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Common phase change materials (PCMs) possess very low thermal conductivity whilst 
hybrid PCM with graphene filler could be produced to achieve increased thermal 
conductivity. This research focuses on the effects of graphene flakes on the thermal 
conductivity of a PCM (paraffin wax). Three experimental parameters at different 
levels of average lateral sizes of graphene flakes (4.5, 5 and 7μm), mass fractions (0.1, 
0.2 and 0.25 wt.%), and rising temperatures (25-75°C) are considered. For the first time 
in the literature, the impact of various parameters on the thermal conductivity 
performance of the nanoPCM-based graphene nano-composites is investigated 
extensively by adopting response surface methodology supported by central 
composite design. Thermal conductivity prediction is proposed by a new general 
correlation and a promising value of the coefficient of determination (R2) higher than 
0.88. Amongst the investigated various variables in terms of impact on thermal 
conductivity, the temperature is identified as the most influential parameter on 
response variables. According to the implemented optimization technique, for the 
composite with the average graphene flake size of 4.5 µm, the optimum value of the 
thermal conductivity is found 0.275 W/m K at the mass fraction of 0.186 wt.% and 
temperature of 69.73°C.  
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1. Introduction 
 

Thermal conductivity is considered as a significant key factor in high-tech engineering sectors. 
Thermal conductivity of the cooling fluids is the most crucial parameter accountable for the enhanced 
heat transfer [1]. The application of water, ethylene glycol and engine oils as traditional heat transfer 
fluids (HTFs) in modern high-tech industries is limited due to the low thermo-physical properties. 
Their inherently very poor thermal conductivity and adverse effect of phase incompatibility influence 
the process efficiency of the system [2,3]. PCMs are applicable in energy storage for the systems with 
low energy density [4,5]. In the past few years, PCMs have been considered as a substitute cooling 
material in various applications [6,7]. Low thermal conductivity is significant issue in majority of the 
PCMs despite that high levels of energy storage is the privileges of these materials [8-10]. In the past 
four decades, numerous PCMs, with distinctive phase transitions (e.g. solid–liquid, solid–solid) have 
been produced broadly [11,12]. Different inorganic and organic substances are utilized for the 
formation of required PCMs [13]. The most promising PCMs utilized in low-temperature applications 
(<100 ˚C) are paraffin waxes due to their low vapour pressure of melt and chemical inertness, high 
latent heat of fusion and negligible super-cooling [14,15]. Currently, paraffin waxes are considered 
as a supreme choice for arrangement of smart PCMs for diverse applications. Energy harvesting of 
solar energy systems, improving the performance of electronic devices, thermal comfort in vehicles 
are some aspects of usefulness of PCMs [16,17]. The desire of the higher enhancements of thermal 
conductivity of the PCMs heads toward generating the idea of adding carbon-based nano-materials 
to produce composites for the better enhancement of thermal conductivity. Hexagonal carbon 
structured few layered graphene attracted its implication in heat transfer applications because of 
their extremely high thermo-physical properties. Carbon based nano-materials are well-known for 
the supreme specific surface area (SSA) with negligible thickness of the layers [18,19]. Fukai et al., 
[20] reported that the effective thermal conductivity of the paraffin wax induced with 2% carbon 
fibers could be increased by a factor of six. In another study, the addition of MWCNT to paraffin wax 
revealed the increment of 35% in thermal conductivity of the prepared nano-composites in solid state 
[21]. Fan et al., [22] evaluated the effects of variety types of carbon fillers on thermal properties of 
paraffin-based phase change materials. They reported 164% enhancement in the thermal 
conductivity of PCM/graphene nanoplatelets (GNPs) with loading concentration of 5 wt.% of GNP 
nanoparticles. In a study conducted by Yu et al., [23], the effects of the size and shape of various 
nanocarbon fillers on thermal conductivity of the liquid paraffin-based nanocomposites was 
evaluated extensively. Combination of prevalent properties with the effortlessness of fabrication of 
polymer composites with the addition of graphene flakes is imperative in numerous applications such 
as electronic industry and sensors [24]. Processing criterion such as mass fraction of filler, particle 
size and temperature affect significantly final properties of the composites [25]. Correlating these 
processing parameters is critical to adapt the composites for a particular application. Modelling of 
these correlations consists of the mathematical understanding from experimental data. 
Mathematical models in terms of cost effectiveness and reducing the experimental works for the 
purpose of designing the composites are considered as attractive methods. Computational methods 
can effectively select the proper PCM and comprehend its characteristics. A conventional system 
processes the factors independently and specifies their effects on output parameters in spite of that, 
a productive computational analysis is able to specify its ideal applicability to increase the entire 
system applicability [26]. The conventional framework is time consuming and inefficient as the inter-
related effects among the parameters are not considered. Response surface methodology (RSM) is 
an important way to deal with the restrictions of experimental efforts and to assess the productivity 
of these frameworks. A group of mathematical and statistical methodologies are included which are 
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beneficial for modelling, optimization and specifying the impacts of multiple independent 
parameters on dependent variables and the inter-related impacts among them. In addition, this 
process provides optimized procedure with a restricted number of experimental information. 
Jamekhorshid et al., [27] implemented response surface methodology for analysis and statistical 
design of the microencapsulated PCM to evaluate the average particle size and melting latent heat. 
Sheikholeslami et al., [28] applied RSM to evaluate the performance of latent heat thermal energy 
storage systems (LHTESS), including PCMs during release (discharging) procedure. The results of 
hybrid framework of two-factor model and desirability function would cause to have better overview 
of different dominant variables. The significance of this framework can be highlighted during 
designing, optimizing and enhancing the thermal conductivity of nanoPCM-based graphene 
composite apart from any experimental work. 

However, to the best of authors’ knowledge, none of the previous research works has evaluated 
the thermal conductivity of nanoPCM-based graphene composite performance under different 
conditions. Besides, there is no systematic methodology for the parametric optimization of the 
nanoPCM-based graphene composites towards higher thermal conductivity. The optimization and 
simulation of experimental variables cause to acquire satisfactory levels of operating conditions 
towards the desired outputs, where they will not be influenced by variations in the factor setting. 
Consequently, this paper aims to assess the thermal conductivity of nanoPCM-based graphene 
composites by comprehensively evaluating the impact of influential variables and subsequently 
optimizing them. Therefore, in this work, central composite design (CCD) and response surface 
methodology (RSM) are adopted to perform the experimental validation and modelling of the 
nanoPCM-based graphene nano-composites. Achieving concise set of data is the main advantage of 
employing RSM-CCD to determine the optimum conditions with a low number of runs. 
 
2. Materials and Methods 
 

Three different types of multi-layered graphene flake with the average lateral flake size of 4.5 μm 
(AO-3, purity 99.2%), 5 μm (AO-2, purity 99.9%) and 7 μm (AO-4, purity 98.5%) were supplied by 
Graphene Supermarket. Graphene flakes were used as received. Pure Paraffin Wax (PW70) was used 
as PCM supplied by Phase Change Materials Products Ltd.  
 
2.1 Preparation of NanoPCM-based Graphene Composites 
 

Mass of PCM (PW70) and graphene flakes were measured using a microbalance (TX323L, 
UNIBLOC). For every type of graphene, three different compositions were prepared with the variation 
of graphene mass fraction 0.1, 0.2 and 0.25 wt.%, respectively in the PW70 base material. Afterward 
the acquired composites were added into the beaker. Due to change of melting point of PW70, a hot 
plate (IKA, C-MAG HS7 digital) was used during mixture. The mixtures were then stirred using a 
magnetic stirrer for two hours within the rising temperature ranging from 70 to 100 ˚C. Acquired 
nanoPCM composites were poured into the vial for the measurement of thermal conductivity.  
 
2.2 Thermal Conductivity Measurement 
 

In this study, measurement of thermal conductivity is the crucial parameter for analyzing the 
thermal properties of the prepared nanoPCM-based graphene composites. The measurement of the 
thermal conductivity was conducted by using a KD2 Pro thermal analyzer (Decagon, USA). The sensor 
TR-1 (100 mm length and 2.4 mm diameter) was used in these measurements. The temperature-
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dependent investigation on the effective thermal conductivity of the prepared samples was 
conducted using a modern programmable heating water bath of model (DAIHAN Scientific Water 
Bath-Fuzzy Control System). This water bath was used for controlling the temperature. The accuracy 
of the utilized water bath was in the range of ±0.01 °C. Thermal conductivity of the prepared samples 
was investigated in four specified temperatures (25, 35, 55 and 75 °C). The sample temperature was 
monitored by locating a thermocouple inside the sample. Before conducting the thermal conductivity 
measurement, the performance of the sensor was calibrated with the manufacturer suggested 
material. The obtained accuracy was ±1%. Measurement set-up was customized including thermal 
insulation inside water bath and increasing the reading time of the KD2 Pro to increase the accuracy 
of thermal conductivity results. Experimental set-up in the laboratory is shown in Figure 1. Thermal 
conductivity measurements were repeated for several times to assure regarding the consistency of 
the acquired results. The average values of the measured thermal conductivities were considered for 
the analysis. A certain percentage of the data was ignored considering them as outliers. The 
measurement errors in these measurements were found from ±0.003 to ±0.007. This range 
demonstrated the high reliability and accuracy of the conducted experimental data. 
 

 
Fig. 1. Experimental setup of thermal conductivity 
measurement instruments 

 
2.3 Response Surface Methodology 
 

Response surface methodology includes a group of statistical and mathematical methodologies 
for implementing the empirical models to comprehend the interactional impacts among the 
parameters for their optimizations [29]. Purpose of this method is to establish an appropriate relation 
among the response or output variable with the aid of experimental data. These parameters will be 
applied to the input variables to elucidate the interactional impacts between them [30]. The Eq. (1) 
demonstrates the relationships among the independent variables such as 𝑇, 𝑆𝑃, 𝑣 and response 𝑦 as 
follows 
 
𝑦 = 𝑓(𝑇, 𝑆𝑃, 𝑣) + 𝜀             (1) 
 
where 𝜀 depicts the error in response. The reaction characteristics are symbolized by using a 
mathematical equation through organizing a map between the set of independent variables and the 
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response. Response surface methodology (conditioned as a linear function) is the most effective 
model which is given as follows 
 
𝑦 = 𝑏0 + ∑ 𝑏𝑖𝑥𝑖

𝑧
𝑖=1              (2) 

 
A 2FI or quadratic polynomial models are considered to match the records for discovering the 

crucial points, if the primary-order model is insignificant due to the curvature. The 2FI model can be 
formulated as follows 
 
𝑦 = 𝑏0 + ∑ 𝑏𝑖𝑥𝑖

𝑧
𝑖=1 + ∑ 𝑏𝑖𝑗𝑥𝑖𝑥𝑗

𝑧
𝑗>𝑖            (3) 

 
Sum of all linear, self-interaction and cross-interaction phrases are considered in a quadratic 

polynomial model among predictors. Hence, Eq. (4) represents the approximation function as below 
 
𝑦 = 𝑏0 + ∑ 𝑏𝑖𝑥𝑖

𝑧
𝑖=1 + ∑ 𝑏𝑖𝑖𝑥𝑖

2𝑧
𝑖=1 + ∑ ∑ 𝑏𝑖𝑖𝑥𝑖𝑥𝑗𝑗>1

𝑧
𝑖=1         (4) 

 
Eq. (5) and Eq. (6) represent the method of determining the coefficients by solving the linear 

model (Y=XB) for the quadratic polynomial model. 
 

𝑌 = (

𝑓(𝑥1)

𝑓(𝑥2)
⋮

𝑓(𝑥𝑛)

) , 𝑋 =

(

 

1 𝑥1
1 ⋯ 𝑥𝑧

1 (𝑥1
1)2 ⋯ (𝑥𝑧

1)2 𝑥1
1𝑥2

1 𝑥1
1𝑥3

1 ⋯ 𝑥𝑧−1
1 𝑥𝑧

1

1 𝑥1
2 ⋯ 𝑥𝑧

2 (𝑥1
2)2 ⋯ (𝑥𝑧

2)2 𝑥1
2𝑥2

2 𝑥1
2𝑥3

2 ⋯ 𝑥𝑧−1
2 𝑥𝑥

2

1 ⋮ ⋯ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 𝑥1

𝑛 ⋯ 𝑥𝑥
𝑛 (𝑥1

𝑛)2 ⋯ (𝑥𝑧
𝑛)2 𝑥1

𝑛𝑥2
𝑛 𝑥1

𝑛𝑥3
𝑛 ⋯ 𝑥𝑧−1

𝑛 𝑥𝑧
𝑛)

    (5) 

 
𝐵 = (𝑏0, 𝑏𝑖 …𝑏𝑧 , 𝑏𝑖𝑖 …𝑏𝑧𝑧 , 𝑏12, 𝑏13 …𝑏𝑝−1,𝑝)𝑇         (6) 

 
The final solution is depicted by 𝐵 = (𝑋′𝑋)−1𝑋′𝑌, wherein 𝑦 is the expected response, 𝑏𝑖  shows 

the linear coefficient for the independent variables (𝑥𝑖) and 𝑏0 represents the constant coefficient. 
The different cross-interaction coefficient between the input factors (𝑥𝑖  and 𝑥𝑗) is depicted by 𝑏𝑖𝑗. 

The ith quadratic coefficient for the input factor (𝑥𝑖) is considered as 𝑏𝑖𝑖  [31]. 
Central composite design (CCD) is recognized as the most exquisite response surface 

methodology [32]. In CCD all data points will be in terms of coded values of the parameters. Three 
groups of design points are included in a CCD: (i) functional factorial design points which allows the 
estimation of the cross-interaction and linear terms, (ii) axial points which are the nominated points 
including all of the parameters set to zero except one parameter that has the value of ±𝛼 for 
predicting the self-interaction terms effectively and (iii) the points consisting of all levels set to coded 
level zero (central points) that indicate the presence of curvature in the response. Thus, five levels of 
each factor including −𝛼, +𝛼, -1, 1, and 0 is required for regular central design. With including the 
number of variable points (𝑧), the design includes, a matrix from factorial points (±1, ±1, …, ±1), a 
matrix from central points (0, 0, …, 0) and a matrix from axial points of the form (±𝛼, 0, …, 0), (0, 
±𝛼, …, 0). The axial matrix in demonstrated as in Eq. (7) 
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𝐾 =

[
 
 
 
 
 
 

𝛼 0 0 ⋯ ⋯ ⋯ 0
−𝛼 0 0 ⋯ ⋯ ⋯ 0
0 𝛼 0 ⋯ ⋯ ⋯ 0
0 −𝛼 0 ⋯ ⋯ ⋯ 0
⋮ ⋮
0 0 0 0 ⋯ ⋯ 𝛼
0 0 0 0 ⋯ ⋯ −𝛼]

 
 
 
 
 
 

          (7) 

 
The orthogonality of the design is associated with the value of 𝛼 [33]. Rotatable designs allow 

steady estimation variance in any respect factors. Therefore, determination of the value of 𝛼, for a 
rotatable design with considering the number of factorial points (N) is calculated by Eq. (8) 
 

𝐴 = (𝑁)
1

4              (8) 
 

Regression model is a strong mathematical method that permits to assess the interactional 
impacts between two or more parameters of interest. Many types of regression models have been 
used for examining the impact of one or more independent parameters on a dependent variable. In 
this work three various models such as linear, 2FI and quadratic were developed for the prediction 
of thermal conductivity of prepared nanoPCM-based graphene composite. 

In this study, the estimation of thermal conductivity is performed by a developed linear regression 
with R2 of 0.8557. The formula for this regression is shown in Eq. (9) 
 
𝑌𝑖 = ℎ(𝑥𝑖, 𝑤) = 𝑤𝑇𝑥𝑖             (9) 

 
The task of this type of regression is to discover the weights to identify the exceptional match for 

the training records. One method of peaking the fit is to calculate the least square error over data 
set which was performed using the Eq. (10). Figure 2 expresses block diagram of linear regression 
model. 
 

 
Fig. 2. Regression Model (Linear) 

 
𝐿(𝑤) = ∑ 𝑖(ℎ(𝑥𝑖 , 𝑤) − 𝑦𝑖)

2                      (10) 
 

In order to find the line of best fit, 𝐿(𝑤) should be minimized. This model takes as input for a data 

point with two features 𝑥(1)
𝑖, 𝑥

(2)
𝑖 then weights the features with 𝑤1, 𝑤2 followed by summing them 

and outputs a prediction. Since from the introduction of 2FI in 1920s, statistical interaction detection 
has been a widely examined term in statistics [34]. Two general approaches have been emerged for 
conducting interaction detection. One was conducting individual tests for each combination of 
features [35]. The other one was pre-specifying the all interaction forms of interest then using lasso 
to simultaneously select the important points [36]. The additive functional form only makes sense, if 
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the effects of X and Z are theoretically independent. Considering an effortless interactive method 
including three variables 
 
𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑍 + 𝛽3𝑋𝑍 + 𝑒𝑖                     (11) 
 

𝛽1 and 𝛽2 are commonly (erroneously) referred to as the direct effects of X and Z on Y, and 𝛽3 as 
the coefficient for the interaction term [37]. With the variables multiplied together the net impact 
of X on Y is now defined by 
 
𝐸(𝑌) = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑍 + 𝛽3𝑋𝑍

𝐸(𝑌) = 𝛽0 + 𝛽2𝑍 + (𝛽1 + 𝛽3𝑍)𝑋
                     (12) 

 
And the first derivative with respect to X is 

 
𝛿𝐸(𝑌)

𝛿𝑋
= 𝛽1 + 𝛽3𝑍                       (13)  

 
In other words, the marginal impact of X on Y now explicitly depends on the value of Z. Another 

way of phrasing the expected value function above is 
 
𝐸(𝑌) = 𝛽0 + 𝛽2𝑍 + 𝜓1𝑋                      (14) 
 
where 𝜓1 = 𝛽1 + 𝛽3𝑍 is a “quasi-coefficient” for the marginal impact of X on Y. Likewise with respect 
to Z 
 
𝐸(𝑌) = 𝛽0 + 𝛽1𝑋 + (𝛽2 + 𝛽3𝑋)𝑍

=  𝛽0 + 𝛽1𝑋 + 𝜓2𝑍
                     (15)  

 
In this type of interactive model, each interacted covariate’s influence on Y is conditional on the 

values of the other explanatory variable(s). In this study, among the three different developed 
models 2FI, caused to best R-squared value. Curvilinear or quadratic relationships for a single variable 
are also a type of interactive model. For instance, a second-order polynomial regression is depicted 
as bellow 
 
𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑋

2 + 𝑒                      (16) 
 

The marginal effect of X on Y is 
 
𝛿𝐸(𝑌)

𝛿𝑋
= 𝛽1 + 2𝛽2𝑋                       (17)                                                                                                                                  

 
This formula indicates that the marginal effect of X on Y depends linearly on the value of X itself. 

 
2.4 Desirability Function 
 

Desirability is as objective function that ranges from zero (outside of the limits) to one (at the 
target). The numerical optimization reaches a point that maximizes the desirability function. The 
characteristics of a target might be changed by modifying the weight of significance [38]. One 
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desirability function consists of all the combined targets for several factors and responses. A good 
arrangement of conditions that will meet every one of the goals (not only to achieve a desirability 
value of 1.0) is the objective of optimization. Desirability is a mathematical strategy to figure out the 
optimum value. A desirability of 1.0 means, the targets were simply achieved and better results might 
be available. Consider, making the goals increasingly troublesome or including new criteria for less 
critical responses and even factors. The definitive target is not to enhance the desirability value. The 
factor settings that results in the highest desirability values demonstrate there is an island of 
acceptable outcomes. Desirability curves for goal in Maximum, minimum and target are expressed in 
Figure 3, Figure 4 and Figure 5. 
 

 
Fig. 3. Desirability curves for goal in maximum 

 

 
Fig. 4. Desirability curves for goal in minimum 

 

 
Fig. 5. Desirability curves for goal in target 

 
In the desirability objective function 𝐷(𝑋), the importance of each response can be assigned with 

respect to alternate responses. Significance (𝑟𝑖) varies from the least important which is a value of 1 
to the most important which is a value of 5. The weight field is able to change the shape of desirability 
for each target. Weights are utilized to provide additional emphasize to the target value. In a linear 
model, the factor of di will be changed from 0 to 1 if the considered weight is 1. More emphasize 
towards the goal can be achieved with the weights greater than 1 (maximum weight is 10). Weights 
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less than 1 (minimum weight is 0.1) give less emphasize to the goal. For achieving the maximum 
value, the desirability will be specified by the following formula 
 

𝑑𝑖 = {

0,

[
𝑌𝑖−𝐿𝑜𝑤𝑖

𝐻𝑖𝑔ℎ𝑖−𝐿𝑜𝑤𝑖
]
𝑤𝑡𝑖

,

1,

 

𝑌𝑖 ≤ 𝐿𝑜𝑤𝑖

𝐿𝑜𝑤𝑖 < 𝑌𝑖 < 𝐻𝑖𝑔ℎ𝑖

𝑌𝑖 ≥ 𝐻𝑖𝑔ℎ𝑖

                    (18)

  
For goal of minimum, the desirability will be specified by the following formula 

 

𝑑𝑖 = {

0,

[
𝐻𝑖𝑔ℎ𝑖−𝑌𝑖

𝐻𝑖𝑔ℎ𝑖−𝐿𝑜𝑤𝑖
]
𝑤𝑡𝑖

,

1,

 

𝑌𝑖 ≤ 𝐿𝑜𝑤𝑖

𝐿𝑜𝑤𝑖 < 𝑌𝑖 < 𝐻𝑖𝑔ℎ𝑖

𝑌𝑖 ≥ 𝐻𝑖𝑔ℎ𝑖

                    (19)

  
For goal as a target within range (constraint), desirability will be defined by the following formulas 

 

𝑑𝑖 = {
0,
1,
0,

               

𝑌𝑖 ≤ 𝐿𝑜𝑤𝑖

𝐿𝑜𝑤𝑖 < 𝑌𝑖 < 𝐻𝑖𝑔ℎ𝑖

𝑌𝑖 ≥ 𝐻𝑖𝑔ℎ𝑖

                     (20) 

 
The desirability function is modified within the program by adding a tail as the function evaluation 

approaches zero. The tail adjustment is reduced with each iteration to drive the function towards its 
pure value. Otherwise the optimization would get stuck on the zero desirability planes. Desirability 
curves for goal as range is expressed in Figure 6. 
 

 
Fig. 6. Desirability curves for goal as range 

 
3. Results and Discussion 
 

Experimental thermal conductivity of nanoPCM-based graphene composites is plotted in Figure 
7 with effect of varying average lateral flake size of graphene flakes and rising temperature. It is seen 
that at 25°C, the maximum value of thermal conductivity (0.206 W/m K) was perceived for the 
composite sample with the flake size of 5 µm for the mass fraction of 0.2 wt.%. It was remained same 
until 35°C. Then, it was enhanced by ~26 and ~30 % at 55 and 75°C respectively compared to 25°C. 
In contrast, at this temperature the lowest thermal conductivity was detected about 0.202 W/m K 
for the composite sample of flake size 4.5 µm with the mass fraction of 0.1 wt.%. At 55°C, thermal 
conductivity was found ~0.223 W/m K (~10 % enhancement) which was enhanced ~36% at 75°C 
compared to 25°C. Similar phenomenon was observed for the composite sample with the flake size 
of 7 µm. For this composite, highest thermal conductivity (~0.202 W/m K) was shown for the mass 
fraction of 0.1 wt.%. The highest thermal conductivity at 25°C was considered to peak the optimum 
mass fraction for the composites with varying mass fractions of each flake size samples. The 
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increment of thermal conductivity of this nanoPCM-based graphene composite was due to addition 
of multi-layered graphene flakes into the PCM (PW70) matrix. Graphene flakes enhanced conductive 
channels and pathways inside the matrix. Besides, their very high specific surface area with low 
interfacial thermal resistance between PCM matrix and the flakes provides enormous contribution 
to increase thermal conductivity of the composite [39-41]. 
 

 
Fig. 7. Effect of rising temperature and average lateral flake size on the thermal 
conductivity of PCM based graphene composite 

 
Table 1 shows the statistical analysis of the data acquired on the prepared composite samples. 

Three factors of A, B and C corresponds to the three input parameters of 𝑇, 𝑆𝑝, and 𝑣 respectively. 

R1, corresponds to the response value of the model. 
 

Table 1 
Factor and statistical description of the dataset used for model development 
Factor Name Units Minimum Maximum Mean Std. Dev. 

A T °C 25 75 40 19.4785 
B Sp 𝜇𝑚 4.5 7 5.5 1.11144 
C v % 0.1 0.25 0.183333 0.0641689 
R1 K W/m K 0.168 0.275 0.212444 0.031805 

 
The calculated values of coefficient of determination (R2) for the three different models are 

presented in Table 2. It compares the productivity of each model and guides to choose the most 
suitable model for the analysis of experimental thermal conductivity of prepared nanoPCM-based 
graphene composites. The best fitted model is considered for the value of R2 closer to value of 1. It 
is seen that, adjusted R2 value is higher for the 2FI model. 2FI model evidenced as most suitable for 
the analysis of thermal conductivity under given experimental conditions of nanoPCM-based 
graphene composites. Therefore, 2FI model is selected for further analysis. The response variable of 
thermal conductivity in relation to the developed model is presented in Table 3. 
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Table 2 
Accuracy comparison of the linear, 2FI and quadratic models for estimating the thermal 
conductivity data 
Model Summary Statistics 
Source Std. Dev. R-Squared Adjusted R-Squared 

Linear 0.013  0.8557 0.8248 
2FI 0.014  0.8822 0.8179 
Quadratic 0.015  0.8995 0.7864 

 
Table 3 
The developed equation of thermal conductivity for the 
PCM-based graphene composite 
K = 

+0.13438  
+2.91183E-003 * T 
+9.06754E-003 * Sp 

-0.27625 * v 
-4.45302E-003 * T * Sp 
+5.55347E-003 * T * v 
+0.018894 * Sp * v 

 
The interaction and contribution between the design parameters and the corresponding 

responses was obtained through the analysis of variance (ANOVA). The significance of each model 
was recognized by the calculation of the probability (p-value). The p-value of less than 0.05 indicates 
insignificant lack of fit. The ANOVA analysis results for 2FI model is summarized in Table 4. 
 

Table 4 
ANOVA analysis results for 2FI model 
ANOVA for Response Surface Method 
Source Sum of Squares Mean Square p-value 

Prorb > F 
Result 

Model                           0.015 2.528E-003 0.0002 Significant 
A-T 6.038E-003 6.038E-003 0.0001 Insignificant 
B-Sp 3.255E-004 3.255E-004 0.2107 Insignificant 
C-v 1.357E-004   1.357E-004 0.4090 Insignificant 
AB 4.210E-004 4.210E-004 0.1588 Insignificant 
AC 2.251E-004 2.251E-004 0.2926 Insignificant 
BC 1.821E-005 1.821E-005 0.7591 Insignificant 

 
Figure 8 illustrates relation of experimentally measured data (actual) and estimated thermal 

conductivity by developed empirical model of nanoPCM-based graphene composites. Actual thermal 
conductivity data is placed in the horizontal axis and corresponding predicted values are in the 
vertical axis. Different coloured square dots constitute the response values at each of the 
corresponding points. In the plot, red square represents the highest value, while the blue square 
representing the lowest value. It is clear from the plot that, a fairly good agreement between the 
anticipated and the real values are perceived. Thereby it confirms the proposed model’s viable 
potential for the implication in practical applications. A value of R2 closer to one (0.8822) indicates 
that the implication interest of developed model is reliable and statistically significant. According to 
the analysis of sum of squares, linear terms of T, Sp and v showed the contribution of ~84.33, ~4.55 
and ~1.9%, respectively. On the other hand, the cross-interaction terms of T-Sp, T-v, and Sp-v bear the 
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contribution of ~5.88, ~3.14 and ~0.25%, respectively. It indicates the maximum level of importance 
on the thermal conductivity (Table 4). 
 

 
Fig. 8. The relation between the experimental 
and the predicted thermal conductivity values 
of PCM based graphene composite 

 
Two-dimensional contour plots of thermal conductivity of nanoPCM-based graphene composite 

in terms of Sp vs T, V vs T and V vs Sp are presented in Figure 9, Figure 10 and Figure 11, respectively. 
Figure 9(a) depicts clearly that in small average particle size, high temperature and mass fraction of 
0.1 wt.%, the optimum value of thermal conductivity can be acquired. Figure 9(b) shows that lower 
average particle size in high temperature will cause the high value of thermal conductivity. Besides, 
Figure 9(c) tends to show the same approach which is totally in accordance with the experimental 
data. Figure 10. represents the thermal conductivity analysis in terms of V vs T. It demonstrates that 
the higher mass fraction in high temperature can cause to achieve optimum value of thermal 
conductivity. Figure 11 illustrates the thermal conductivity analysis in terms of V vs Sp with the 
different rising temperatures. In Figure 11(a), similar thermal conductivities are observed with 
varying V and Sp at 25°C. In Figure 11(b) it is obvious that the higher V and lower Sp have caused to 
achieve the better value of thermal conductivity. Figure 11(c) is in accordance with this approach as 
well. Figure 12 demonstrates the validity of the counter plots of thermal conductivity. After analyzing 
the variables, the method of constructing a desirability function based on the responses was applied. 
The scale of the desirability function ranges from zero (a completely undesirable response) to 1 (a 
fully desired response). 
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Fig. 9. Contour plots of thermal conductivity in terms of Sp vs. T: (a) v = 0.1 wt.%, (b) v = 0.2 wt.% and (c) v = 
0.25 wt.% 

 

 
Fig. 10. Contour plots of thermal conductivity in terms of v vs. T: (a) Sp= 4.5 μm, (b) Sp=5 μm and (c) Sp = 7 μm 

 

 
Fig. 11. Contour plots of thermal conductivity in terms of v vs. Sp: (a) T = 25 °C, (b) T = 55 °C and (c) T = 75°C 
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Fig. 12. 3D plots: (a) T = 75 °C, (b) Sp= 7 μm, (c) v = 5% 

 
Graphical ramp views in Figure 13 to Figure 15. expressed the optimized values of the analyzed 

parameters. According to the implemented optimization technique the optimum parameters of 
nanoPCM-based graphene composite are obtained. For composite with the average graphene flake 
size of 4.5 µm, the optimum value of V was found 0.186 wt.% with the thermal conductivity of 0.275 
W/m K at 69.73°C. In contrast, for composites with average flake size of 5 µm the optimum V, thermal 
conductivity and T were found 0.194 wt.%, 0.275 W/m K and 74.19°C, respectively. The optimal 
values of these parameters were identified 0.25 wt.% 0.25 W/m K at 75°C for the nanoPCM-based 
graphene composite with the flake size of 7 µm. 
 

 
Fig. 13. Graphical ramp views for optimized thermal conductivity: Sp = 4.5 
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Fig. 14. Graphical ramp views for optimized thermal conductivity: Sp = 5 

 

 
Fig. 15. Graphical ramp views for optimized thermal conductivity: Sp = 7 

 
4. Conclusion 
 

In this work, the thermal conductivity of nanoPCM-based graphene composite is investigated. To 
meet this objective, a test facility to test this material under different conditions is designed, and an 
empirical model is developed based on response surface methodology. Based on the validated 
model, the effects of the critical parameters on the thermal conductivity performance of this PCM is 
elaborated. This model adequately represented by the most critical independent variables, namely 
average lateral sizes of graphene flakes, mass fractions, and rising temperatures. For the first time in 
the literature, the results indicate that all independent variables have an influence on the thermal 
conductivity. Analysis of variance demonstrates that temperature with a contribution of 84.33% is 
more dominant than the other parameters to affect the thermal conductivity. Besides, the optimal 
conditions to obtain the higher thermal conductivity are determined. The optimum thermal 
conductivity value for the composite with the average graphene flake size of 4.5 µm is obtained at 
the mass fraction of 0.275 W/m K and temperature of 69.73°C. 
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