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This paper presents a study of the MHD flow of micropolar fluid and also heat transfer 
between porous disk and a non-porous disk of infinite radii. The non-zero tangential 
slip velocity is considered at the porous disk. The self-similar ODEs are obtained using 
the Von-Karman similarity transformation from the governing PDEs. The resulting 
equations are then solved numerically by a very efficient Keller-box method based on 
a finite-difference scheme. The influence of various pertaining parameters on velocity, 
micro-rotation, temperature, skin friction, and couple stress coefficient have been 
analyzed. The obtained results agree well with the available literature for special cases. 
The analysis finds that the heat transfer rate at the surfaces of the disks increases with 
the increase in the Reynolds number, the magnetic parameter, and the Prandtl 
number. The shear stresses decrease with the increase in the injection while increase 
with the increase in the applied magnetic field.  
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1. Introduction 
 

In the past few decades, due to the wide range of applications of fluids that have their own 
internal structures and ability to rotate about their own axis imposed the modeling of theory for 
micro-fluids. The rotation of an individual particle is coupled with the macroscopic velocity field 
describes these micropolar fluids. A well-defined and effective theory for micropolar fluids was 
proposed by Eringen [1]. The unique natural structure of the elements in micropolar fluids makes 
them an excellent model for different engineering and biological fluids. Ariman et al., [2,3] have 
reviewed various applications of these micropolar fluids. Guram and Anwar [4] analyzed the flow of 
micropolar fluids due to a rotating disk with uniform suction and injection using numerical methods 
and compared with known results for a Newtonian fluid. Kelson and Desseaux [5] derived a 
perturbation solution for the self-similar flow of micropolar fluid driven by a stretching sheet with 
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uniform suction and injection. Subsequently, they used the same analysis to investigate the two-
dimensional flow of this fluid in a porous channel [6]. Many other research workers have successfully 
extended this model to a wide range of applications including flow in capillaries, micro-channels, and 
porous media. A useful account of the micro-polar theory and extensive literature can be found in 
the book by Lukaazewicz [7]. 

Characteristics of magnetic field effects have significant applications in science and engineering 
such as Magnetohydrodynamics pumps, geothermal energy extraction, MHD generators, and many 
more. A useful review of MHD theory and its applications can be found in the book by Moreau [8]. 
Many researchers have reviewed the effects of heat transfer and magnetic field on the flow of 
micropolar fluid with various flow geometries such as vertical plates, stretching sheets, channels, 
tubes, and disks. The analysis of MHD laminar flow between two parallel porous disks for large 
suction Reynolds number was carried out by Rudraiah and Chandrashekara [9] using the perturbation 
technique. Attia [10] obtained the numerical solution for the problem of steady flow and heat 
transfer of a conducting fluid in a rotating non-conducting infinite porous disk in the presence of an 
external magnetic field and ion slip. Many investigations can be witnessed in the literature on MHD 
fluid flows under different flow situations of fluid between disks. 

The study of disk flows with micro-structure has received more attention in recent years due to 
its major industrial applications in the fields of lubrication, heat and mass exchange, biomechanics, 
rotating machinery, and many more. Viscous heat dissipation in fluid flows is a remarkable area of 
analysis which is usually difficult to integrate into the mathematical model of the flow as it increases 
the complexity of the problem. However, in the literature, numerous ways of mathematical models 
are proposed to understand the heat transfer analysis for different flow situations. The problem of 
steady viscous fluid flow between parallel porous disk was numerically investigated by Rasmussen 
[11] for different values of suction and injection. Later, Elcart [12] has obtained similar solutions for 
non-rotational fluid motion between porous disk with uniform arbitrary suction and injection. A 
numerical simulation for the problem of micropolar fluid flow between a rotating and a stationary 
disk was obtained by Guram and Anwar [13]. Further, they also performed an analysis of micropolar 
fluid flow due to a rotating disk in which at the surface of the disk the flow was driven with uniform 
suction and injection [14]. The studies were validated by providing a comparison of the results for 
micropolar and Newtonian fluids. Numerous models and methods can be seen in the open literature 
that explains the flow between porous/ nonporous with rotating/stationary disks. Takhar et al., [15] 
obtained a finite element solution for the micropolar fluid flow and heat transfer between two 
porous disks. Finite difference solution for the asymmetric flow of micropolar fluid in a porous 
channel with different wall permeability was given by Ashraf et al., [16]. Wehgal [17] discussed the 
MHD asymmetric flow of electrically conducting fluid flow between porous disks. Later, the flow of 
micropolar fluid between orthogonally moving porous disks was analyzed by Si et al., [18] using 
Homotopy based analytical method. Vatani et al., [19] and Valipour et al., [20] carried out an analysis 
of micropolar fluid flow between disks using optimal homotopy analysis method and compared the 
solution with numerical results obtained using the R-K method. Subsequently, Hasnain and Abbas 
[21] reported the entropy generation analysis on the mixed convective two-phase flow of micropolar 
and nanofluid in an inclined channel. Abbas et al., [22] also obtained the asymptotic solutions for the 
flow of Casson fluid between parallel discs, executing in-plane motion in different manners. 

Most of the above studies are confined to zero-slip boundary conditions. But, the experimental 
findings of Beavers and Joseph [23], and Saffman [24] revealed the existence of slip velocity at the 
porous bounding surface that alters the fluid motion. Abbas et al., [25] asymptotically analyzed MHD 
viscous fluid flow due to a rotating disk and a radially stretching-shrinking disk with Navier slip 
conditions. Recently, they also gave an analytical solution for the flow of a nanofluid in a vertical 
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porous channel with velocity slip and thermal radiation [26]. MHD slip Darcy flow of viscoelastic fluid 
over a stretching surface in a porous medium with thermal radiation and viscous dissipation is 
analytically examined by Wahid et al., [27]. The main objective of the present investigation is to 
analyze the heat transfer and effects external magnetic field on the non-Newtonian micropolar fluid 
flow between a porous and a non-porous disk by incorporating velocity slip conditions at the porous 
boundary. The governing partial differential equations are reduced to a system of coupled non-linear 
ordinary differential equations by introducing suitable similarity transformations due to Von-Karman. 
Since the resultant equation is highly nonlinear, we employ the efficient finite difference based 
numerical method named Keller-box scheme for the computation of the pertinent results. The box 
technique is a powerful tool for solutions of nonlinear differential equations [28-31]. 
 
2. Mathematical Formulation of the Problem 
 

Consider the axisymmetric laminar steady incompressible flow of an electrically conducting 
micropolar fluid between parallel disks of infinite radii separated by a distance of 2𝑙, lower one being 
impermeable and the upper disk is porous as shown in Figure 1. At the disk boundaries a uniform 
transverse magnetic field of strength 𝐵0 is applied. And assuming a stationary magnetic field 𝐵 in the 
transverse direction, which is perpendicular to the velocity field lying in the 𝑟𝑧 -plane. We neglect 
the induced magnetic field when compared to imposed field. It is also assumed that there is no 
applied electric field, i.e., 𝐸 = 0. With all the above assumptions, the linearized form of 

electromagnetic body force can be written as −𝜎𝑒𝐵0
2𝑉, where 𝜎𝑒 is electrical conductivity of fluid. 

The governing equations for MHD laminar viscous incompressible steady flow of micropolar fluid are 
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where 𝜂 =
𝑧

𝑙
 is similarity variable, 𝜌, 𝜇 are the density and kinematic viscosity, 𝑗 is the microinertia 

viscosity, 𝜅, 𝛾 are the microrotation parameter and spin gradient viscosity respectively, 𝐽 is current 
density, 𝜇𝑚 is the magnetic permeability, 𝐸 is the electric field, 𝐵 is the total magnetic field. 
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Fig. 1. Geometry of the problem 

 
A constant velocity of magnitude 2𝑉 is injected through the upper disk while the lower disk is 

impermeable. Assuming velocity slip boundary condition at the upper permeable disk, the velocity 
and microrotation field at the two disks can be written as  
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where, 𝑢slip = −
√𝑘

𝛼
(
𝜕𝑢

𝜕𝑟
) is the slip velocity following BJ conditions [23]. Neglecting the viscous 

dissipation, the equation for temperature field can be written as  
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where 𝑇 is the temperature, 𝑐𝑝 is the specific heat at constant pressure and 𝜅0 is the thermal 

conductivity of fluid. The boundary conditions for temperature field can be written as [4],  
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Using Von-Karman's similarity transformations [32] given below, 
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The continuity Eq. (1) is satisfied with these transformations, thus representing a possible fluid 
motion. Substituting (11) in Eq. (1)-(3) and (10), eliminating the pressure terms, the governing 
equations reduces to 

 
2(1+ R)f + Re(ff - M f )- Rg = 0                         (12) 

 
1

Re( ) ( 2 ) 0
2

cg A f g fg R f g                            (13) 

 

= 0RePrf                         (14) 

 

where 𝑅𝑒 =
𝜌2𝑉𝑙

𝜇
 is the Reynolds number, 𝑀2 =

𝜎𝑒𝑙𝐵0
2

𝜌2𝑉
 is the magnetic parameter, 𝑃𝑟 =

𝜇𝑐𝑝

𝜅0
 is the 

Prandtl number, 𝑅 =
𝜅

𝜇
, 𝐴 =

𝑗

𝑙2
, 𝑐 =

𝛾

𝜇𝑙2
 are the micropolar parameters respectively named vortex 

viscosity parameter, microinertia density parameter and spin gradient viscosity parameter. 
The boundary conditions in (9) and (11) takes the dimensionless form as,  
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The shear and couple stresses on the disk are defined, respectively, as 
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We have to solve the system of equations in Eq. (12)-(14) subject to slip boundary conditions 

represented in (15). It can be noted that Eq. (12)–(13) reduce to the corresponding equations 
obtained in our previous work [33] in the absence of the external magnetic field, i.e., 𝑀 =  0. These 
facts validate our model for the micropolar fluid motion in the presence of the external magnetic 
field. 
 
3. Method of Solution 
 

We seek solution of the governing problem which is a coupled non-linear differential equation by 
using an efficient numerical scheme called box scheme. Further solution is analyzed for various 
pertinent micropolar parameters 𝐴, 𝑅, 𝑐, Magnetic parameter 𝑀, Prandtl number 𝑃𝑟 and Reynolds 
number 𝑅𝑒.  

 
3.1 Keller-Box Method 
 

This method is initialized by introducing new variables as,  
 

= , = , = , =u f v f w f h g                         (18) 
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The coupled system of equations can thus be rewritten as six set of first order differential equations 
in terms of these new variables as given below.  
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The corresponding boundary conditions in terms of new variables are,  
 
at  𝜂 = −1,   𝑓 = 0,   𝑢 = 0,   𝑔 = 0,   𝜃 = 0 
at  𝜂 = 1,   𝑓 = 1,   𝑢 = −𝜑𝑣,   𝑔 = 0,   𝜃 = 1                   (20) 
 

Following this step, the system of first order equations are now discretized by substituting the 
appropriate finite difference approximations. The system Eq. (19) can be written as,  
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This nonlinear discretized system is linearized using Newton's linearisation method. Substituting 

Newton's iterations as, ()𝑗
(𝑖+1)

= ()𝑗
(𝑖)

+ 𝛿()𝑗
(𝑖)

 for all the variables in the system, we obtain the 

following linear set of algebraic equations.  
 

𝛿𝑓𝑗 − 𝛿𝑓𝑗−1 − 𝑑𝑗(𝛿𝑢𝑗 + 𝛿𝑢𝑗−1) = (𝑟1)𝑗                     (29) 

 
𝛿𝑢𝑗 − 𝛿𝑢𝑗−1 − 𝑑𝑗(𝛿𝑣𝑗 + 𝛿𝑣𝑗−1) = (𝑟2)𝑗                     (30) 
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𝛿𝑣𝑗 − 𝛿𝑣𝑗−1 − 𝑑𝑗(𝛿𝑤𝑗 + 𝛿𝑤𝑗−1) = (𝑟3)𝑗                     (31) 

 
𝛿𝑔𝑗 − 𝛿𝑔𝑗−1 − 𝑑𝑗(𝛿ℎ𝑗 + 𝛿ℎ𝑗−1) = (𝑟4)𝑗                     (32) 

 
𝛿𝜃𝑗 − 𝛿𝜃𝑗−1 − 𝑑𝑗(𝛿𝑡𝑗 + 𝛿𝑡𝑗−1) = (𝑟5)𝑗                     (33) 

 
(𝑎1)𝑗𝛿𝑤𝑗 + (𝑎2)𝑗𝛿𝑤𝑗−1 + (𝑎3)𝑗(𝛿ℎ𝑗 − 𝛿ℎ𝑗−1) + (𝑎4)𝑗(𝛿𝑓𝑗 + 𝛿𝑓𝑗−1) + (𝑎5)𝑗(𝛿𝑣𝑗 − 𝛿𝑣𝑗−1) =

(𝑟6)𝑗                          (34) 

 
(𝑏1)𝑗𝛿ℎ𝑗 + (𝑏2)𝑗𝛿ℎ𝑗−1 + (𝑏3)𝑗(𝛿𝑔𝑗 + 𝛿𝑔𝑗−1) + (𝑏4)𝑗(𝛿𝑢𝑗 + 𝛿𝑢𝑗−1) + (𝑏5)𝑗(𝛿𝑓𝑗 + 𝛿𝑓𝑗−1) +

(𝑏4)𝑗(𝛿𝑢𝑗 + 𝛿𝑢𝑗−1) + (𝑏5)𝑗(𝛿𝑓𝑗 + 𝛿𝑓𝑗−1) + (𝑏6)𝑗(𝛿𝑣𝑗 + 𝛿𝑣𝑗−1) = (𝑟7)𝑗                 (35) 
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(𝑐3)𝑗 =
−𝑃𝑟𝑅𝑒𝑑𝑗
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(𝑟4)𝑗 = 𝑑𝑗(ℎ𝑗 + ℎ𝑗−1) + 𝑔𝑗−1 − 𝑔𝑗                      (54) 
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The linearized system of Eq. (29)-(36) have a block tri-diagonal structure which can be solved with 
the help of block elimination method. In vector -matrix form, Eq. (29)-(36) can be written as,  
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where the elements are defined by, 
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[𝛿𝑗] = [𝛿𝑣𝑗−1 𝛿𝑤𝑗−1 𝛿ℎ𝑗−1𝛿𝑡𝑗−1𝛿𝑓𝑗 𝛿𝑢𝑗 𝛿𝑔𝑗𝛿𝜃𝑗]𝑇 ,   1 ≤ 𝑗 ≤ 𝐽 − 1 
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and  
 
[𝛿𝐽] = [𝛿𝑣𝐽−1 𝛿𝑤𝐽−1 𝛿ℎ𝐽−1 𝛿𝑡𝐽−1 𝛿𝑣𝐽 𝛿𝑤𝐽 𝛿ℎ𝐽𝛿𝑡𝐽]𝑇 

 
[𝑟𝑗] = [(𝑟1)𝑗 (𝑟2)𝑗 (𝑟3)𝑗 (𝑟4)𝑗 (𝑟5)𝑗 (𝑟6)𝑗(𝑟7)𝑗(𝑟8)𝑗]𝑇 ,   1 ≤ 𝑗 ≤ 𝐽 

 
Now we write,  
 
𝐴 = 𝐿𝑢                         (60) 
 
where,  
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Here, [𝐼] is unit matrix and [𝛼𝑖] and [𝛤𝑖] are 8 × 8 matrices whose elements are determined by the 
following equations 
 
[𝛼𝑗] = [𝐴1] 

 
[𝐴1][𝛤1] = [𝐶1] 
 
[𝛼𝑗] = [𝐴𝑗] − [𝐵𝑗][𝛤𝑗−1],   𝑗 = 2,3, , 𝐽 

 
[𝛼𝑗][𝛤𝑗] = [𝐶𝑗],   𝑗 = 2,3, , 𝐽 − 1 

 
Eq. (61) substituted in (58) and we have,  
 
𝐿𝑢𝛿 = 𝑟                         (61) 
 
Defining 𝑢𝛿 = 𝑤, we have, 𝐿𝑤 = 𝑟, where,  
 
𝑤 = [[𝑤1] [𝑤2] [𝑤3] [𝑤4] [𝑤5] [𝑤6] [𝑤7] [𝑤8]]

𝑇                    (62) 
 
and the [𝑤𝑗] are 8 × 1 column matrices. The elements 𝑤 can be solved as,  

 
[𝛼1][𝑤1] = [𝑟1] 
 
[𝛼𝑗][𝑤𝑗] = [𝑟𝑗] − [𝐵𝑗][𝑤𝑗−1] 

 
Once the elements of 𝑤 are found, solution for 𝛿 can be obtained using relations 
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[𝛿𝐽] = [𝑤𝐽] 

 
[𝛿𝑗] = [𝑤𝑗] − [𝛤𝑗][𝛿𝑗+1] 

 
Theses solution for 𝛿 can be used to find (𝑖 + 1)𝑡ℎ iteration.  
 
4. Results and Discussion 
 

In the present study we investigated the influence of uniform magnetic field on the characteristics 
of flow and heat transfer of micropolar fluid flow between parallel disks of infinite radii, lower one 
being impermeable and a porous disk at the upper side. We also considered the presence of velocity 
slip at the porous boundary which effects the flow along with Reynolds number, micropolar 
parameters, Prandtl number, and magnetic parameter. It is observed that the two micropolar 
characteristics 𝐴 and 𝑐 have a negligible effect on velocity and temperature profiles. Therefore, their 
values are fixed at 𝐴 = 1, 𝑐 = 2 in the entire analysis. The present results are in excellent agreement 
with the published literature results given by Ashraf et al., [34] in the absence of magnetic field and 
slip.  

Figure 2 represents the variations in dimensionless profiles of axial velocity, radial velocity, 
microrotation and temperature for Reynolds number 𝑅𝑒 ∈ [0,100]. Axial velocity is observed to 
increase with an increase in the magnitude of Reynolds number in the presence of slip. It typically 
varies from 0 at the lower impermeable disk to 1 at the upper porous disk. Radial velocity profiles 
are increasing with an increase in Reynolds number near the impermeable disk. Whereas, the profiles 
were decreasing with an increase in the magnitude of Reynolds number as the permeable disk is 
reached. The flow is perfectly symmetric for 𝑅𝑒 = 0. The magnitude of microrotation is found to 
decrease with an increase in Reynolds number near the impermeable disk and a reverse trend is 
observed near the porous disk. In the dimensionless form of temperature field, an increase from 0 to 
1 is observed with an increase in suction Reynolds number. The profile is linear for zero Reynolds 
number. 

The effect of magnetic parameter 𝑀 on different flow characteristics with other parameters fixed 
at 𝑅 = 10, 𝑅𝑒 = 20, 𝜑 = 0.1 and 𝑃𝑟 = 0.3 can be visualized in Figure 3. With an increase in magnetic 
parameter, it is seen that the axial velocity profiles are increasing near the impermeable disk and are 
decreasing in magnitude near the porous disk. The radial velocity profiles become flattered as 𝑀 
increases. It is also noticed that as the magnetic parameter increases the boundary layer thickness 
decreases. The microrotation profiles are positive in the first half and are negative in the second half 
region, which shows a reverse rotation near the boundaries. As the magnetic parameter is increased 
the microrotation profiles decreases, this fact can be used in lubrication problems, where the induced 
magnetic field can be controlled to obtain desirable angular rotations. The effect of an increase in 
micropolar parameter 𝑅 is to decrease axial velocity profiles near the impermeable disk but no 
remarkable changes are observed at the porous disk. 

The radial velocity profiles being parabolic in nature increases with increase in 𝑅 near 
impermeable boundary, but decreased near permeable disk as shown in Figure 4. A significant 
influence of 𝑅 is observed on microrotation profiles. 𝑅 = 0 corresponds to the case of Newtonian 
fluids. For other cases the microrotation increases with increase in micropolar parameter 𝑅. This 
parameter is observed to have no effect on dimensionless temperature profiles. The dimensionless 
temperature are thus plotted for typical values of Prandtl number 𝑃𝑟. The increase in 𝑃𝑟 value results 
in an increase in temperature profiles reaching absolute value of 1.  
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Figure 5 represent fluctuations in dimensionless axial velocity, radial velocity, microrotation and 
temperature for different values of velocity slip coefficient 𝜑. With an increase in slip coefficient, the 
dimensionless axial velocity profiles are found to decrease in magnitude. Similarly, the dimensionless 
radial velocity profiles show an increase initially near impermeable disk but decreases as porous disk 
is approached for an increase in slip coefficient. The microrotation profiles increases near the porous 
disk for an increase in slip coefficient whereas no significant changes are observed near the non-
porous disk. Also, a slight decrease in the temperature profiles is seen for an increase in slip 
coefficient. 

The influence of Reynolds number 𝑅𝑒 on shear stress and couple stress are depicted in Figure 6 

and 7. It is verified that at the lower disk shear stress 𝑓′′, couple stress 𝑔′(−1) and heat transfer rate 
𝜃′(−1) increases with increase in Reynolds number. But, an opposite behavior is noticed near the 
porous disk. The heat transfer rate at permeable disk approaches to zero as 𝑅𝑒 → ∞. 

 

 
(a) (b) 

 
(c) (d) 

Fig. 2. Dimensionless (a) Axial velocity, (b) Radial velocity, (c) Microrotation and (d) Temperature profiles for 
various Reynolds number with 𝑅 = 10,𝑀 = 0.5 and𝑃𝑟 = 0.3 
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(a) (b) 

 
(c) (d) 

Fig. 3. Dimensionless (a) Axial velocity, (b) Radial velocity, (c) Microrotation and (d) Temperature profiles for 
various magnetic parameter with 𝑅 = 10, 𝑅𝑒 = 20, 𝜑 = 0.1 and 𝑃𝑟 = 0.3 

 

 
(a) (b) 
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(c) (d) 

Fig. 4. Dimensionless (a) Axial velocity, (b) Radial velocity, (c) Microrotation for various micropolar 
parameter (𝑅) and (d) Temperature profile for different Prandtl number (𝑃𝑟) with 𝑅𝑒 = 20,𝑀 = 1.5, 𝜑 =
0.1 and 𝑃𝑟 = 0.3 

 

 
(a) (b) 

 
(c) (d) 

Fig. 5. Dimensionless (a) Axial velocity, (b) Radial velocity, (c) Microrotation and (d) Temperature profiles 
for various slip coefficient(𝜑) with 𝑅 = 5,𝑅𝑒 = 20,𝑀 = 1.5 and 𝑃𝑟 = 0.3 
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(a) (b) 

Fig. 6. (a) Shear and couple stresses and (b) Heat transfer rate at lower disk for various 𝑅𝑒 with 𝑅 = 10,𝑀 =
0.5, 𝑃𝑟 = 0.3 and 𝜑 = 0.1 

 

 
(a) (b) 

Fig. 7. (a) Shear and couple stresses and (b) Heat transfer rate at upper disk for various 𝑅𝑒 with 𝑅 = 10,𝑀 =
0.5, 𝑃𝑟 = 0.3 and 𝜑 = 0.1 

 
The variation of shear and couple stresses for varying micropolar parameter 𝑅 are plotted in 

Figure 8. It is noticed that the micropolar fluid reduces the shear stress and enhances the couple 
stress at the disk wall with an increase in 𝑅. This is in strong connections with the fact that micropolar 
fluids offering a great resistance due to the dynamic viscosity and vortex viscosity to the fluid motion 
as compared to Newtonian fluids. 
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(a) (b) 

Fig. 8. Shear and couple stresses (a) at lower disk and (b) at upper disk for various 𝑅 with 𝑅𝑒 = 20,𝑀 =
1.5, 𝑃𝑟 = 0.3 and 𝜑 = 0.1 

 
From the Figure 9 and 10 it is evident that the presence of magnetic field enhances the shear 

stress, couple stress and heat transfer rate at the boundaries. Also it is apparent from Figure 11 that 
the heat transfer rate increases at the impermeable disk with an increase in Prandtl number 𝑃𝑟 but 
decreases at the porous disk. 
 

 
(a) (b) 

Fig. 9. Shear and couple stresses (a) at lower disk and (b) at upper disk for various 𝑀 with 𝑅 = 10, 𝑃𝑟 =
0.2, 𝑅𝑒 = 20 and 𝜑 = 0.1 
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(a) (b) 

Fig. 10. Heat transfer rate (a) at lower disk and (b) at upper disk for various 𝑀 with 𝑅 = 10, 𝑃𝑟 = 0.2, 𝑅𝑒 =
20 and 𝜑 = 0.1 

 

 
(a) (b) 

Fig. 11. Heat transfer rate (a) at lower disk and (b) at upper disk for various 𝑃𝑟 with 𝑅 = 5,𝑀 =
0.5, 𝑅𝑒 = 30 and 𝜙 = 0.1 

 
5. Conclusions 
 

The present study has investigated the effects of some governing parameters on the flow of an 
electrically conducting micropolar fluid in the presence of an applied magnetic field. Numerical 
solutions of the transformed self-similar governing equations and the associated boundary 
conditions have been obtained by using a finite-difference based Keller-box scheme. The conclusions 
can be summarized as follows.  

i. The presence of slip at the porous boundary alters the flow. It decreases the axial velocity and 
increases the microrotation. 

ii. Micropolar fluids reduce shear stress when compared to Newtonian fluids. 
iii. The magnetic field is observed to have a positive effect on shear stress, couple stress, and 

heat transfer rate.  
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iv. The Reynolds number has an obvious effect on velocity profiles. The increase in Reynolds 
number increases the magnitude of axial velocity. The magnitude of radial velocity is 
increased up to the central plane but decreased as it approaches the porous disk. 

v. Microrotation profiles showed a decrease up to central plane with an increase in Reynolds 
number, a drastic increase with an increase in micropolar parameter, and also an enhanced 
profile near the porous disk with an increase in slip parameter.  

vi. The suction Reynolds number increases the shear, couple stresses, and also heat transfer rate 
at the lower disk but decreases at the wall of the porous disk. 

vii. Magnetic parameter enhances shear stress, couple stress, and heat transfer rate at the 
boundaries. 
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