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An implementation for a fully automatic adaptive finite element method (AFEM) for 
computation of nonlinear thermoelectric problems in three dimensions is presented. 
Adaptivity of the nonlinear solvers is based on the well-established hp-adaptivity 
where the mesh refinement and the polynomial order of elements are methodically 
controlled to reduce the discretization errors of the coupled field variables 
temperature and electric potential. A single mesh is used for both fields and the 
nonlinear coupling of temperature and electric potential is accounted in the 
computation of a posteriori error estimate where the residuals are computed element-
wise. Mesh refinements are implemented for tetrahedral mesh such that conformity 
of elements with neighboring elements is preserved. Multiple nonlinear solution steps 
are assessed including variations of the fixed-point method with Anderson acceleration 
algorithms. The Barzilai-Borwein algorithm to optimize the nonlinear solution steps are 
also assessed. Promising results have been observed where all the nonlinear methods 
show the same accuracy with the tendency of approaching convergence with more 
elements refining. Anderson acceleration is the most efficient among the nonlinear 
solvers studied where its total computing time is less than half of the more 
conventional fixed-point iteration. 
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1. Introduction 
 

Most computations of complex physical phenomena today use mathematical schemes by which 
models with a finite number of unknowns are built. As the system continues to grow in complexity, 
an analyst may have to deal with exponential increase in the computational effort needed to solve 
the problem. Adaptive Finite Element Method (AFEM) is an improvement of the mature conventional 
FEM that optimizes the selection of parameters so that better accuracy can be achieved with less 
computational effort. The most common of this technique is the hp-adaptive strategy by which h 
stands for mesh refining while p stands for polynomial element refining [1]. Both are carefully 
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controlled throughout the iterative adaptation process. Coarse mesh with the lowest order of 
elements is used as the initial mesh for the process of adaptation and progresses to a combination 
of a finer mesh and higher order of elements in selected parts of the computational domain. The 
control process is automated by which it recognises high residual error of an element from a 
posteriori error computation and reduces the error element-wise after each level of adaptation until 
convergence. 

Although adaptive methods are deemed a mature finite element scheme for linear problems, 
nonlinearities pose exceptional challenges [2]. In this paper, the efficacy of AFEM for solving 
nonlinear thermoelectric problem in three dimensions is assessed. Specifically, the nonlinearity that 
arises due to the electric and thermal fluxes being mutually dependent [1]. Dealing with a rapid 
growth of degrees of freedom (DOF) is challenging since the nonlinear system matrix gets larger and 
becomes less sparse due to the presence of high order finite elements. The work by Babuška and Guo 
[3] has established the fact that an optimal selection of parameters helps increase the convergence 
rate exponentially in a single field problem. However, achieving optimal convergence rates for 
nonlinear multi-physics remains an open problem. This paper attempts numerical studies on various 
nonlinear solvers to assess the accuracy and efficiency of the algorithms in the hp-adaptive solutions. 
All the studies were performed with the in-house code PolyDE that is capable to solve with fully 
automatic adaptive procedures in three dimensions using tetrahedral elements [4]. 
 
2. Methodology  
2.1 General Multiphysics Equations 
 

In PolyDE, a generalized set of coupled partial differential equation (PDE) for a multiphysics 
problem is implemented such that the PDE forms can account a wide range of coupling phenomena 
in physics without changing the structure of the PDEs. In the specific case of thermoelectricity, a 
single set of PDEs completely describes the mutual coupling of temperature and potential difference. 
This monotholic approach allows for a fully automatic adaptivity in a single mesh for all the unknown 
fields. The effects resulting from the interaction with the other field quantities can also be included 
[4]. The generalized PDE reads 
 

−∇ ∙ (𝜈𝑖𝑗∇𝑢 + γ𝑖𝑗𝑢) + 𝛽𝑖𝑗∇𝑢 + 𝜂𝑖𝑗𝑢 = 𝑓𝑖 + ∇ ∙ g𝑖          (1) 

  
where in thermoelectricity 𝑢 is either temperature or electric potential. The coefficient tensors 𝜈, 𝛾, 
𝛽 and 𝛼 describe corresponding material properties. The right hand-side terms may comprise of a 
scalar field 𝑓𝑖  or divergence of a vector field g𝑖. Although the approach taken for solving specific 
problems differs, a new multi-physics mode can be introduced into the code without the need of 
generating another system of PDEs. 
 
2.2 The Galerkin Formulation for Nonlinear Thermoelectricity 
 

The implementation of the finite element procedures for thermoelectricity analysis is based 
largely on Antonova and Looman [5]. However, unlike the formulation in research of Antonova and 
Looman [5], the coupled equations are made symmetric as described by Vokas and Kasper [4]. 
Restricting the analysis to steady-state, the coupling between the temperature field and electric 
potential field in a thermoelectric material is summarized in terms of thermal heat flux q and current 
density J as 
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q = 𝑇𝛼J − 𝜆∇𝑇             (2) 
J = 𝜎E − 𝛼∇𝑇              (3) 
 
where 
𝑇 = temperature (K), 
𝛼 = Seebeck coefficient (V/K), 
𝜆 = thermal conductivity (Wm−1K−1), 
𝜎 = electric conductivity (S/m), and 
E = electric field strength (V/m). 
 

Since in this case the electric field can be expressed in terms of the electric potential 𝜙, 
 
E = −∇𝜙              (4) 
 
in terms of temperature and electric potential, the coupled equations then read 
 
−∇ ∙ (Π𝜎∇𝜙) − ∇ ∙ (𝜆∇𝑇) = 𝑄           (5) 
 
∇ ∙ (𝜎𝛼∇𝑇) + ∇ ∙ (𝜎∇𝜙) = 0            (6) 
  

Eq. (5) and Eq. (6) can be recast into the general coupled Eq. (1) in which the material coefficients 
and the load vectors are defined for thermoelectricity. Observing Eq. (5), the heat generation comes 
from different sources: external sources or internal sources in the form of electric power generated 
as Joule heating or as work against the Seebeck effect. To simplify the current study, only the work 
against the Seebeck effect is considered. Inclusion of this effect means the right-hand side of Eq. (5) 
is in dependence of 𝜙, and thus the system of PDEs is now nonlinear. 

Nonlinearity is also the result of accounting for the Thomson effect. Although it is considered the 
third effect in thermoelectricity, it can also be seen as the consequence of temperature dependency 
of the Seebeck effect. The Thomson coefficient 𝜏 with unit V/K reads 
 

𝜏 = 𝑇
𝑑𝛼

𝑑𝑇
              (7) 

 
from which it implies the absence of the Thomson effect in the case of constant Seebeck coefficient. 
For a more realistic modeling of thermoelectric materials, accounting for the temperature variations 
leads to Eq. (1) having nonlinear material coefficients. Nevertheless, Thomson effect is ignored in this 
study. 

Following the standard Galerkin method, the discrete solutions for temperature and electric 

potential for the finite element space 𝑇̅ and 𝜙̅ are 
 
𝑇̅ = ∑ 𝜉𝑛Φ1,𝑛

𝑚
𝑛=1              (8) 

 

𝜙̅ = ∑ 𝜉𝑛Φ2,𝑛
𝑚
𝑛=1              (9) 

 

where 1,n  and 2,n  are the respective degrees of freedom and 𝜉𝑛 are the basis functions defined 

in a tetrahedron. Transforming the strong forms of Eq. (5) into their respective weak form in the usual 
manner results in nonsymmetric system matrices. Here the procedure follows the work of Vokas and 
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Kasper [4] where by using the Onsager reciprocity theorem, transformation to the weak forms results 
in symmetric system matrices. The weak forms are summarized as 
 

∫ ∑ −(𝛼2𝜎 +
𝜆

𝑇0
)∇𝜉𝑛∇𝜉𝑑Φ1,𝑛

𝑚
𝑛=1 − 𝛼𝜎∇𝜉𝑛∇𝜉𝑑Φ2,𝑛Ω

𝑑Ω = ∫ ∑ 𝜉𝑛𝑄𝑚
𝑛=1 𝑑Ω

Ω
    𝑑 = 1,2, ⋯ , 𝑚        (10) 

 

∫ ∑ −𝛼𝜎∇𝜉𝑛∇𝜉𝑑Φ1,𝑛
𝑚
𝑛=1 − 𝜎∇𝜉𝑛∇𝜉𝑑Φ2,𝑛Ω

𝑑Ω = 0       𝑑 = 1,2, ⋯ , 𝑚                (11) 

 
where 𝑇0 is the reference temperature. Combining Eq. (10) and Eq. (11) leads to a single system 
matrix Ka = b such that 
 

[
K11 K12

K21 K22
] [

Φ1,𝑛

Φ2,𝑛
] = [

b1,𝑛

0
]                      (12) 

 
The element stiffness matrix K𝐼𝐽 composes of 

 

K11 = ∫ ∑ −(𝛼2𝜎 +
𝜆

𝑇0
)∇𝜉𝑛

𝑚
𝑛=1 ∇𝜉𝑑Ω

𝑑Ω      𝑑 = {1,2, ⋯ , 𝑚},  

 

K12 = K21 = ∫ ∑ 𝛼𝜎∇𝜉𝑛
𝑚
𝑛=1 ∇𝜉𝑑Ω

𝑑Ω      𝑑 = {1,2, ⋯ , 𝑚},  

 

K22 = ∫ ∑ −𝜎∇𝜉𝑛
𝑚
𝑛=1 ∇𝜉𝑑Ω

𝑑Ω      𝑑 = {1,2, ⋯ , 𝑚},  

 
The element load vector associated with Eq. (5) relates the work against the Seebeck effect. The 

electromotive field that is created from the Seebeck effect is 
 
Eemf = −𝛼∇𝑇,  
 
so that the power as work against this field comes from the Peltier effect such that 
 
𝑃 = J ∙ Π ∙ ∇𝑇. 
 

The load vector is then 
 

b1,𝑛 = ∫ ∑ ∇𝜉𝑛
𝑚
𝑛=1 ∙ Π ∙ J

Ω
𝑑Ω  

 
The load vector is in dependence of Φ2,𝑛 due to the presence of J, which renders the system 

matrix to be nonlinear, and thus the computation involves searching for the zeros of 
 

[
K11 K12

K21 K22
] [

Φ1,𝑛

Φ2,𝑛
] − [b1,𝑛(Φ2,𝑛)

0
] = 0, 

 
which is essentially a nonlinear problem 
 

F(Φ𝑖,𝑛) = 0       𝑥 = 1,2.  
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2.3 Hp-Finite Element Solver 
 

Solving the nonlinear form of Eq. (1) involves roots finding or for the case of its discrete 
counterparts, finding the solution for F(Φ) = 0. Numerical solvers for nonlinear equations involve 
iterations that produce approximations of the roots. Hence, convergence of solutions is of most 
interest in nonlinear schemes. Selected iterative schemes for nonlinear equations which is the 
interest of this work will be assessed to find more suitable algorithms in terms of accuracy and 
efficiency for the nonlinear thermoelectric problem. 
 
2.3.1 Fixed-point iteration 
 

One of the main tools for solving a nonlinear problem is the fixed-point iteration method. Fixed-
point method is a well-known open method that uses a general strategy of successive substitutions 
based on iteration formulas requiring only a starting point or pair of values. The most basic iterative 
scheme reads 
 
𝑥𝑖+1 = 𝑔(𝑥𝑖)  
 

where the iteration index 𝑖 = 0,1,2, … and 0x  is the initial estimate of the root as seen in Figure 1. 

This method is preferred because of the simplicity and flexibility to choose the form of 𝑔(𝑥). 
Nevertheless, there are cases where the iterations do not always converge for a chosen 𝑔(𝑥). To 
ensure convergence of the iterative scheme for the interval containing the root, |𝑔(𝑥)| < 1 condition 
must be satisfied [6]. If otherwise, the solution will diverge. 
 

 
Fig. 1. Iterative convergence of fixed-
point method [6] 

 
2.3.2 Anderson acceleration of fixed-point iteration 
 

The main drawback of the fixed-point scheme is its very slow rate of convergence [7]. Failure or 
improper behavior of convergence makes this method not a primary choice of solvers. The work by 
Anderson [8] is a significant success since it shows that convergence is faster with less iteration 
counts. There are two types of Anderson acceleration, i.e., Anderson relaxation and Anderson 
extrapolation method. Both of these techniques are not only applicable to fixed-point method but 
they are also applicable to other iterative solvers such as the Jacobi method [9,10]. Generally, 
Anderson acceleration iterative scheme is as follows 
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𝑥𝑘+1 = ∑ 𝛼𝑗+1
𝑚−1
𝑗=0 𝑥𝑘−𝑗                      (13) 

  

The coefficients  1, , }m  are selected by solving the minimization problem 

                                   (14)  

The idea is to select linear combinations of 𝑚 previous iterates in such a way that the residual 
decreases as much as possible. For the extrapolation method the only change is to 𝑗 ∈ {0, … , 𝑚 + 1}.  
 
2.3.3 Barzilai-Borwein method (BB) 
 

The Barzilai and Borwein (BB) method is a variation of steepest descent method originally 
proposed for solving a minimization problem of a typical quadratic function 
 

min 𝑓(𝑥) =
1

2
𝑥𝑇𝐴𝑥 − 𝑏𝑇𝑥,                      (15) 

  
where 𝐴 is a real symmetric positive definite matrix and 𝑏 is constant. The BB method was proven to 
yield significantly faster convergence than the classical gradient method for solution of linear systems 
while requiring less computer memory. Due to this appeal, significant efforts were geared toward 
application of the BB method for solving nonlinear systems [11]. In the current implementation, the 
updated solution 𝑥𝑘+1 uses the scaling parameter 𝛼𝑘 in 
 
𝑥𝑘+1 =  𝑥𝑘 + 𝛼𝑘𝑔(𝑥𝑘)                      (16) 
  
where 𝛼𝑘 is evaluated according to the BB method as in research of Calderón et al., [10]. 𝑔(𝑥𝑘) 
relates to a search direction. 
  
2.4 AFEM Modeling Strategies 
 

The present implementation of the hp-adaptive FEM procedure was described by Kamaludin and 
Abdul-Rahman [12] and Kamaludin [13] showing how presence of singularity in the domain is 
resolved with the refinement of tetrahedral mesh. The mesh refinement preserves element 
connectivity unlike in other implementations for example in the research by Solin et al., [14]. In this 
test case, to avoid any geometric singularity, a simple model of thermoelectric leg is constructed as 
in Figure 2. The test case is similar to that of Jaegle [15]. Boundary conditions are prescribed with 
both fields’ temperature and electric potential for this simulation. A temperature of 273 K is 
prescribed on the bottom plate and homogenous Neumann at the top plate. The rest of the surface 
is treated adiabatically. For the electric potential, Neumann boundary condition is prescribed at the 
top plate while the bottom plate is treated as ground. Both the top and bottom plates material is 
made up of copper, while bulk material is made up of bismuth telluride, Bi2Te3. The three-
dimensional case is used in modeling the thermoelectric problem to provide sufficiently large system 
matrix for assessing the nonlinear solvers with hp-adaptivity. 

1
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2
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m

k j
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Fig. 2. Thermoelectric model of n type semiconductor 

 
3. Result and Discussion  
 

The automated hp-adaptive process of the thermoelectric solution shows a significant increase 
in the number of elements, with the initial mesh of 989 elements terminated with 10,364 elements 
as seen in Figure 3. The adaptive process undergoes 6 steps of adaptive processes with generally 
decreasing energy norm error as listed in Table 1. 
 

 
Fig. 3. hp-Adaptivity in the nonlinear thermoelectric computation 

 
Table 1 
Multi-step adaptations for the nonlinear solutions of temperature 𝑇 and 
electric potential 𝑉 fields  
Adaptation steps NDOF Energy norm error of 𝑇 Energy norm error of 𝑉 

0 382 4.23×10-4 8.52×10-8 
1 524 3.04×10-4 5.74×10-8 
2 832 2.34×10-4 4.14×10-8 
3 1297 1.75×10-4 1.43×10-6 
4 1938 1.36×10-4 1.39×10-7 
5 2961 1.07×10-4 6.20×10-7 
6 4564 8.24×10-5 3.29×10-7 

 
3.1 Accuracy of hp-FEM Nonlinear Solution 
 

According to Zeng et al., [16], nonlinear iterative solvers have varying degrees of accuracy, 
computational costs in terms of time and memory, and convergence rates. The quality of each 
method depends upon how close each iteration is in approaching 𝑓(𝑥)  =  0. To compare the 
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accuracy of the nonlinear solvers used in this study, the L2 norms of the deviations in the results with 
all the solvers were computed. The L2 norm of the deviations were evaluated with respect to the 
fixed-point method since it was observed that it yields the best results as shown in Figure 4 and Figure 
5 in the computations for the temperature and electric potential. The fields distributions in the 
middle of the thermoelectric leg along its length clearly show the nonlinear behavior of the material. 
The nonlinear results are more apparent in the temperature compared to the voltage. The 
temperature varies nonlinearly from 212 K to 273 K. The nonlinear distribution of the voltage is less 
apparent as it only varies between 0 and 0.049 V.  
 

 
 

(a) (b) 

Fig. 4. (a) Temperature field of thermoelectric model, (b) Plot of temperature field 

 

  
(a) (b) 

Fig. 5. (a) Voltage potential field of thermoelectric model, (b) Plot of electric potential field 
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For the same adaptation tolerance, all the four methods achieve convergence with final NDOF of 
4564. From Table 2, the BB method shows the largest error from the reference fixed-point solver at 
0.83 while the errors for both Anderson relaxation and extrapolation are the same at 0.43. The 
voltage norm shows no difference between the 4 solvers.  
 

Table 2 
Comparison of accuracy of iterative methods 
Methods Final NDOF L2 norm for 

Temperature  
L2 norm for 
Voltage 

Fixed point 4564 - - 
Anderson relaxation 4564 0.431437 - 
Anderson 
extrapolation 

4564 0.431437 - 

Barzilai-Borwein 4564 0.830156 - 

 
3.2 Efficiency of hp-FEM Nonlinear Solver 
 

The total cost of solving the problem depends on both the cost per iteration and the number of 
iterations required for convergence [17]. Table 3 shows that the highest number of iterations is 197 
for the fixed-point method while the lowest iteration is obtained with both Anderson methods. The 
total cost for the fixed-point method shows the highest value with 229 seconds among all the others. 
Both Anderson acceleration methods show the same value of total cost of 104 seconds which is the 
lowest among the assessed methods.  
 

Table 3 
Comparison of efficiency of iterative methods 
Methods Number of iterations Cost per iteration (s) Total Cost (s) 

Fixed point 197 1.16 229 
Anderson relaxation 90 1.15 104 
Anderson extrapolation 90 1.15 104 
Barzilai-Borwein 178 1.16 207 

 
4. Conclusion 
 

In summary, all the nonlinear solvers assessed in this study can achieve the same accuracy in 
multiphysics computation whereby the Anderson acceleration algorithms show a good potential in 
terms of efficiency. The fully automated hp-adaptive procedure for nonlinear problem can be made 
more efficient for a faster convergence by emphasizing in mesh refining rather than increasing the 
element order. To enable higher element orders, more sophisticated nonlinear schemes may be 
necessary. 
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