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The problem of Hydromagnetic steady laminar flow of an electrically conducting 
viscous incompressible fluid between parallel pates has been studied. The nonzero 
tangential slip velocity at the permeable boundary is considered. A numerical solution 
is derived for the governing nonlinear boundary value problem using a novel Keller box 
scheme. The effect of suction Reynold number 𝑅, Hartman number 𝑀 and slip 
coefficient 𝜙 on derived quantities such as velocity filed and skin friction at the 
boundaries are analyzed. The physical significance of the flow parameters is also 
discussed. 
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1. Introduction 
 

The study of Magentohydrodynamics (MHD) flow of an incompressible, viscous and electrically 
conducting fluid between two porous plates not only possesses the theoretical appeal but also has 
many real-world engineering applications such as magentohydrodynamic pumps, geothermal energy 
extraction, MHD generators [1]. A useful survey of MHD theory and its applications can be found in 
the book by Moreau [2]. Owing to its important applications, researchers have used this 
phenomenon to study fluid flow behavior under various geometries, like vertical plates, stretching 
sheets, channels, tubes, and disks. Hartmann [3] investigated the impact of a transverse uniform 
magnetic field on the steady flow of an electrically conducting fluid between two parallel plates. 

The problem of homogeneous fluid flowing between porous walls with uniform suction at the 
wall was first investigated by Berman [4] and obtained the perturbation solution for the velocity field 
for small suction Reynold number. Later, Berman’s problem was extended by many researchers for 
both small and large Reynold number [5-12]. A distinctive evaluation of forced convection heat 
transfer to an electrically conducting liquid flowing in a channel with a transverse magnetic field was 
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carried by Perlmutter and Siegel [13]. Subsequently, Attia and Kotb [14] and Attia [15] investigated 
the effect of temperature based viscosity on the magentohydrodynamic flow in a channel. The steady 
MHD flow and heat transfer induced by an exponentially shrinking sheet with partial slip, thermal 
radiation and suction was investigated using MATLAB bvp4c solver by Adnan et al., [16]. MHD slip 
Darcy flow of viscoelastic fluid over a stretching surface in a porous medium with thermal radiation 
and viscous dissipation was analytically examined by Wahid et al., [17]. 

Most of the above analysis are confined to no-slip boundary conditions. But the velocity slip being 
present at the permeable boundaries has a remarkable effect on the fluid flow [18-21]. In the present 
study, the problem of magnetohydrodynamic flow of an incompressible viscous fluid flowing 
between two parallel porous plates is investigated in the presence of external magnetic field and 
velocity slip boundary conditions at the permeable boundaries. The numerical solution of the 
governing problem is obtained and is analyzed for all flow parameters using the Keller-box method. 
Keller [22] used this scheme for solving diffusion problems, but it has subsequently been applied to 
a broad class of problems. A sketch of applications of this box scheme to a variety of boundary layer 
flow problems is given in researches by Keller [23] and Vajravelu and Prasad [24]. 

An outline of the rest of this paper is as follows. In section (2) mathematical formulation of the 
proposed problem is explained. Section (3) devotes to obtain a numerical solution of the governing 
problem and section (4) presents results and discussions. Important conclusions from the study are 
given in section (5). 
 
2. Mathematical Formulation 
 

The steady laminar flow of an incompressible viscous fluid between two parallel porous plates is 
considered with slip at the porous boundaries. An external magnetic field of strength 𝐻0 is applied in 
the direction perpendicular to the walls. Assuming a 𝑋𝑌 − coordinate system with the origin at center 
of the channel, 𝐿 be the length of the channel with 2𝑙 being the distance between two plates as 
shown in Figure 1. Let 𝑢 and 𝑣 be the velocity components in the 𝑥 and 𝑦 directions, respectively. 
 

 
Fig. 1. Geometry of viscous fluid flow between porous plates 

 
The governing equations of motion along with continuity equation are 

 

 
𝜕𝑢

𝜕𝑥
+

1

𝑙

𝜕𝑣

𝜕𝜉
= 0              (1) 
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+

𝑣

𝑙
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= −

1
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𝜌
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𝑢
𝜕𝑣

𝜕𝑥
+

𝑣

𝑙

𝜕𝑣

𝜕𝜉
= −

1

𝜌𝑙

𝜕𝑝

𝜕𝜉
+ 𝑣 (

𝜕2𝑣

𝜕𝑥2 +
1

𝑙2
𝜕2𝑣

𝜕𝜉2)          (3) 

 

where, 𝜎 is the electrical conductivity and 𝐵 = 𝜇𝑒𝐻0, 𝜇𝑒 is the magnetic permeability. Also, 𝜉 =
𝑦

𝑙
 is 

the dimensionless variable, 𝜌 is the density, 𝑝 is the pressure. The appropriate boundary conditions 
are; 
 
𝑢(𝑥,±1) = ±𝑢slip,             (4) 

 
𝑣(𝑥,±1) = ±𝑉             (5) 
 

where 𝑢slip = −
√𝑘

𝛼𝑙

𝜕𝑢

𝜕𝜂
 is the slip velocity and 𝑉 is the suction velocity at walls of the channel. By 

introducing the stream function of the form [4] 
 
𝜓(𝑥, 𝑦) = (𝑙𝑈(0) − 𝑉𝑥)𝐹(𝜉)            (6) 
 
where 𝑈(0) is the average entrance velocity at 𝑥 = 0. The expressions for axial and radial 
components of velocity can be derived as 
 

𝑢 =
1

𝑙
(𝑙𝑈(0) − 𝑉𝑥)𝐹′(𝜉)            (7) 

 
𝑣 = 𝑉𝐹(𝜉)              (8) 
 

Substituting Eq. (7) and Eq. (8) in Eq. (2) and Eq. (3) the momentum equations reduces to 
 

−
1

𝜌

𝜕𝑝

𝜕𝑥
= (𝑈(0) −

𝑉𝑥

𝑙
)(

𝑉

𝑙
(𝐹𝐹′′ − 𝐹′2) −

𝑣

𝑙2
𝐹′′′ +

𝜎𝐵2

𝜌
𝐹′) −

1

𝑙𝑝

𝜕𝑝

𝜕𝜉
=

𝑉2

𝑙
𝐹𝐹′ −

𝑣𝑉

𝑙2
𝐹′′  

 
Eliminating the pressure term and upon simplification, we have, 

 
𝑑

𝑑𝜉
(
𝑉

𝑙
(𝐹𝐹′′ − 𝐹′2) −

𝑣

𝑙2
𝐹′′′ +

𝜎𝐵2

𝜌
𝐹′) = 0          (9) 

 
𝐹′′′ + 𝑅(𝐹′2 − 𝐹𝐹′′) − 𝑎𝑅𝐹′ = 𝐾                     (10) 
 

where 𝑅 =
𝑙𝑉

𝑣
 is suction Reynolds number, 𝑎 =

𝐻0
2𝜇𝑒

2𝜎𝑙

𝜌𝑉
 and 𝐾 is an arbitrary constant. Consider 𝑎𝑅 =

𝑀2, with 𝑀 = 𝐵𝑙(
𝜎

𝑣𝑝
)1/2 called Hartmann number. The boundary conditions can be rewritten as 

 
𝐹(1) = 1, 𝐹′(1) = −𝜙𝐹′′(1), 𝐹(−1) = −1, 𝐹′(−1) = 𝜙𝐹′′(−1)                (11) 
 

where 𝜙 =
√𝑘

𝛼𝑙
 is the slip coefficient.  
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3. Finite Difference Solution 
 

The fourth-order differential equation in Eq. (10) governing the flow along with the suitable 
boundary conditions in Eq. (11) is solved by a novel finite-difference technique developed by Keller 
also known as the ‘box’ method. This Keller box method is an implicit scheme with second-order 
accuracy in both space and time. This scheme differs from other techniques, where the second and 
higher-order derivatives are replaced by first derivatives through the introduction of additional 
variables, which results in a system of first-order equations. And then, these first-order derivatives 
are approximated using appropriate differences, which gives a system of difference equations. Using 
suitably the boundary conditions result in an algebraic block tri-diagonal system and can be solved 
with the general block tri-diagonal algorithm. 

The method begins with introducing new variables to reduce the fourth order governing equation 
to four system of first order equations as follows. 
 
𝑈 = 𝐹′, 𝑉 = 𝐹′′,𝑊 = 𝐹′′′,

𝑊′ + 𝑅(𝑈𝑉 − 𝐹𝑊) − 𝑀2𝑉 = 0
                     (12) 

 
The corresponding boundary conditions can be written as 

 
𝐹(1) = 1,   𝐹(−1) = −1
𝑈(1) = −𝜙𝑉(1),   𝑈(−1) = 𝜙𝑉(−1)

                    (13) 

 
Following this step, the system of first order equations are discretized by substituting the 

appropriate finite difference approximations. Accordingly, the system from Eq. (12) can be written 
as 
 
𝐹𝑗 − 𝐹𝑗−1 = 𝑑𝑗(𝑈𝑗 + 𝑈𝑗−1)                      (14) 

 
𝑈𝑗 − 𝑈𝑗−1 = 𝑑𝑗(𝑉𝑗 + 𝑉𝑗−1)                      (15) 

 
𝑉𝑗 − 𝑉𝑗−1 = 𝑑𝑗(𝑊𝑗 + 𝑊𝑗−1)                      (16) 

 

𝑊𝑗 − 𝑊𝑗−1 +
𝑅𝑑𝑗

2
(𝑈𝑗 + 𝑈𝑗−1)(𝑉𝑗 + 𝑉𝑗−1) −

𝑅𝑑𝑗

2
(𝐹𝑗 + 𝐹𝑗−1)(𝑊𝑗 + 𝑊𝑗−1) − 𝑑𝑗𝑀

2(𝑉𝑗 + 𝑉𝑗−1) = 0  (17) 

 
This nonlinear discretized system is linearized using Newton’s linearisation method. Substituting 

Newton’s iterations as, ()𝑗
(𝑖+1)

= ()𝑗
(𝑖)

+ 𝛿()𝑗
(𝑖)

 for all the variables in the system, we obtain the 

following linear set of algebraic equations. 
 
𝛿𝐹𝑗 − 𝛿𝐹𝑗−1 − 𝑑𝑗(𝛿𝑈𝑗 + 𝛿𝑈𝑗−1) = (𝑟1)𝑗                    (18) 

 
𝛿𝑈𝑗 − 𝛿𝑈𝑗−1 − 𝑑𝑗(𝛿𝑉𝑗 + 𝛿𝑉𝑗−1) = (𝑟2)𝑗                    (19) 

 
𝛿𝑉𝑗 − 𝛿𝑉𝑗−1 − 𝑑𝑗(𝛿𝑊𝑗 + 𝛿𝑊𝑗−1) = (𝑟3)𝑗                    (20) 

 
(𝑎1)𝑗𝛿𝑊𝑗 + (𝑎2)𝑗𝛿𝑊𝑗−1 + (𝑎3)𝑗(𝛿𝑉𝑗 + 𝛿𝑉𝑗−1) + (𝑎4)𝑗(𝛿𝑈𝑗 + 𝛿𝑈𝑗−1) = (𝑟4)𝑗               (21) 
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where, 
 

(𝑎1)𝑗 = 1 −
𝑑𝑗𝑅

2
(𝐹𝑗 + 𝐹𝑗−1)                      (22) 

 
(𝑎2)𝑗 = −2 + (𝑎1)𝑗                       (23) 

 

(𝑎3)𝑗 =
𝑅𝑑𝑗

2
(𝑈𝑗 + 𝑈𝑗−1) − 𝑀2𝑑𝑗                      (24) 

 

(𝑎4)𝑗 =
−𝑑𝑗𝑅

2
(𝑊𝑗 + 𝑊𝑗−1)                      (25) 

 

(𝑎5)𝑗 = −
𝑑𝑗𝑅

2
(𝑉𝑗 + 𝑉𝑗−1)                      (26) 

 
(𝑟1)𝑗 = 𝑑𝑗(𝑈𝑗 + 𝑈𝑗−1) + 𝐹𝑗−1 − 𝐹𝑗                      (27) 

 
(𝑟2)𝑗 = 𝑑𝑗(𝑉𝑗 + 𝑉𝑗−1) + 𝑈𝑗−1 − 𝑈𝑗                     (28) 

 
(𝑟3)𝑗 = 𝑑𝑗(𝑊𝑗 + 𝑊𝑗−1) + 𝑉𝑗−1 − 𝑉𝑗                     (29) 

 

(𝑟4)𝑗 = 𝑀2𝑑𝑗(𝑉𝑗 + 𝑉𝑗−1) −
𝑅𝑑𝑗

2
((𝑈𝑗−1 + 𝑈𝑗)(𝑉𝑗−1 + 𝑉𝑗) −  

(𝐹𝑗−1 + 𝐹𝑗)(𝑊𝑗−1 + 𝑊𝑗)) + 𝑊𝑗−1 − 𝑊𝑗                     (30) 

 
The linearized system of Eq. (18)-(21) have a block tri-diagonal structure which can be solved with 

the help of block elimination method. In vector -matrix form, Eq. (18)-(21) can be written as 
 
𝐴𝛿 = 𝑟                        (31) 
 
where,   

𝐴 =

[
 
 
 
 
 
 
 
[𝐴1] [𝐶1]

[𝐴2] [𝐶2]

⋱
⋱
⋱

[𝐵𝐽−1] [𝐴𝐽−1] [𝐶𝐽−1]

[𝐵𝐽] [𝐴𝐽] ]
 
 
 
 
 
 
 

                  (32) 

 

𝛿 =

[
 
 
 
 
[𝛿1]

⋮

]
 
 
 
 

    𝑟 =

[
 
 
 
 
[𝑟1]

⋮

]
 
 
 
 

                      (33) 

 
where in Eq. (32) the elements are defined by 
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[𝐴𝑗] =

[
 
 
 
 
0 0 1 −𝑑𝑗

−𝑑𝑗 0 0 1

−1 −𝑑𝑗 0 0

(𝑎3)𝑗 (𝑎2)𝑗 (𝑎4)𝑗 (𝑎5)𝑗]
 
 
 
 

 for 1 ≤ 𝑗 ≤ 𝐽 − 1;   [𝐴𝐽] =

[
 
 
 
0 0 0 0
−𝑑𝑗 0 −𝑑𝑗 0

−1 −𝑑𝑗 1 −𝑑𝑗

(𝑎3)𝐽 (𝑎2)𝐽 (𝑎3)𝐽 (𝑎1)𝐽]
 
 
 

 

 

[𝐴𝐽] =

[
 
 
 
0 0 0 0
−𝑑𝑗 0 −𝑑𝑗 0

−1 −𝑑𝑗 1 −𝑑𝑗

(𝑎3)𝐽 (𝑎2)𝐽 (𝑎3)𝐽 (𝑎1)𝐽]
 
 
 

;    [𝐵𝑗] =

[
 
 
 
0 0 −1 −𝑑𝑗

0 0 0 −1
0 0 0 0
0 0 (𝑎4)𝑗 (𝑎5)𝑗]

 
 
 
,    2 ≤ 𝑗 ≤ 𝐽 

 

[𝐶𝑗] =

[
 
 
 
0 0 0 0
−𝑑𝑗 0 0 0

1 −𝑑𝑗 0 0

(𝑎3)𝑗 (𝑎1)𝑗 0 0]
 
 
 

,    1 ≤ 𝑗 ≤ 𝐽 − 1  

 
[𝛿𝑗] = [𝛿𝑉𝑗−1  𝛿𝑊𝑗−1  𝛿𝐹𝑗   𝛿𝑈𝑗   ]𝑇 ,    1 ≤ 𝑗 ≤ 𝐽 − 1  

 
and  
 
[𝛿𝐽] = [𝛿𝑉𝐽−1  𝛿𝑊𝐽−1  𝛿𝑉𝐽  𝛿𝑊𝐽  ]𝑇  

 
[𝑟𝑗] = [(𝑟1)𝑗  (𝑟2)𝑗  (𝑟3)𝑗  (𝑟4)𝑗  ]𝑇 ,    1 ≤ 𝑗 ≤ 𝐽  

 
Now we write, 

 
𝐴 = 𝐿𝑢                        (34) 
 
where, 
 

𝐿 =

[
 
 
 
 
[𝛼1]

[𝛼2]

⋱
⋱

[𝐵𝐽] [𝛼𝐽]]
 
 
 
 

, 𝑢 =

[
 
 
 
 
 
 
[𝐼] [Γ1]

[𝐼] [Γ2]

⋱
⋱

[𝐼] [Γ𝐽−1]

[𝐼] ]
 
 
 
 
 
 

  

 
Here, [𝐼] is unit matrix and [𝛼𝑖] and [Γ𝑖] are 4 × 4 matrices whose elements are determined by 

the following equations 
 

[𝛼𝑗] = [𝐴1]  

 
[𝐴1][Γ1] = [𝐶1]  
 

[𝛼𝑗] = [𝐴𝑗] − [𝐵𝑗][Γ𝑗−1], 𝑗 = 2,3, , 𝐽  

 

[𝛼𝑗][Γ𝑗] = [𝐶𝑗], 𝑗 = 2,3, , 𝐽 − 1  
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Eq. (34) substituted in Eq. (31) and we have 
 
𝐿𝑢𝛿 = 𝑟                        (35) 
 

Defining 𝑢𝛿 = 𝑤, we have 
 
𝐿𝑤 = 𝑟                        (36) 
 
where, 
 
𝑤 = [[𝑤1]  [𝑤2]  [𝑤3]  [𝑤4]]

𝑇                      (37) 
 
and the [𝑤𝑗] are 4 × 1 column matrices. The elements 𝑤 can be solved from Eq. (36) 

 
[𝛼1][𝑤1] = [𝑟1]  
 
[𝛼𝑗][𝑤𝑗] = [𝑟𝑗] − [𝐵𝑗][𝑤𝑗−1]  

 
Once the elements of 𝑤 are found, solution for 𝛿 can be obtained using relations: 

 
[𝛿𝐽] = [𝑤𝐽]  

 
[𝛿𝑗] = [𝑤𝑗] − [Γ𝑗][𝛿𝑗+1]  

 

Theses solution for 𝛿 can be used to find (𝑖 + 1)𝑡ℎ iteration. 
 
4. Results and Discussion 
 

The numerical study on Magnetohydrodynamics (MHD) flow between parallel plates with velocity 
slip at the permeable boundaries is performed using a novel Keller-Box method. We obtain the 
solution for the derived quantities from the governing non-linear boundary value problem and are 
shown in the graphs. The velocity profiles, both axial as well as radial velocity are plotted in Figure 2 
to Figure 5 for different positive values of flow Reynold number 𝑅, Hartmann Number 𝑀 and slip 
coefficient 𝜙. The presence of both the slip coefficient and magnetic parameter decreased the 
magnitude of both axial and radial velocity profiles in general. The plot also reveals that as magnetic 
field intensity 𝑀 increases the axial velocity decreases near the central plane and fluid is pushed 
towards the boundaries. Moreover, as 𝑀 increases velocity profiles show the characteristic flattering. 
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Fig. 2. Dimensionless Axial velocity for various Reynolds number with 𝑀 = 0,1.5 and 𝜙 = 0,0.1 

 

 
Fig. 3. Dimensionless radial velocity for various Reynolds number with 𝑀 = 0,1.5 and 𝜙 = 0.1 

 

 
Fig. 4. Dimensionless Axial velocity and radial velocity for various 𝑀 with 𝑅 = 0.5 and 𝜙 = 0 

 
When 𝜙 = 0(no slip case) and 𝑀 = 0, the governing problem reduced to Berman’s problem [4]. 

Moreover, it is evident from Figure 5 that increasing slip leads to flattening of profiles and reduced 
wall shear stress. A similar observation is made in Figure 2 for the positive value of flow Reynolds 
number 𝑅. Dimensionless radial velocity profiles depicted in Figure 3, which show the effect of slip 
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coefficient 𝜙 for fixed suction and 𝑀. Irrespective of the values of pertinent parameters, the axial 
velocity profile takes its dimensionless value 1 at the upper plate and reduces to −1 at the plate and 
with a point of inflection near the central plane. From Figure 2, the negative axial velocity near the 
walls in the presence of slip proves the occurrence of flow reversal near the boundaries. 
 

 
Fig. 5. Dimensionless Axial velocity and radial velocity for various slip coefficient 𝜙 with 𝑀 = 2 

 
The coefficient of skin friction near the plate −𝐹′′(1) is computed in the Table 1. An increase in 

the magnitude of skin friction is seen with increasing suction. Meanwhile, a general decrease in the 
skin friction coefficient is observed with an increase in velocity slip. 
 

Table 1 
Calculation of skin friction coefficient (−𝐹′′(1)) for different 
values of magnetic parameter 𝑀, Reynolds number 𝑅 and 
velocity slip parameter 𝜙 
𝑀   𝜙 = 0 𝜙 = 0.1 𝜙 = 0.2 

0 𝑅 = 1 3.0586 2.7935 2.7411 
0.5 3.1122 2.8233 2.7709 
1 3.2677 2.9091 2.8624 
1.5 3.5099 3.0417 3.0274 
0 𝑅 = 5 3.6936 2.7098 1.8262 
0.5 3.7901 2.7941 1.7891 
1 4.0586 2.9996 1.9125 
1.5 4.4494 3.2631 2.1764 

 
5. Conclusion 
 

The present analysis focused on the finite difference solution to understand the combined effects 
of slip coefficient and magnetic field on the steady flow of viscous incompressible fluid flowing 
between two parallel plates with permeable boundaries. We infer that the fluid velocity is reduced 
by both the magnetic field and slip parameter. It is well known that the suction Reynolds number 
increases skin friction, the present study also reveals the effects of the magnetic field and slip velocity 
on the variation in skin friction at the porous boundaries. 
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