium which causes the RTI. To avoid such side effects there is a need to 
understand the growth rate of RTI and suppresses the same. In recent days, a high intensity laser is 
used to melt the plaque but it erodes the endothelium which causes the RTI. To avoid such 
side effects, there is a need to understand the growth rate of RTI and suppresses the same. Shankar 
et al., [21] have contributed the applications of non-Newtonian fluid and the same researchers [22] 
were studied the MHD instability of pressure-driven flow of a non-Newtonian fluid. The linear and 
weakly nonlinear stability of a doubly diffusive electrically conducting non-Newtonian couple stress 
fluid layer in the presence of a uniform vertical magnetic field is investigated by Naveenkumar et 
al., [23]. 

During the degeneration, either in Synovial joints or in CAD the fluid deforms producing a spin 
field due to their micro rotation. Stokes [24] formulated the theory of couple-stress fluid. In the 
presence of uniform field, Agoor and Eldabe [25] discussed the RTI at the interface amongst two 
superposed couples-stress Casson fluids flowing in porous media. Chavaraddi et al., [26] studied the 
boundary roughness effect on RTI of a couple-stress fluid, which is bounded above by a clear fluid at 
the interface at y=h and below by the roughness boundary at y=-h. Awati et al., [27] investigated the 
effect of boundary roughness on the nonlinear saturation of RTI in couple-stress fluid. 

Recently, Gallaire and Brun [28] have discussed the fluid dynamic instabilities: theory and 
application to pattern forming in complex media in their review article. In this review article, they 
exemplify the use of stability analysis tools to rationalize pattern formation in complex media. 
Specifically, we focus on fluid flows, and show how the destabilization of their interface sets the 
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blueprint of the patterns they eventually form. We review the potential use and limitations of the 
theoretical methods at the end, in terms of their applications to practical settings, e.g. as guidelines 
to design and fabricate the structures while harnessing instabilities. Rayleigh–Taylor instability in soft 
elastic layers is investigated by Riccobelli and Ciarletta [29]. The results of this work provide 
important guidelines for the design of novel soft systems with tunable shapes, with several 
applications in engineering sciences. 

The main objective of this paper is to extend the work of Rudraiah and Chandrashekara [17] with 
the influence of boundary roughness on RTI in superposed couple-stress fluids. A simple model is 
constructed on the balance of forces and Stokes-lubrication approximations, which explains the 
physical mechanism that determines the instability of more complex situations. For viscous fluids 
like the couple-stress fluids, a simple approximation result in an explicit equation for growth rate of 
RTI, which enable to understand the physical effects of boundary roughness, couple-stress parameter 
and buoyancy force (Bond number) on the instability evolution easily. 
 
2. Formulation of Problem 
 

The analysis is carried out for two superposed couple-stress fluids, which are incompressible, in-
viscous fluid film confined above by a fluid interface at y=h and below by a horizontal solid boundary 
(rigid surface) at y=-h with boundary roughness as depicted in Figure 1. Cartesian co-ordinate system 
aligned with the plane describes couple-stress fluid, x points in horizontal direction and y is vertical 
to it. The fluid properties of two layers are different; we use subscripts to distinguish them as 𝜌1 and 
𝜌2 which denote densities in upper and lower couple-stress fluids respectively.  

 

 
Fig. 1. Physical configuration 

 
The system involves two semi-infinite inviscid, incompressible couple-stress fluids differentiated 

by an interface in the existence of surface roughness. Since gravity is present; the effective 
acceleration is in the positive y- direction (upwards). Therefore, light fluid (region-1) thrusts on heavy 
fluid (region-2). As far as the interface amid fluids remains uniform, that is completely horizontal and 
perpendicular to effective acceleration. The light couple-stress fluid (Region-1) has adequate 
pressure to hold heavy fluid against the ceiling. However, small deviations are bound to occur at the 
interface. If the interface between the fluids is perfectly planar and in equilibrium, the fluid elements 
on both sides of the interface above and below must attain same pressure p1=p2=p0 immediately. The 
rheological properties of physiological fluids reveal that viscosity varies nonlinearly with 
concentration exhibiting either shear thinning or shear thickening behaviour. Most of the existing 
literature has not considered micro motions, micro rotation and deformations. These are taken into 
account in this paper using a couple-stress fluid as a particular case of micropolar fluid theory [17]. 
The conservation of mass for an incompressible fluid is 
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𝛻. 𝑞⃗ = 0              (1) 
 
The conservation of linear momentum 
 

𝜌 (
𝜕𝑞⃗⃗

𝜕𝑡
+ (𝑞⃗. 𝛻)𝑞⃗) = −𝛻𝑝 + 𝜇𝑓𝛻2𝑞⃗ − 𝜆𝛻4𝑞⃗          (2) 

 
These equations, satisfying the surface roughness and couple stress boundary conditions given in 

the subsequent section are solved. 
 
3. Solution of the Problem  
 
Here the RTI is developed using following combined lubrication and Stokes approximations [17].  
 

i. The clear dense liquid is homogeneous and isotropic 
ii. The thickness of film h is much lesser than thickness H of porous layer bounded above the 

film 
 

i.e., h << H              (3) 
 

iii. The Strouhal number S is assumed to be considerably small. 
iv. The surface elevation  is assumed to be small compared to film thickness h. 

 
i.e., <<h              (4) 

 
v. The fluid viscosity and thermal conductivity are assumed to be constant. 

 
Also, the creeping flow approximation is used, which permits to neglect certain terms in the 

perturbation equation in obtaining linear equations for the interface elevation. Under the above 
approximations, the basic Eq. (1) and (2), for a two-dimensional flow lead to  

 

0 = −
𝜕𝑝

𝜕𝑥
+ 𝜇𝑓

𝜕2𝑢

𝜕𝑦2 − 𝜆
𝜕4𝑢

𝜕𝑦4             (5) 

 

0 = −
𝜕𝑝

𝜕𝑦
              (6) 

 

0 =
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
              (7) 

 
Using the following non-dimensional scales 
 

𝑥∗ =
𝑥

ℎ
, 𝑦∗ =

𝑦

ℎ
, 𝑢∗ =

𝑢

𝛿ℎ2/𝜇𝑓
, 𝑣∗ =

𝑣

𝛿ℎ2/𝜇𝑓
, 𝑝 ∗=

𝑝

𝛿ℎ
, 𝛽∗ =

𝛽

ℎ
 

 
The boundary and surface conditions the above equations are solved and the physical 

interpretation of the following boundary conditions as below 
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3.1 Surface-Roughness Condition 
 

This condition is a key factor in determining film quality and the physical properties of materials. 
It is defined as the shorter frequency of real surfaces relative to the troughs and quantified by the 
deviations in the direction of the normal vector of a real surface from its ideal form. If these 
deviations are large, the surface is rough; if they are small, the surface is smooth. Surface roughness 
is greatly affected by the microscopic asperity of the surface of each part. 

 

−𝛽
𝜕𝑢

𝜕𝑦
= 𝑢 𝑎𝑡 𝑦 = −1             (8) 

 
3.2 Interfacial Boundary Condition 
 

The interface condition (Neumann boundary condition) implies that no momentum can flow off 
the disk. These conditions describe reflecting phenomena on the boundary. 

 

 
𝜕𝑢

𝜕𝑦
= 0 𝑎𝑡 𝑦 = 1              (9) 

 
3.3 Couple-Stress Boundary Conditions 
 
These conditions are effective at points away from the boundary.  
 
𝜕2𝑢

𝜕𝑦2 = 0 𝑎𝑡 𝑦 = ±1                       (10) 

 
3.4 Dynamic Surface Condition 
 

The dynamic conditions at the interface consist of balance of the shear and normal stresses. 
Therefore, on the perturbed interface, in case of immiscible fluids, the capillary forces should be also 
taken into account. Here it is assumed that the flow in region-2 is static and flow in fluid layer is fully 
developed. We use the following normal stress or dynamic condition as 

 

 𝑝 = −𝛿𝜂 − 𝛾
𝜕2𝜂

𝜕𝑥2
  𝑎𝑡 𝑦 = 1                      (11) 

 
3.5 Kinematic Surface Condition 
 

On the interface of two fluids, the kinematic boundary condition is considered in the form 
(continuity of normal velocity across the interface) 
 

𝑣 =
𝜕𝜂

𝜕𝑡
+ 𝑢

𝜕𝜂

𝜕𝑥
  𝑎𝑡  𝑦 = 1                       (12) 

 
For linear case Eq. (12) reduces to  
 

𝑣 =
𝜕𝜂

𝜕𝑡
  𝑎𝑡  𝑦 = 1                         (13) 

 
By non-dimensionalizing the Eq. (5) to (7) and solving, we get,  

https://en.wikipedia.org/wiki/Normal_(geometry)
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𝜕4𝑢

𝜕𝑦4 − 𝜎2 𝜕2𝑢

𝜕𝑦2 = −𝜎2 𝜕𝑝

𝜕𝑥
                      (14) 

 
By using the boundary conditions (8) to (13) in dimensionless form we obtain 
 

𝑢 = 𝑐1 𝑐𝑜𝑠 ℎ (𝜎1𝑦) + 𝑐2 𝑠𝑖𝑛 ℎ (𝜎1𝑦) + [
𝑦2

2
+ 1 − 𝐴𝑦 − 𝐵]

𝑃

𝜎2
1
                 (15) 

 
where  
 

𝑃 =
𝜕𝑝

𝜕𝑥
, 𝑐1 = −

𝑃

𝜎2
1 𝑐𝑜𝑠ℎ 𝜎1

, 𝑐2 = 0, 𝐴 = 𝜎1𝑃(𝜎2
1 − 𝜎1 𝑡𝑎𝑛ℎ 𝜎1) 

 

𝐵 = [(𝜎2
1 − 𝜎1 𝑡𝑎𝑛ℎ 𝜎1) + 2𝛽𝜎1 𝑡𝑎𝑛ℎ 𝜎1 +

𝜎2
1

2
− 2𝛽𝜎2

1] 𝑃 

 
4. Dispersion Relation 
 
Eq. (7) is integrated, between the limits -1 to 1 and by using the condition (15), we obtain 
 

𝑣(1) = ∫
𝜕𝑢

𝜕𝑥

1

−1
𝑑𝑦                       (16) 

 

𝑣(1) =
𝜕2𝑃

𝜕𝑥2 𝑁                        (17) 

 
where 
 

𝑁 =
2

𝜎2
1

𝑡𝑎𝑛 ℎ 𝜎1(1 − 𝜎1 + 2𝛽𝜎1) −
2

𝜎2
1

− 4𝛽 +
8

3
                (18) 

 
Using Eq. (13) and (17) we get 
 
𝜕𝜂

𝜕𝑡
= [

𝜕2𝜂

𝜕𝑥2 +
1

𝐵1

𝜕4𝜂

𝜕𝑥4] 𝑁                       (19) 

 

By assuming the solution in the form 𝜂 = 𝜂(𝑦)𝑒𝑖ℓ𝑥+𝑛𝑡 , we get 
 

𝑛 = ℓ2 [1 −
ℓ2

𝐵1
] 𝑁                       (20) 

 
The value of n represented by Eq. (20) is calculated for several parameter values and the results 

are illustrated graphically in following Figure 2-4. 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 75, Issue 2 (2020) 1-10 

7 
 

0.00 0.05 0.10 0.15

-0.004

-0.002

0.000

0.002

0.004

0.006

 

 n

1.2

1.3
1.4

=1.5

 
Fig. 2. Frequency versus wavenumber for different values of couple-
stress parameter 𝜎1 by fixing 𝐵1 = 0.02 𝑎𝑛𝑑  𝛽 = 3.3 × 10−2 
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Fig. 3. Frequency n versus wavenumber for different values of Bond 
number B1 by fixing 𝜎1 = 1.2 𝑎𝑛𝑑  𝛽 = 3.3 × 10−2 
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Fig. 4. Frequency versus wavenumber for different values of roughness parameter  
𝛽  by fixing 𝜎1 = 1.2 𝑎𝑛𝑑 𝐵1 = 0.02 
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5. Results and Discussion  
  

A theoretical study showing the boundary roughness effect on RTI at the interface of superposed 
couple-stress fluid layers are considered. This study is mathematically modelled by differential 
equations which governs the motion of fluids with suitable boundary and surface conditions. Under 
some assumptions, the resulting differential equation is solved. The influence of physical parameters 
involved in the problem for instance couple-stress parameter 𝜎1, Bond number B1 and roughness 

parameter 𝛽 on the region of stability are discussed numerically and depicted in graphs.  
Figure 2 represents the influence of 𝜎1 on the frequency (growth rate) n. It is clear that increasing 

the couple-stress ratio results in slightly increasing the critical wave number and decreasing the 
maximum growth rate, this is because of the action of the body couples on the system. Thus, it has a 
stabilizing effect for the selected values of input parameters due to the increase in the couple-stress 
parameter. 

Figure 3 depicts that n decrease with increase in B1 that governs the behavior of the flow and 
incorporates the surface tension γ, initial film thickness h and substrate curvature. Below a critical 
value of B1, the film is stable to perturbations with a thickness that decreases monotonically with 
time. For larger values of B1, i.e., thicker films (or flatter substrates), the dynamic exhibit either 
transient perturbation growth followed by decay, or instability via drop formation. Finally, Figure 4 
explains the dependence of n on the roughness parameter 𝛽 cause the growth rate n. Therefore, it 
has negligible effect on reducing asymmetry of the system because of resistance offered by surface 
roughness in that process a part of kinetic energy is converted into potential energy. With this effect 
it concludes that the effect of surface roughness parameter 𝛽 is to stabilize the interface between 
the fluids though the couple-stress and buoyancy force (Bond number) have destabilizing effect on 
the system.  
 
6. Conclusions 
 

A theoretical study of the Rayleigh-Taylor instability (RTI) of the flow of couple-stress fluids is 
considered using linear stability analysis. This problem is modulated mathematically by a system of 
differential equations, which is governing the motion of the fluids with appropriate boundary 
conditions. The system of equations is solved under some assumptions to obtain the dispersion 

relation. The effects of the physical parameters of the problem such as couple stress parameter 1, 

roughness parameter  and Bond number B1 on the regions of stability are discussed numerically and 
depicted graphically. It is clear that the effect of roughness and couple-stress parameters are to 
stabilize the interface between two fluids, while the Bond number B1 has destabilizing effect. 
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