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This research will explore the issue of stagnation point flow in carbon nanotubes with 
suction/injection impacts by a nonlinear stretching/shrinking sheet. By practising a 
similarity transformation, the governing partial differential equations (PDEs) are 
converted to a scheme of nonlinear ordinary differential equations (ODEs). Then, 
settled numerically with applying a bvp4c solver in Matlab. Two types of carbon 
nanotubes (CNTs) are used which are SWCNTs (single-walled) and MWCNTs (multi-
walled) and the base fluid used is water. In the form of graphs, the impact of the 
velocity, temperature, skin friction and numbers of Nusselts parameter is researched 
and displayed and interpreted physically. It is found that if only suction rises, the range 
of solutions will increase. 
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1. Introduction 
 

The flow due to stretching sheet is a major issue in fluid mechanics because of its enormous 
applications in many assembly types in sector, for instance, extraction of polymer sheets, drawing of 
wire, paper development and many more. The first investigation on the boundary layer flow through 
a linear stretching sheet was via Crane [1]. Meanwhile, Lok et al., [2] analysed stagnation point flow 
by a linear shrinking surface with MHD. After that, many researchers interested to extend their work 
[3-7]. Most of the literature available is about studying the boundary layer flow considering linear 
surface. We should mention that stretching isn't always linear, several authors have also researched 
the issue of nonlinear stretching sheet. 
       Vajravelu [8] studied heat transfer for nonlinear stretching surface. Cortell [9] continued the 
paper by [8] where two distinct forms of thermal boundary conditions are considered on the sheet. 
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Prasad et al., [10] studied the heat transfer of convection by a nonlinear stretching surface with 
changeable fluid characteristics. Besides paper mentioned, there is also many other researchers who 
interested to study on nonlinear stretching/shrinking sheet [11-17]. 

As many study related to nanofluid, and also due to its electrical and mechanical characteristics, 
CNTs also demonstrate outstanding outcomes. Thus, Choi et al., [18] researched oil-based CNTs’ heat 
conductivity. CNTs is an allotrope of carbon, tube-shaped material and made of carbon. They consist 
of SWCNT and MWCNTs. Compared to the various nanoparticles with a similar fraction of volume 
[19-20], CNTs give a greater thermal property. This will enhance both heat transfer of convection and 
base fluids' thermic conductivity. Since then, numerous researchers come across the benefits of CNTs 
and investigated various boundary layer problem on CNTs [21-26]. 

Despite the literature that is often quoted, no study has been made for stagnation point flow by 
a nonlinear stretching/shrinking surface with CNTs alongside suction/injection. To do so, we extend 
Malvandi et al., [27] paper which they studied on stagnation point flow of porous nonlinear 
stretching/shrinking surface. 
 
2. Methodology  
 

Consider an incompressible steady flow concerning stretching/shrinking sheet in CNTs alongside 
suction/injection. The velocity of free stream and velocity of sheet are presumed to differ nonlinearly 
from a steady point of stagnation, which complement to 𝑈𝑤(𝑥) = 𝑎𝑥𝑛  and 𝑈∞(𝑥) = 𝑏𝑥𝑛 , 
respectively, where 𝑎 and 𝑏 are constants. Both SWCNTs and MWCNTs are used with water base 
fluid. The boundary layer equations can be addressed as follows [28] 
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and the boundary conditions are 
 
𝑢 = 𝑈𝑤, 𝑣 = 𝑉𝑤 , 𝑇 = 𝑇𝑤 𝑎𝑡 𝑦 = 0        
                                                                                                                                                                              (4) 
𝑢 → 𝑈∞ , 𝑇 → 𝑇∞  as  𝑦 → ∞ 
 
It should be mention that 𝑉𝑤 is the mass transfer velocity, and 𝜇𝑛𝑓 , 𝛼𝑛𝑓, 𝜌𝑛𝑓 are the viscosity, thermal 

diffusivity and density of the nanofluid, respectively, that Oztop and Abu-Nada [29] offer 
 

𝛼𝑛𝑓 =
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(𝜌𝐶𝑝)𝑛𝑓
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 , 𝜌𝑛𝑓 = (1 − 𝜑)𝜌𝑓 + 𝜑𝜌𝐶𝑁𝑇 , 

 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 76, Issue 1 (2020) 30-38 

32 
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where 𝜑  is the CNTs volume fraction, (𝜌𝐶𝑝)𝑛𝑓  and 𝑘𝑛𝑓  are the capacity of heat and thermal 

conductivity of nanofluid, while (𝜌𝐶𝑝)𝐶𝑁𝑇  ,  𝑘𝐶𝑁𝑇   and 𝜌𝐶𝑁𝑇  are the capacity of heat, thermal 

conductivity and density of CNTs, respectively, and 𝜌𝑓  and 𝑘𝑓  are the density and thermal 

conductivity of the fluid. The use of the term for 𝑘𝑛𝑓/𝑘𝑓  were taken from Xue [30] where the 

Maxwell’s theory model considers the effects of CNTs space distribution on thermal conductivity. 
By introducing the following variables of similarity, we also search similarity solution for Eq. (1)-

(3) with boundary conditions (4) 
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where 𝜂 is the variable of similarity and 𝜓 is the function of stream described as 𝑢 = 𝜕𝜓/𝜕𝑦 and ν =
−𝜕𝜓/𝜕𝑥, which comply with Eq. (1) identically. Using Eq. (6), Eq. (2)-(3) can be reduced to these 
ODEs 
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Thus, subject to boundary conditions (4) we have 

 
𝑓(0) = 𝑆 , 𝑓′(0) = 𝜀, 𝜃(0) = 1 

 
𝑓′(𝜂) → 1 , 𝜃(𝜂) → 0 as  𝜂 → ∞.                                                                                                                   (9) 

 

where 𝛽 =
2𝑛

𝑛+1
  is the nonlinear parameter which varies from 1 to 2 as 𝑛 grows from unity to infinity, 

as stated in Malvandi et al., [27], 𝑆 is suction/injection parameter, 𝑃𝑟 is the Prandtl number and 𝜀 is 
the stretching/shrinking parameter given by 
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which for stretching is when 𝜀 > 0  and shrinking is when 𝜀 < 0 , while suction when 𝑆 > 0  and 
injection when 𝑆 < 0.  

Physical interest’s quantities in this research are the coefficient of skin friction 𝐶𝑓 and the local 

Nusselt number 𝑁𝑢𝑥, identified as 
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2  ,          𝑁𝑢𝑥 =
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in which the surface shear stress 𝜏𝑤 and the surface heat flux 𝑞𝑤 are likely given as 
 

𝜏𝑤 = 𝜇𝑛𝑓 (
𝜕𝑢

𝜕𝑦
)

𝑦=0
 ,       𝑞𝑤 = −𝑘𝑛𝑓 (

𝜕𝑇

𝜕𝑦
)

𝑦=0
                  (12) 

                                                                                             
with 𝜇𝑛𝑓 is the viscosity of the nanofluids and  𝑘𝑛𝑓 is the thermal conductivity of the nanofluids. The 

quantities of physical interest that we acquire following transformation are 
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where 𝑅𝑒𝑥 = 𝑈∞𝑥/𝜈𝑓 is the local Reynolds number. 

 
3. Results  
 

Eq. (7)-(8) are numerically solved by applying the bvp4c package in Matlab, in conjunction with 
boundary conditions (9). Following to Oztop and Abu-Nada [28], we have acknowledged the selection 
of 𝜑  ( 0 ≤ 𝜑 ≤ 0.2) , where 𝜑 = 0  is regular fluid with 𝑃𝑟 = 6.2 . (water). The thermophysical 
properties of the base fluid and the CNTs are indexed as in Table 1. 

 
Table 1  
Thermophysical properties of CNTs [31] 
Physical properties Base fluids 

 
Nanoparticle 

SWCNT MWCNT 

𝜌 (𝑘𝑔/𝑚3) 997 2600 1600 
𝑐𝑝 (𝐽/𝑘𝑔𝐾) 4179 425 796 

𝑘 (𝑊/𝑚𝐾 0.613 6600 3000 

 
Figure 1 illustrate the 𝑓′′(0) and −𝜃′(0) graphs for 𝜀 and 𝜑, where  𝜑 = 0, 0.1 and 0.2 for water-

SWCNTs at 𝑆 = 0.5 and 𝛽 = 2. There exist dual solutions when 𝜀𝑐 < 𝜀 ≤ −1, unique solution when 
𝜀 > −1 and no solutions when 𝜀 < 𝜀𝑐 < 0 (𝜀𝑐  is the critical value). Figure 2 show the 𝑓′′(0) and 
−𝜃′(0) graphs for 𝜀  and 𝑆, where 𝑆 = −0.5, 0 and 0.5 for water-SWCNTs when 𝛽 = 1.5 and 𝜑 =
0.1. As parameter 𝑆 increases, it also increases the skin friction and heat loss from the surface. Hence, 
the suction slows the separation of the boundary layer while the injection speeds it up. 
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Fig. 1. 𝑓′′(0) and −𝜃′(0) graphs for 𝜑 and 𝜀 with water-SWCNTs, respectively 

 

 
Fig. 2. 𝑓′′(0) and −𝜃′(0) graphs for 𝑆 and 𝜀 with water-SWCNTs, respectively 

 
Figure 3 show the 𝑓′′(0)  and −𝜃′(0)  graphs for 𝜀  and 𝛽 , where 𝛽 = 1, 1.5  and 2  for water-

SWCNTs when 𝑆 = 0.5 and 𝜑 = 0.1. It shows that when 𝛽 increases, the velocity gradients as well 
as temperature gradients also increases. From both Figure 2 and 3, we can conclude that parameter 
𝑆 > 0 (suction) and 𝛽 widen the range of solutions compared to 𝜑. 
 

 
Fig. 3. 𝑓′′(0) and −𝜃′(0) graphs for 𝛽 and 𝜀 with water-SWCNTs, respectively 
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Figure 4 explain the coefficient of skin friction and the local Nusselt number graphs, as per Eq. 
(13)-(14) for 𝜑 and 𝑆 which are 𝑆 = −0.5, 0 and 0.5 with 𝜀 = 0.5 and 𝛽 = 1.5. It is concluded that, 
when the 𝑆 > 0 (suction) parameter is increasing, the coefficient of skin friction also increasing along 
with the local Nusselt number. The higher coefficient of skin friction and local Nusselt number are 
SWCNTs compared to MWCNTs, because their density and thermal conductivity is higher. 
 

 
Fig. 4. Coefficient of skin friction and local Nusselt number graphs for 𝜑, 𝑆 and CNTs, respectively 

 
Figure 5-7 show the outcomes of 𝑆, 𝛽 and CNTs on the profiles of velocity and temperature, 

respectively. The term for both first and second solutions applies to the curves shown in Figure 1-3 
and asymptotically these profiles follow the boundary conditions (9), which then support the 
existence of dual solutions shown in Figure 1-3. 
 

 
Fig. 5. Profiles of velocity and temperature for 𝑆 with water-SWCNT, respectively 
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Fig. 6. Profiles of velocity and temperature for 𝛽 with water-SWCNT, respectively 

 

 
Fig. 7. Profiles of velocity and temperature for CNTs in water base fluid, respectively 

 
4. Conclusions 
 
 In this paper, we have investigated theoretically and analysed the 𝜑 and 𝑆 consequences on the 
stagnation point flow over a stretching/shrinking sheet. The results indicate that 

i. Solutions for a stretching sheet are unique and solutions for a shrinking sheet are dual. 
ii. The range of solutions widen with an increase of 𝑆 as well as 𝛽 parameters. 

iii. While, for injection, it decreases the range of solutions. 
iv. As 𝑆 > 0 (suction) increases, the coefficent of skin friction increases too. 
v. The heat transfer also increases with an increase of 𝑆 > 0 (suction) parameter. 

vi. SWCNTs are more effective than MWCNTs in both skin friction and local Nusselt number. 
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