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A linear stability evaluation is conducted to explore the effect on the onset of 
Marangoni-Bénard convection in a ferrofluid layer system. The system is heated from 
below with treatment of both the lower and upper boundaries to completely insulate 
the temperature disturbance. The eigenvalue problem is solved by using regular 
perturbation technique to obtain the critical number of Marangoni and also the critical 
number of Rayleigh. It is observed that the increase in the value Crispation, the 
magnetic number of Rayleigh and also the magnetic number will destabilize the system 
while the increasing number of Bonds will delay the convection. 
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1. Introduction 
 

The initial idea of combination between buoyancy force with surface tension forces initiated by 
Nield [1]. Yang [2] studied the combination of Bénard and Marangoni convection that focusing on the 
thickness of the plate. The mixed of Rayleigh-Bénard with Marangoni-Bénard in the presence of 
temperature-dependent viscosity has been done by Skarda and Mccaughan [3]. Marangoni-Bénard 
and Rayleigh-Bénard convection in a ferrofluid layer system with magnetic field had been examined 
by Hennenberg et al., [4]. 

Ferrofluid previously used by the NASA as a rocket fuel and it also used in electrical appliance 
such as speaker. Kaiser and Miskolczy [5] stated that the ferrofluid is a unique fluid that contains a 
small particle of magnetic. Finlayson [6] analyzed the instability of convection in the ferrofluid layer 
system. After that, Stiles and Kagan [7] extended the research with additional strong magnetic field 
in the ferrofluid layer system. Stationary convection of the ferrofluid in a viscoelastic has been studied 
by Laroze et al., [8]. The porous layer of the ferrofluid system in the existence of a vertical magnetic 
field in Brinkman-Benard-Marangoni convection has been examined by Shivakumara et al., [9]. 
Shivakumara et al., [10] examined the impact of coriolis force and magnetic field dependent (MFD). 
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Another research of convection in ferrofluid with the effect of MFD viscosity has been done by 
Prakash et al., [11]. 

An attempted to study the stability of the deformable surface with the boundaries are considered 
isothermal in a numerical way has been done by Benguria and Depassier [12]. Pérez-García and 
Carneiro [13] also examined the instability of Bénard-Marangoni convection in a deformable surface 
with a restriction of Prandtl value in order to study the crispation number and bond number. Double-
diffusive studied with a deformable effect has been done by McCaughan and Bedir [14]. Another 
study related to the deformable surface has been done by Garcia-Ybarra et al., [15] with 
consideration of buoyancy or without of buoyancy. Combination of Marangoni with Couple-
Rossenweig in ferrofluid layer system with the upper deformable free boundary has been examined 
by Hennenberg et al., [16]. The study of deformable effect in Marangoni convection with the 
combined effect of the magnetic field has been done by Hashim and Arifin [17]. In the presence of 
internal heating, Mokhtar and Hamid [18] also researched the deformable impact of binary fluid layer 
convection in Bénard-Marangoni. 

In this study, we are focusing on the effect of the deformable boundary layer in a ferrofluid layer 
system on the onset of Marangoni-Bénard convection. We thought the lower boundary would be 
rigid while the upper boundary would be deemed a free deformable boundary. In this system, the 
primary things we observed are surface tension and thermal buoyancy. Then, using regular 
perturbation technique to obtain the equation of critical Marangoni and critical thermal Rayleigh. 
 
2. Methodology  
 

We thought of a horizontal layer of ferrofluid heated from below as shown in Figure 1 with 
thickness 𝑑. The lower boundary (𝑧 = 0) are considered to be rigid while the upper boundary (𝑧 =
𝑑) is set to be deformable free surface. Both boundaries are retained at constant but the 
temperature of the lower boundary, 𝑇𝑙 are higher compared to the upper boundary, 𝑇𝑢. 
 

 
Fig. 1. Physical configuration 

 
The density of the fluid, 𝜌 and also the surface tension, 𝜎 are given by 
 

𝜎 = 𝜎𝑜 − 𝜎𝑇(𝑇 − 𝑇0), 
 

    (1) 

𝜌 = 𝜌0[1 − 𝛼𝑡(𝑇 − 𝑇0)].     (2) 
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𝜌 and 𝜎 are considered to linearly with temperature. 𝑇0, 𝜌0, 𝜎0, 𝜎𝑇  and 𝛼𝑡 are reference value of 
temperature, density, surface tension, rate of change of the surface tension at the temperature 𝑇 
and the thermal expansion. Referring to Finlayson [6], the governing equations are 
 

▽⋅ �⃗� = 0, 
 

    (3) 

𝜌0 [
𝜕�⃗�

𝜕𝑡
+ (�⃗� ⋅▽)�⃗�] = − ▽ 𝑝 + 𝜌�⃗� +▽⋅ (�⃗⃗⃗��⃗⃗�) + 𝜇 ▽2 �⃗�, 

 

(4) 

[𝜌0𝐶𝑉,𝐻 − 𝜇0�⃗⃗⃗� ⋅ (
𝜕�⃗⃗⃗�

𝜕𝑇
)

𝑉,𝐻

] ×
𝐷𝑇

𝐷𝑡
+ 𝜇0𝑇 (

𝜕�⃗⃗⃗�

𝜕𝑇
)

𝑉,𝐻

⋅
𝐷�⃗⃗⃗�

𝐷𝑡
= 𝑘1 ▽2 𝑇. 

 

(5) 

Here �⃗� = (𝑢, 𝑣, 𝑤), 𝜇, 𝜇0, 𝑝, 𝑘1, 𝐶𝑉,𝐻 and ▽2=
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
 denote the velocity vector, dynamic 

viscosity, magnetic permeability of vacuum, pressure, thermal conductivity, specific of magnetic field 
and heat capacity at constant volume per unit mass and is the Laplacian operator. Based on Finlayson 
[6] the Maxwell’s equation and equation of magnetization are as follows 
 

▽⋅ �⃗⃗� = 0,   ▽× �⃗⃗⃗� = 0, 
 

(6) 

�⃗⃗� = 𝜇0(�⃗⃗⃗� + �⃗⃗⃗�), 

 

(7) 

�⃗⃗⃗� =
�⃗⃗⃗�

𝐻
[𝑀0 + 𝜒(𝐻 − 𝐻0) − 𝐾(𝑇 − 𝑇0)], 

 

(8) 

where �⃗⃗�, �⃗⃗⃗� and �⃗⃗⃗� denote the magnetic induction, magnetic field density and magnetization. 𝜒 =

(
𝜕𝑀

𝜕𝐻
)

𝐻0,𝑇0

 and 𝐾 = (
𝜕𝑀

𝜕𝐻
)

𝐻0,𝑇0

 are the magnetic susceptibility, and pyromagnetic co-efficient, 𝑀0 =

𝑀(𝐻0, 𝑇0), 𝐻 = |�⃗⃗⃗�| and 𝑀 = |�⃗⃗⃗� |. The basic state that is quiescent is given by 
  

𝜌 = 𝜌𝑏(𝑧),   𝑝 = 𝑝𝑏(𝑧),   �⃗�𝑏 = 0,   𝑇 = 𝑇𝑏(𝑧),   �⃗⃗⃗� = �⃗⃗⃗�𝑏(𝑧),   �⃗⃗⃗� = �⃗⃗⃗�𝑏(𝑧), 
 

(9) 

𝑇𝑏(𝑧) = 𝑇0 − (
△ 𝑇

𝑑
) 𝑧, 

 

(10) 

�⃗⃗⃗�𝑏(𝑧) = [𝐻0 −
𝐾

1 + 𝜒
(

△ 𝑇

𝑑
𝑧)] �̂�, 

 

(11) 

�⃗⃗⃗�𝑏(𝑧) = [𝑀0 +
𝐾

1 + 𝜒
(

△ 𝑇

𝑑
𝑧)] �̂�, 

 

(12) 

where subscript 𝑏 stands for the basic state while �̂� shows the 𝑧-direction in unit vector. The 
perturbation of the basic state in order to study the basic state are in the following forms 
 

�⃗� = �⃗�′,   𝑝 = 𝑝𝑏(𝑧) + 𝑝′,    �⃗⃗⃗� = �⃗⃗⃗�𝑏(𝑧) +  �⃗⃗⃗�′,   𝑇 + 𝑇𝑏(𝑧) + 𝑇′,   �⃗⃗⃗� = �⃗⃗⃗�𝑏(𝑧) + �⃗⃗⃗�′, 
 

(13) 
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where the primed quantity denotes perturbed variables. Substituted Eq. (13) into Eq. (7) and by using 
Eq. (8) yields 
 

𝐻𝑥 + 𝑀𝑥 = (1 +
𝑀0

𝐻0
) 𝐻𝑥, 

 

(14) 

𝐻𝑦 + 𝑀𝑦 = (1 +
𝑀0

𝐻0
) 𝐻𝑦, 

 

(15) 

𝐻𝑧 + 𝑀𝑧 = (1 + 𝜒)𝐻𝑧 − 𝐾𝑇. 
 

(16) 

The normal mode expansion is assumed in the following form 
 

{𝑤, 𝑇, 𝜑} = {𝑊(𝑧), 𝜃(𝑧), 𝜙(𝑧)}𝑒𝑖(𝑙1𝑥+𝑙2𝑦), 
 

(17) 

where 𝑙2 and 𝑙1 are the wave number in 𝑦 and 𝑥 directions. Substituting Eq. (13) into momentum 
equation, Eq. (4), energy equation, Eq. (5) and also Maxwell equation, Eq. (6). Eliminate the pressure 
from the momentum equation, Eq. (4) by using curl identity. Used Eq. (14)-(17) and used the 
following setting 
 

𝑊∗ =
𝑑

𝜈
𝑊,   𝜙∗ =

(1 + 𝜒)𝜅

𝐾𝛽𝜈𝑑2
𝜙,   𝜃∗ =

𝜅

𝛽𝜈𝑑
𝜃,   (𝑥∗, 𝑦∗, 𝑧∗) = (

𝑥

𝑑
,
𝑦

𝑑
,
𝑧

𝑑
), 

 

(18) 

where 𝛽 =
△𝑇

𝑑
, 𝜅 =

𝜅1

𝜌0𝑐0
 is the thermal diffusivity and 𝜈 =

𝜇

𝜌0
 is the kinematic viscosity. Than we 

obtained the following equation 
 

(𝐷2 − 𝑎2)2𝑊 = 𝑅𝑡  𝑎2𝜃 − 𝑅𝑚  𝑎2(𝐷𝜙 − 𝜃), 
 

(19) 

(𝐷2 − 𝑎2)𝜃 = −(1 − 𝑀2)𝑊, 
 

(20) 

(𝐷2 − 𝑀3𝑎2)𝜙 = 𝐷𝜃, 
 

(21) 

where 𝐷 = 𝑑/𝑑𝑧, 𝑅𝑚 = 𝑅𝑡  𝑀1 =
𝜇0𝐾2𝛽2𝑑4

1+𝜒
, 𝑎 = √𝑙1

2 + 𝑙2
2, 𝑀1 =

𝜇0𝐾2𝛽

1+𝜒
, 𝑀2 =

𝜇0𝑇𝑎𝐾2

1+𝜒
, 𝑀3 =

1+𝑀0/𝐻0

1+𝜒
, 

𝑅𝑡 =
𝛼𝑡𝑔𝛽𝑑4

𝜈𝜅
. 

 Here, 𝑊, 𝜙 and 𝜃 are the amplitude of vertical component velocity, magnetic potential and 
temperature respectively. 𝑅𝑚 is the magnetic Rayleigh number, 𝑀1 is the magnetic number, 𝑎 is the 
wave number, 𝑀2 is the magnetic parameter, 𝑅𝑡 is the thermal Rayleigh number, and 𝑀3 is the 
nonlinearity of ferrofluid parameter. Based on Finlayson [6], value 𝑀2 are assumed to be zero since 
the value is too small which is 10-6.  

We set the lower boundary in this research to be rigid while the upper boundary is set to be 
deformable surface. It is presumed that both are completely insulated to any disturbance of 
temperature. The boundary conditions are as follows 

 
𝑊 = 𝐷𝑊 = 𝐷𝜃 = 𝜙 = 0  at    𝑧 = 0 
 

(22) 
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𝑊 = 𝐷𝜃 = 𝐷𝜙 = (𝐷2 + 𝑎2)𝑊 + 𝑀𝑎  𝑎2(𝜃 − 𝐸) = 𝐶𝑟(𝐷2 − 3𝑎2)𝐷𝑊 − (𝐵𝑜 + 𝑎2)𝑎2𝐸
= 0  at    𝑧 = 1, 

 

(23) 

where 𝑀𝑎 =
𝜎𝑇△𝑇𝑑

𝜇𝜅
, 𝐶𝑟 =

𝜇𝜅

𝜎𝑑
, 𝐵𝑜 =

△𝜌𝑔𝑑2

𝜎
. Here 𝑀𝑎, 𝐶𝑟 and 𝐵𝑜 is the Marangoni, crispation and 

bond number.  In order to solve the eigenvalue problem of the Eq. (19)-(21) with the boundary 
conditions (22) and (23), we used regular perturbation method by taking variables 𝑊, 𝜙 and 𝜃 in the 
form as follows 
 

(𝑊, 𝜙, 𝜃) = (𝑊0, 𝜙0, 𝜃0) + 𝑎2(𝑊1, 𝜙1, 𝜃1) +⋅⋅⋅. 
 

(24) 

By substituting Eq. (24) into Eq. (19)-(21) and also the Eq. (22)-(23).  
 

𝐷4𝑊0 + 𝑎2𝐷4𝑊1 − 2𝑎2(𝐷2𝑊0 + 𝑎2𝐷2𝑊1 + 𝑎4) + 𝑎4(𝑊0 + 𝑎2𝑊1) + 𝑅𝑚  𝑎2(𝐷𝜙0

+ 𝑎2𝐷𝜙1 − 𝜃0 − 𝑎2𝜃1) − 𝑅𝑡  𝑎2(𝜃0 + 𝑎2𝜃1) 
 

(25) 

𝐷2𝜃0 + 𝑎2  𝐷2𝜃1 − 𝑎2(𝜃0 + 𝑎2𝜃1) + (1 − 𝑀2)(𝑊0 + 𝑎2  𝑊1) 
 

(26) 

𝐷2𝜙0 + 𝑎2  𝐷2𝜙1 − 𝑎  𝑀3(𝜙0 + 𝑎2𝜙1) − 𝐷𝜃0 − 𝑎2  𝐷𝜃1 
 

(27) 

with the boundary conditions 
 

(𝑊0 + 𝑎2𝑊1) = 𝐷(𝑊0 + 𝑎2𝑊1) = (𝜙0 + 𝑎2𝜙1) = 𝐷(𝜃0 + 𝑎2𝜃1) = 0    a𝑡    𝑧 = 0 
 

(28) 

(𝑊0 + 𝑎2𝑊1) = 0, 
 
𝐷(𝜙0 + 𝑎2𝜙1) = 0, 
 
𝐷(𝜃0 + 𝑎2𝜃1) = 0, 
 
𝐷2𝑊0 + 𝑎2𝐷2𝑊1 + 𝑎2(𝑊0 + 𝑎2𝑊1) + 𝑀𝑎  𝑎2(𝜃0 + 𝑎2𝜃1 − 𝐸) = 0, 
 
𝐶𝑟(𝐷3𝑊0 + 𝑎2𝐷3𝑊1 − 3𝑎2(𝐷𝑊0 + 𝑎2𝐷𝑊1)) − (𝑎2 + 𝐵𝑜)𝑎2  𝐸 = 0    a𝑡    𝑧 = 1 
 

(29) 

First, we will collect all the zero th order term of the Eq. (25)-(27) and boundary conditions (28)-(29) 
to get the following 
  

𝐷4𝑊0 = 0, 
 

(30) 

𝐷2𝜃0 + 𝑊0 = 0, 
 

(31) 

𝐷2𝜙0 − 𝐷𝜃0 = 0, 
 

(32) 

the boundaries are set as follow 
 

𝑊0 = 𝐷𝑊0 = 𝜙0 = 𝐷𝜃0 = 0, a𝑡    𝑧 = 0 
 

(33) 

𝑊0 = 𝐷2𝑊0 = 𝐶𝑟𝐷3𝑊0 = 𝐷𝜙0 = 𝐷𝜃0 = 0  a𝑡    𝑧 = 1. (34) 
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Eq. (30)-(32) and the boundary conditions (33) and (34) are then solve by using MAPLE to get the 
following solutions 
 

𝑊0 = 0, 𝜃0 = 1, 𝜙0 = 0. 
 

(35) 

By substituting (35) into Eq. (25)-(27) and boundary conditions (28)-(29), we are then will get the first 
order equations as follows 
 

𝐷4𝑊1 − 𝑅𝑡 − 𝑅𝑚 = 0, 
 

(36) 

𝐷2𝜃1 − 1 + 𝑊1 = 0, 
 

(37) 

𝐷2𝜙1 − 𝐷𝜃1 = 0, 
 

(38) 

boundary conditions for 𝑧 = 0  
 

𝑊1 = 𝐷𝑊1 = 𝜙1 = 𝐷𝜃1 = 0, 
 

(39) 

and 𝑧 = 1 
 

𝑊1 = 𝐷𝜙1 = 𝐷𝜃1 = 𝐶𝑟𝐷3𝑊1 − 𝐵𝑜 (
𝐷2𝑊1

𝑀𝑎
+ 1) = 0. 

 

(40) 

 Then the Eq. (36)-(38) and boundary conditions (39)-(40) are solved using MAPLE software.After 
performing a regular perturbation method, it revealed that 𝑀3 does not contribute to the stability of 
the Marangoni-Bénard convection in ferrofluid system. The same finding also reported by 
Nanjundappa et al., [19]. The solution of the system will produce equations of critical Marangoni 
number, 𝑀𝑎𝑐, and critical thermal rayleigh number, 𝑅𝑡𝑐 in terms of 𝑅𝑚, 𝐶𝑟, 𝑀1, 𝐵𝑜 and 𝑀3. 
 
3. Results  
 

In the present paper, we tend to study the impact of deformable of a ferrofluid layer system on 
the Marangoni-Bénard convection. The lower boundary is rigid with deformable surface of the upper 
free boundary. The parameter 𝑅𝑚, 𝑀1, 𝑀3  𝐵𝑜 and 𝐶𝑟 are considered as a function of critical 
Marangoni number, 𝑀𝑎𝑐 and also thermal Rayleigh number, 𝑅𝑡𝑐. The equations of both 𝑀𝑎𝑐 and 
𝑅𝑡𝑐 are obtained through regular perturbation method. The behaviour of the parameters are shown 
in Figure 2 until Figure 5.  

Figure 2 represents the effect of 𝐵𝑜 on 𝑀𝑎𝑐 for different values of 𝑅𝑚 with 𝑅𝑡 is set to be 10 and 
𝐶𝑟 is equal to 0.001. Based on the figure, the increment of 𝐵𝑜 lead to the rise in 𝑀𝑎𝑐 and it delays 
the convection of the system while the increasing of 𝑅𝑚 compresses the value of 𝑀𝑎𝑐 and hasten 
the convection of ferrofluid. 

Different values of 𝑀1 on 𝑀𝑎𝑐 as a function of 𝐶𝑟 when the value of 𝑅𝑡 and 𝐵𝑜 is set to be one 
are demonstrated in Figure 3. The figure shows the increasing of 𝐶𝑟 and also 𝑀1 will cause to the 
reduce of 𝑀𝑎𝑐. The reason behind the behaviour of 𝐶𝑟 parameter is that based on the formulation 
of 𝐶𝑟 it is directly proportional to 𝜅 while it is inversely proportional to 𝜎. The increasing of 
temperature will lead the decreasing of surface tension, 𝜎 while the simultaneous increasing of 𝜅 and 
decreasing of 𝜎 enhance the heat transfer (Mokhtar and Hamid [18]). 
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Fig. 2. Impact of 𝑅𝑚 on 𝑀𝑎𝑐 against 𝐵𝑜. 

   

 
Fig.  3. 𝑀𝑎𝑐 versus 𝐶𝑟 for different value of 𝑀1 

 
The effect of 𝐵𝑜 on 𝑀𝑎𝑐 for a selected value of 𝑀1 is presented in Figure 4. Based on Figure 4, as 

the value of 𝐵𝑜 elevated, the value of 𝑀𝑎𝑐 also increase as in Figure 2. It is because the increasing of 
𝐵𝑜 value leads to reducing the surface tension, 𝜎 hence it delays the convection as explained by 
Mokhtar and Hamid [18]. Meanwhile, the increase of 𝑀1 will lessen the 𝑀𝑎𝑐 and hasten the 
ferroconvection. 

Figure 5 shows the effect of thermal buoyancy convection 𝑅𝑡𝑐 against the surface tension 
convection 𝑀𝑎𝑐 for various value of 𝑀1 when 𝐶𝑟 = 0.001 and 𝐵𝑜 = 10. This figure represents that 
for different values of 𝑀1, 𝑅𝑡𝑐  and 𝑀𝑎𝑐 will converged to 𝑀𝑎𝑐 = 47.66. The convergence value of 
this system is lower compared to Nanjundappa et al., [19] which is 𝑀𝑎𝑐 = 50.3919 for the case of 
ferroconvection with the temperature dependent viscosity 𝐵 = 2, thus it is more stable compared 
to the ferroconvection in a deformable surface. 
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Fig.  4. 𝑀𝑎𝑐 versus 𝐵𝑜 for different value of 𝑀1. 

    

 
Fig. 5. 𝑅𝑡𝑐 versus 𝑀𝑎𝑐 for different value of 𝑀1 

 
4. Conclusions 
 

The study of the deformable effect in ferrofluid has been done. We can conclude that the increase 
of 𝑅𝑚, 𝐶𝑟 and also 𝑀1 hasten the convection while 𝐵𝑜 delays the onset of Marangoni-Bénard 
convection. We also found that the combination of decreasing 𝑅𝑚 and increasing of 𝐵𝑜 will stabilize 
the system while the increasing of both 𝐶𝑟 and 𝑀1 value can hasten the convection of ferrofluid. 
Other than that, the combination of increment 𝐵𝑜 value and reducing of 𝑀1 help in stabilizing the 
system of ferrofluid on the onset of Marangoni-Bénard convection. 
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