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An analysis has been performed using the Buongiorno model on the nanofluid steady 
2D stagnation point flow magnetohydrodynamic (MHD) over the shrinking surface to 
test its stability. Transforming the governing partial equations into a set of ordinary 
differential equation (ODE) and solved the equations numerically. In this paper, the 
impact of Brownian motion and thermophoresis has been considered and can be seen 
in ODE. The physical quantities of interest such as skin friction, local Nusselt number, 
local Sherwood number as well as the velocity and temperature profiles are acquired 
by numerical findings for some values of governing parameters such as ԑ, M, Pr, Le, Nb 

and Nt. Results show that duality of solutions exist for certain values  <-1 while unique 

solution exist when  >-1. On the other hand, as the parameter of M increased, the 
gradient of velocity increased, the rate of transmission heat and mass improved. 
Throughout the analysis, it demonstrates a linearly stable first solution in comparison 
to linearly unstable second solution. 
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1. Introduction 
 

Numbers of researchers and scientists are interested in studying the effect of stagnation point 
flow because of its numerous applications in industrial sectors such as, aviation flows, process of 
hydrodynamics and etc. Hiemenz [1] was the first on stagnation point flow famously known as 
Heimenz flow. The energy equation is included by Eckert [2] and the precise heat transfer solution 
was found. The work of extension [1] were regarded by Chiam [3] by taking equally velocities of 
stretching and shrinking. In addition, the impact of the stagnation point flow effect has been 
investigated in nanofluid flow. The nanofluid word is implemented by Choi [4], describing the fluid 
that can enhance the transfer rate of heat. Two models were suggested by Tiwari and Das [5] and 
Buongiorno [6] in the solution of nanofluid problem in the fluid boundary and heat transfer. The 
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model on Tiwari and Das analyze the behavior of nanofluid by taking consideration on the solid 
volume fraction while Buongiorno focused on the analysis of thermophoresis and Brownian motion 
on the characteristics of heat transmission. Bachok et al., [7] have studied the problem in 
stretching/shrinking case using Tiwari and Das model. It discovered that there is a single solution in 
the stretching sheet while there is a double solution in the shrinking sheet. The effects of the mass 
fraction parameter were investigated by three different kinds of nanoparticles. Noor et al., [8] have 
deliberate nanofluid over a shrinking sheet. While Shomali et al., [9] had considered the problem of 
unsteady flow in nanofluid. Another study has also regarded the effect of magnetohydrodynamics 
(MHD) boundary layer since this provides excellent support for the fluid flow. Rahman et al., [10] 
extended problem from [7]. Then, Yazdi et al., [11] studied on radiation effect on two dimensional 
MHD stagnation point flow. Besides, the problem in the non-linear porous shrinking sheet have been 
solved by Junoh et al., [12]. Meanwhile, Soid et al., [13] focused on micropolar fluid with slip 
boundary. There are a lot of work been done by other researchers using Tiwari and Das model 
(Bukhta et al., [14], Ibrahim et al., [15], Yasin et al., [16]). 

Throughout the work using the Buongiorno model, researchers have determined the impact of 
movement and thermophoresis on liquid flow. Anwar et al., [17] have considered the effects of 
radiation on MHD over exponentially stretching sheet. Later, Zaimi et al., [18] reported the results 
on unsteady flow in shrinking cylinder. While, Mansur et al., [19] have extended the problem from 
Ibrahim et al., [20] by adding the suction effect. The viscoelastic nanofluid problem with heat 
radiation over permeable stretching / shrinking sheet has been conducted by Jusoh et al., [21]. Najib 
et al., [22] have originated the idea by adding the slip effect to their problem. Kamal et al., [23] then 
continue with chemical reaction effect over a permeable surface. Bakar et al., [24] then did their 
research over stretching/shrinking cylinder. Motivated by the work from Chen et al., [25], Ismail et 
al., [26] extended their work with the presence of viscous dissipation. 

This study seeks to extend the highlight work from the stagnation point flow of MHD to the stre
tching sheet [20] and stagnation point flow of nanofluid [7] to the nanofluid stagnanation point flo
w of the MHD over shrinking surface using the Buongiorno model with the stability analysis which 
previously not taken into account. 
 
2. Formulation of Problem  
 

In the occurrence of magnetic field, we contemplate the two-dimensional of nanofluid stagnation 
point flow at the area 𝑦 > 0towards a shrinking surface located at 𝑦 = 0 with fixed point𝑥 = 0. 
Furthermore, we assume that the wall does not have a slip condition. The flow is kept at a constant 
temperature,𝑇𝑤and concentration, 𝜙𝑤. Assume that the velocity of shrinking and ambient fluid 
velocity (free stream) are 𝑢𝑤 = 𝑎𝑥 and 𝑈∞ = 𝑏𝑥, respectively. Note that 𝑎 < 0is due to the shrinking 
surface, while b is a positive constant. Using these assumptions, the mathematical modelling 
equations are (see [7] and [20]) 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0               (1) 

 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝑈∞

𝜕𝑈∞

𝜕𝑥
+ 𝜐 (

𝜕2𝑢

𝜕𝑦2
) +

𝜎𝐵0

𝜌𝑓
(𝑈∞ − 𝑢)         (2) 

 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼 (

𝜕2𝑇

𝜕𝑦2) + 𝜏 [𝐷𝐵 (
𝜕𝑇

𝜕𝑦

𝜕𝜙

𝜕𝑦
) +

𝐷𝑇

𝑇∞
(

𝜕𝑇

𝜕𝑦
)

2

]         (3) 
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𝑢
𝜕𝜙

𝜕𝑥
+ 𝑣

𝜕𝜙

𝜕𝑦
= 𝐷𝐵 (

𝜕2𝜙

𝜕𝑦2) +
𝐷𝑇

𝑇∞
(

𝜕2𝑇

𝜕𝑦2)           (4) 

 
together with the initial and boundary conditions (IBCs), 
 
𝑢 = 𝑢𝑤(𝑥), 𝑣 = 0, 𝑇 = 𝑇𝑤, 𝜙 = 𝜙𝑤 at 𝑦 = 0 
 
𝑢 → 𝑈∞, 𝑇 → 𝑇∞, 𝜙 → 𝜙∞ at 𝑦 → ∞           (5) 
 
where u and v are the velocity along the x and y axes, T is the temperature of nanofluid,𝜎 is 
conductance of electrical fluid, 𝐵0 represents the shrinking sheet magnetic field we applied to, 𝜌𝑓 for 

base fluid density, 𝜐 the kinematics viscosity, 𝛼 is the fluid thermal diffusiveness where 𝛼 =
𝑘

(𝜌𝑐)𝑓
. 

Next, 𝜏 is the proportion between the nanoparticle effectiveness heat capacity and fluid heat 
capacity, 𝜙 is the concentration of the nanoparticle, 𝐷𝑇  and 𝐷𝐵are the diffusion of thermophoresis 
and Brownian dispersion, respectively. Introducing the following similarity transformations for Eq. 
(1)-(4) subjected to the conditions Eq. (5) 
 

𝜂 = √
𝑏

𝜐
𝑦, 𝜓 = √𝜐𝑏𝑥𝑓(𝜂), 𝜃(𝜂) =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
, ℎ(𝜂) =

𝜙−𝜙∞

𝜙𝑤−𝜙∞
        (6) 

 
where h is concentration,𝜂 and 𝜓are the similarity variable and stream function, respectively which 

define 𝑢 =
𝜕𝜓

𝜕𝑦
and 𝑣 = −

𝜕𝜓

𝜕𝑥
. By using this defining parameter, Eq. (1) satisfied. The remaining 

governing equations, Eq. (2)-(4) are transformed to a set of ODE as follows 
 
𝑓‴ + 𝑓𝑓″ − (𝑓′)2 + 𝑀(1 − 𝑓′) + 1 = 0          (7) 
 
𝜃″ + 𝑃𝑟 𝑁 𝑏ℎ′𝜃′ + 𝑃𝑟 𝑓 𝜃′ + 𝑃𝑟 𝑁 𝑡(𝜃′)2 = 0         (8) 
 

ℎ″ + 𝐿𝑒ℎ′𝑓 +
𝑁𝑡

𝑁𝑏
𝜃″ = 0            (9) 

 

subjected to the IBCs, Eq. (5) now is 
 
𝑓(0) = 0, 𝑓′(0) = 𝜀, 𝜃(0) = 1, ℎ(0) = 1 
 
𝑓′(𝜂) → 1, 𝜃(𝜂) → 0, ℎ(𝜂) → 0 as 𝜂 → ∞                    (10) 
 

From Eq. (7)-(9), the prime denotes the differentiation with respect to 𝜂. While, six governing 

parameters are defined such as Pr is Prandtl number where 𝑃𝑟 =
𝜐

𝛼
, 𝜀is the velocity ratio parameter 

where 𝜀 =
𝑎

𝑏
, M is the magnetic parameter where 𝑀 =

𝜎𝐵0

𝜌𝑓𝑏
, 𝑁𝑏is Brownian motion parameter where 

𝑁𝑏 =
𝜏𝐷𝐵(𝜙𝑤−𝜙∞)

𝜐
, Nt is thermophoresis parameter where 𝑁𝑡 =

𝜏𝐷𝑇(𝑇𝑤−𝑇∞)

𝜐𝑇∞
and Le is the Lewis 

number parameter where 𝐿𝑒 =
𝜐

𝐷𝐵
. 

In this problem, our physical interests are the skin friction coefficient, 𝑐𝑓, local Nusselt number, 

𝑁𝑢𝑥 and local Sherwood number, 𝑆ℎ𝑥which given by [7] 
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𝑐𝑓 =
𝜏𝑤

𝜌𝑈∞
2 , 𝑁𝑢𝑥 =

𝑥𝑞𝑤

𝑘(𝑇𝑤−𝑇∞)
, 𝑆ℎ𝑥 =

𝑥ℎ𝑤

𝐷𝐵(𝜙𝑤−𝜙∞)
                   (11) 

 
Besides, the skin friction 𝜏𝑤, heat flux wall, 𝑞𝑤and mass stream ℎ𝑚are as follows 
 

𝜏𝑤 = 𝜇 (
𝜕𝑢

𝜕𝑦
)

𝑦=0
, 𝑞𝑤 = −𝑘 (

𝜕𝑇

𝜕𝑦
)

𝑦=0
, ℎ𝑚 = −𝐷𝐵 (

𝜕𝜙

𝜕𝑦
)

𝑦=0
                  (12) 

 
Again, applying the Eq. (6) into Eq. (12), the reduced skin friction coefficient, local Nusselt number 
and local Sherwood number are 
 

1 2 1 2 1 2
(0) Re , (0) Re , (0) Re

f x x x x x
f c Nu h Sh

− −  = − = − =                   (13) 

 

where 𝑅𝑒𝑥 =
𝑈∞𝑥

𝜐
 is the local Reynold number. 

 
2.1 Solution for Stability Analysis 
 

Since the numerical findings from bv4pc indicate that for certain values of𝜀there exist two 
solutions which are first solution and second solution. An analysis has to been set up to identify which 
of these solutions are stable. To initiate a stability analysis, [27] the unsteady state flow case must be 
included as it is the step to study the temporal stability of duality of solutions. Consider the unsteady 
form by adding 𝜕𝑢 𝜕𝑡⁄ ,   𝜕𝑇 𝜕𝑡,   𝜕𝜙 𝜕𝑡⁄⁄  to each of Eq. (2)-(4), respectively and introduce a new time 
dimensionless parameter, 𝜏. Then, we have 
 

𝜂 = √
𝑏

𝜐
𝑦, 𝜓 = √𝜐𝑏𝑥𝑓(𝜂, 𝜏), 𝜃(𝜂, 𝜏) =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
, ℎ(𝜂, 𝜏) =

𝜙−𝜙∞

𝜙𝑤−𝜙∞
, 𝜏 = 𝑏𝑡                (14) 

 
Thus Eq. (2)-(4) become 
 
𝜕3𝑓

𝜕𝜂3
−

𝜕2𝑓

𝜕𝜂𝜕𝜏
+ 𝑓

𝜕2𝑓

𝜕𝜂2
− (

𝜕𝑓

𝜕𝜂
)

2

+ 𝑀 (1 −
𝜕𝑓

𝜕𝜂
) + 1 = 0                   (15) 

 
𝜕2𝜃

𝜕𝜂2 − 𝑃𝑟
𝜕𝜃

𝜕𝜏
+ 𝑃𝑟 𝑓

𝜕𝜃

𝜕𝜂
+ 𝑃𝑟 𝑁 𝑏

𝜕𝜃

𝜕𝜂

𝜕ℎ

𝜕𝜂
+ 𝑃𝑟 𝑁 𝑡 (

𝜕𝜃

𝜕𝜂
)

2

= 0                  (16) 

 
𝜕2ℎ

𝜕𝜂2 − 𝐿𝑒
𝜕ℎ

𝜕𝜏
+ 𝐿𝑒𝑓

𝜕ℎ

𝜕𝜂
+

𝑁𝑡

𝑁𝑏

𝜕2𝜃

𝜕𝜂2 = 0                     (17) 

 
subjected to boundary conditions (BCs), 
 

𝑓(0, 𝜏) = 0,
𝜕𝑓

𝜕𝜂
(0, 𝜏) = 𝜀, 𝜃(0, 𝜏) = 1, ℎ(0, 𝜏) = 1 

 
𝜕𝑓

𝜕𝜂
(∞, 𝜏) → 1, 𝜃(∞, 𝜏) → 0, ℎ(∞, 𝜏) → 0                    (18) 

 
We consider some small perturbation (Merkin [28]) where 𝑓(𝜂) = 𝑓0(𝜂), 𝜃(𝜂) = 𝜃0(𝜂)and 𝜙(𝜂) =
𝜙0(𝜂) which satisfying Eq. (15)-(17) such as 
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𝑓(𝜂, 𝜏) = 𝑓0(𝜂) + 𝑒−𝛾𝜏𝐹(𝜂, 𝜏)  
 
𝜃(𝜂, 𝜏) = 𝜃0(𝜂) + 𝑒−𝛾𝜏𝐺(𝜂, 𝜏)  
 
ℎ(𝜂, 𝜏) = ℎ0(𝜂) + 𝑒−𝛾𝜏𝐻(𝜂, 𝜏)                     (19) 
 
where 𝐹(𝜂, 𝜏), 𝐺(𝜂, 𝜏) and 𝐻(𝜂, 𝜏) are the small relative to 𝑓0(𝜂), 𝜃0(𝜂)and ℎ0(𝜂), respectively 
while𝛾is an unknown parameter of eigenvalue. This consideration is taken due to check the steady 
flow solution stability. Next, differentiate Eq. (19) and equate them to Eq. (15)-(18). By setting 𝜏 = 0, 
𝐹 = 𝐹0, 𝐺 = 𝐺0and 𝐻 = 𝐻0, we obtain the following linearized equations 
 

𝐹0
′′′ + 𝑓0𝐹0

′′ + 𝑓0
′′𝐹0 + (𝛾 − 2𝑓0

′ − 𝑀)𝐹0
′ = 0                   (20) 

 

𝐺0
′′ + (𝑃𝑟 𝑓0 + 𝑃𝑟 𝑁 𝑏ℎ0

′ + 2𝑁𝑡 𝑃𝑟 𝜃0
′)𝐺0

′ + 𝑃𝑟 𝛾 𝐺0 + (𝑃𝑟 𝐹0 + 𝑃𝑟 𝑁 𝑏𝐻0
′)𝜃0

′ = 0              (21) 
 

𝐻0
′′ + 𝐿𝑒𝛾𝐻0 + 𝐿𝑒𝑓0𝐻0

′ + 𝐿𝑒𝐹0ℎ0
′ +

𝑁𝑡

𝑁𝑏
𝐺0

′′ = 0                   (22) 

 
correspond to the BCs, 
 
𝐹0

′(0) = 0,  𝐹0(0) = 0,  𝐺0(0) = 0, 𝐻0(0) = 0 
 
𝐹0

′(∞) → 0, 𝐺0(∞) → 0,  𝐻0(∞) → 0                    (23) 
 

To fulfil steady flow solution stability, the least eigenvalue 𝛾needs to be determined. If 𝛾 < 0, it 
will lead to the unstable flow. According to Harris et al., [29], the range of possible eigenvalues can 
be dictated if one of the boundary conditions on 𝐹0

′(𝜂), 𝐺0(𝜂)or 𝐻0(𝜂) is relaxing. In our problem, 
we choose the condition on which we relax is, 𝐹0

′(∞) → 0 when 𝜂 → ∞ and for fix eigenvalues𝛾, we 
solved Eq. (20)-(22) subject to boundary conditions Eq. (23) by changing boundary condition with the 
new one which is 𝐹0

′′(0) = 1. 
 
3. Results  

 
Results for this problem are revealed in this section. The numerical results are found by 

transforming Eq. (7)-(9) together with the boundary condition (10) using the coding in bv4pc MATLAB 
software. Figure 1-16 illustrate the governing parameters effects on skin friction, heat transfer and 
mass transfer coefficients, as well as the profiles for the velocity, temperature and concentration. 
The impact of Pr and Le are also been analyzed and discussed.  

We compared our present numerical results with those stated by Kamal et al., [23] for the case 
when 𝐶𝑟 = 0 and Sr=1. As we can see through Table 1 the comparisons have been found very good 
and provide us a high confidence to report further numerical outcomes.  
 
3.1 Analysis on Skin Friction and Heat transfer 
 

Three dissimilar values of M together with selected values of 𝜀 with variation of the 𝑓″(0), 
−𝜃′(0) and −ℎ′(0) are presented in Figure 1, when 𝑃𝑟 = 2, 𝐿𝑒 = 2, and 𝑁𝑏 = 𝑁𝑡 = 0.1. In our 
paper, we chose three values of M to be investigate such as M=0, 0.2, 0.4 which M=0 implies that the 
fluid has no magnetic effect. From our calculation, it is possible to obtain dual solution. There exist a 
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critical value of 𝜀, namely 𝜀𝑐which denotes that it is in shrinking surface. Based on the graph these 
graphs, a unique solution exist when 𝜀 > −1, the dual solution starts to appear when 𝜀𝑐 < 𝜀 <
−1and no solution found when 𝜀 < 𝜀𝑐. Bachok et al., [7] stated that the first solution is stable which 
means realizable compared to the second solution which is unstable. We observed for 𝑀 =
0, 0.2, 0.4 and the critical values are 𝜀𝑐 = −1.24658, −1.42403, −1.60446 respectively. Clearly, as 
𝜀 increased, the reduce skin friction coefficient decrease. Perhaps it gives a higher value when the 
magnetic parameter, M increased. This is because the Lorentz force in the boundary layer increase 
indicates that the force retarded the flow and reduce the flow motion. As we note, the range of the 
duality of solution widen with the increment of M. An opposite trait for temperature and 
concentration can be seen as the 𝜀 increased, the values of heat transfer coefficient and mass tranfer 
coefficient increased which correspond to the increment of M. The larger the value of M will involved 
the delaying of the boundary layer separation.  
 
3.2 Analysis on Effect of Thermophoresis, Nt and Brownian Motion, Nb 
 

Variation of 𝑁𝑢𝑥 𝑅𝑒𝑥
−

1

2 and 𝑆ℎ𝑥 𝑅𝑒𝑥
−

1

2 with Nt for different M are plot in Figure 2. As the value 
of 𝑁𝑢𝑥 and 𝑆ℎ𝑥decreasing, the values of Nt increase together with the values of M. Here, we can 
state that Nt is a decreasing magnetic parameter function. The thermophoresis force works in 
nanofluids against the gradient of the temperature and changes nanoparticles from the transition 
state (hot to cold). Through the graph we can observed that the rise of M tends to decrease the 
gradients of temperature in the boundary layer and hence reduce the Nusselt number. 

On the other hand, the effect of Nb parameter with different value of M can be seen in Figure 3. 
The local 𝑁𝑢𝑥reduce as the numbers of Nb increases along the increment of M. We can remark 
that𝑁𝑢𝑥 is a Brownian motion parameter reducing function. This is because the Nb tends to 
interchange the nanoparticles from elevated level to low [30]. Likewise, the 𝑆ℎ𝑥is increase as the 
value of the Nb increase. We can observe that the value of M decrease at first, and increase when 
Nb=0.1. This is may be because of the slower collision occur between the nanoparticles in the fluid. 
This collision will move the nanoparticle away from the surface and we can see that the increment 
of the Brownian parameter does not gives any significant on boundary layer thickness. 
 

Table 1 

Comparison for the values of 𝑐𝑓𝑅𝑒𝑥

𝟏

𝟐 , 𝑁𝑢𝑥 𝑅𝑒𝑥
−

1

2 and 𝑆ℎ𝑥 𝑅𝑒𝑥
−

1

2 for different values of 𝜀,𝑀 = 𝐶𝑟 = 0 of 

Kamal et al., (2019) with 𝑃𝑟 = 7, 𝑁𝑏 = 𝑁𝑡 = 0.1, 𝐿𝑒 = 𝑆𝑟 = 1 
M ԑ Kamal et al., (2019) Present results   

𝑐𝑓𝑅𝑒𝑥

𝟏
𝟐 𝑁𝑢𝑥 𝑅𝑒𝑥

−
1

2   𝑆ℎ𝑥 𝑅𝑒𝑥
−

1
2 𝑐𝑓𝑅𝑒𝑥

𝟏
𝟐 𝑁𝑢𝑥 𝑅𝑒𝑥

−
1
2  𝑆ℎ𝑥 𝑅𝑒𝑥

−
1
2 

0 -1 1.328817 0.016105 0.440494 1.328817 0.016105 0.440494 
-0.5 1.495670 0.347080 0.455138 1.49567 0.34708 0.455138 

  0.5 0.713295 1.211774 -0.019361 0.713295 1.211774 -0.01936 
1 -1       2.42996 0.12772 0.55021 

-0.5 
   

2.12019 0.46904 0.41917 
  0.5       0.86962 1.22965 -0.02134 
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(a) (b) 

 

 
(c) 

Fig. 1. Skin friction coefficient,𝑓″(0), heat transfer coefficient,−𝜃′(0) and mass transfer 
coefficient, −ℎ′(0) with 𝜀 for various values of M 

 

  

(a) (b) 

Fig. 2. Variation of 𝑁𝑢𝑥 𝑅𝑒𝑥
−

1

2 and 𝑆ℎ𝑥 𝑅𝑒𝑥
−

1

2 with Nt for different M 
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(a) (b) 

Fig. 3. Variation of  𝑁𝑢𝑥 𝑅𝑒𝑥
−

1

2 and 𝑆ℎ𝑥 𝑅𝑒𝑥
−

1

2 with Nb for different values of M 

 
3.3 Analysis on Velocity, Temperature and Concentration Profile 
 

Figure 4 illustrate the graphs of 𝑓′(𝜂),𝜃(𝜂) and ℎ(𝜂) for different value of M for shrinking surface. 
These profiles actually validate the result from the above figures which shows that when 𝜀𝑐 < 𝜀 <
−1, duality of solutions exist. As the value of M increase, we realize that the separation of boundary 
layer thickness become fast. Besides, Figure 5 show the 𝑓′(𝜂),𝜃(𝜂) and ℎ(𝜂) for various 𝜀. Based on 
these figures, it clearly visible that arising of 𝜀 will increase the 𝑓′(𝜂), 𝜃(𝜂) and ℎ(𝜂) for the first 
solution but likewise for another one. In addition, these figures also fulfilled and satisfied the 
boundary condition (10). Hence it provide on excellent validity of the results obtained and the duality 
of the solution.  

Moreover, the 𝜃(𝜂) for some values of Pr are shown in Figure 6. In this paper we consider three 
types of Pr which is Pr = 0.7, 1, 7 which signify the type of gaseous, water and liquid, respectively. 
The increment of Pr increase the heat transfer of the fluid. From our assumption maybe because the 
momentum boundary layer is thicker compared to the thermal boundary layer which 
enable the fluid to transmit the momentum faster through the liquid. Note that we are unable to 
predict the changes in thermal boundary layer thickness when the Pr > 7. The reason is because the 
desirable energy for the fluid to flow is slower until certain distance. In Figure 7, we can observe the 
consequence of Le on ℎ(𝜂). Increasing of Le will decrease the concentration profile. Thru definition, 
it is worth to mention that the increment of Le will slower the mass diffusivity of the fluid hence 
increases the heat diffusivity. Thus, the boundary layer thickness of concentration profile increases. 
 

  

(a) (b) 
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(c) 

Fig. 4. Velocity profile, 𝑓′(𝜂), temperature profile, 𝜃(𝜂) and concentration profile, ℎ(𝜂) for 
different values of M for shrinking surface 

 

  

(a) (b) 

 
(c) 

Fig. 5. Velocity profile, 𝑓′(𝜂), temperature profile, 𝜃(𝜂) and concentration profile, ℎ(𝜂) for 
different values of 𝜀 
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Fig. 6. Effect on Prandtl number, Pr on temperature 
profile 

 

 

Fig. 7. Effect on Lewis number, Le on concentration 
profile 

 
3.4 Analysis on Stability Solution 
 

Duality solutions for the above problem has to be analyzed. Therefore, in order to classify the 
solutions which is physically feasible, a stability analysis is introduced. Substitute Eq. (20) – (22) 
together with (23) into the stability coding in bvp4c in MATLAB. Choosing the value of 𝜀 which is 
approximate to 𝜀𝑐is important in order to compute the smallest eigenvalues (𝛾 → 0). Hence, Table 2 
are the values from our computation. As we can see, the first solution lies on positive real numbers 
while opposite sign are shown in second solution. Previous study have stated that the first solution 
is stable and reliable because in the flow system there are just a slightly disturbance that do not 
interrupt the separation of boundary layer. With regard to the second solution, we can conclude that 
it is volatile which means that an early rise in disturbance would disrupt the separation of the 
boundary layer. 
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Table 2 
Least eigenvalues 𝛾 for selected 𝜀 
M epsilon, 𝜀 First solution Second solution 

0 -1.2465 0.008 -0.008 
 -1.246 0.0622 -0.0614 
 -1.24 0.2121 -0.2036 
0.2 -1.4240 0.015 -0.0149 
 -1.423 0.0845 -0.0831 
 -1.42 0.1681 -0.1629 
0.4 -1.6044 0.0222 -0.0221 
 -1.604 0.0578 -0.0572 
 -1.6 0.1803 -0.1744 

 
4. Conclusions 
 

This research shown the effect of six governing parameters including Pr, Le, M,𝜀, Nb, and Nt. We 
can summarized the findings in three main point as below 

i. Duality solution 

• It obviously demonstrates from the above figures that the duality exists in shrinking 
surface (𝜀 < −1).  

• The range on the shrinking surface are widen and the𝜀𝑐 indicates the boundary layer 
separation as the values of M increased. 

ii. Skin friction 

• The magnetic field, M affected the skin friction. 

• When the value of M increased, the surface shear stress increase, the fluid flow is delayed 
resulting in increased of velocity gradient at the surface. 

iii. Heat Transfer and mass transfer 

• The local Nusselt number is a reducing function for M. 

• Increasing of Nt will decrease the rate of the heat transfer and rate of the mass transfer. 

• The local Nusselt number is a decreasing function for Nb. 

• As the Nb arise, the rate of the mass transfer increased.  
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