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In this study, an investigation of the steady 2-D magnetohydrodynamiic (MHD) flow 
of stagnation point past a nonlinear sheet of stretching/shrinking within of a non-
uniform transverse magnetic intensity in nanofluids had been analysed. Considered 
material of nanoparticles such as copper (Cu) in water base fluid with Pr = 6.2 to 
analyze the influence of volume fraction parameter of nanoparticles and the 
stretching/shrinking sheet parameter. The governing nonlinear partial differential 
equations (PDEs) are converted in to the nonlinear ordinary differential equations 
(ODEs) and use the boundary value problem solver bvp4c in Matlab program to solve 
numerically through the use of a similarity transformation. The impact of the 
parameter of the magnetic field on the coefficient of skin friction, the local number 
of Nusselt and the profiles of velocity and temperature are portrayed and explained 
physically. The analysis reveals that the magnetic field and volume fraction of 
nanoparticles affect the velocity and temperature. The dual solutions are achieved 
where for the shrinking sheet case and the solutions are non-unique, different from 
a stretching sheet. 

Keywords:  
Magnetohydrodynamic; flow of stagnation 
point; nonlinear sheet of 
stretching/shrinking; nanofluids; dual 
solutions Copyright © 2020 PENERBIT AKADEMIA BARU - All rights reserved 

 
1. Introduction 
 

In the problem of boundary layer, the stagnation point flow phenomenon was picked up by 
several researchers due to several of uses in the manufacturing sector for system cooling purposes. 
Stagnation point flow is the continuous motion near a solid surface's stagnation district that exists in 
a fluid in both instances of a static or in motion body. Hiemenz [1] became the first scientist to test 
the steady of 2-D flow of stagnation point to a static semi-infinite surface and obtained an accurate 
the Navier-Stokes equation solution. Previously, several scientists had selected curiosity in the inquiry 
into the flow of boundary layer and heat transfer of the sheet of stretching. Crane [2] also researched 
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the first problem of the flow of boundary layer through a linear sheet of stretching. Chiam [3], who 
is researching the flow of stagnation point past a sheet of stretching developed the works of Hiemenz 
[1] and Crane [2]. Thus Miklavčič and Wang [4] investigated the flow equation of similarity solution 
past a surface of shrinking and noticed that it relies on the outer mass suction.The heat transfer in 
the flow of stagnation point past a sheet of stretching over a viscoelastic fluid, respectively, was 
explored by Mahapatra and Gupta [5, 6]. Next, for both 2-D and axisymmetric situations, the flow of 
stagnation point past a shrinking surface was explored by Wang [7]. For particular values of the 
shrinking and stretching rate ratio, the dual and unique solutions are identified. 

There are many researchers who have been researching exponential and linear 
stretching/shrinking surfaces. Magyari and Keller [8] were the earliest to acknowledge the 
continuous boundary layers and heat transfer through a constant of an exponential stretching 
surface. Then, the study continued by Rohni et al., [9] who work into the exponential shrinking of 
vertical sheet with suction and the buoyancy force. Numerical findings showed that the existence of 
buoyancy force would make a contribution to the presence of triple solutions for a specific value of 
relevant parameters, while the problem has only dual solutions in the absence of the buoyancy force. 
Mansur et al., [10] have been using the Buongiorno model to explore the flow of stagnation point to 
a permeable sheet of stretching/shrinking with the effect of suction in nanofluid. They observed that 
when the sheet is extended, the skin friction reduces, but rises as the suction impact increases. The 
MHD flow of boundary layer past the flow of stagnation point of a linear surface of stretching was 
explored by Jat and Chaudhary [11, 12]. Within of the magnetic field, the continuous flow of 
stagnation point of two-dimensional in a viscous fluid is observed by Aman et al., [13] through a linear 
sheet of stretching/shrinking. The results show that there are dual solutions for the sheet of 
shrinking, while the solution for the sheet of stretching is unique. 

However, the earliest researcher to analyse the flow in viscous fluid past a nonlinear sheet of 
stretching is Vajravelu [14]. They found that the heat flow is consistently come from the sheet of 
stretching to the fluid. Bachok and Ishak [15] had been investigated the similarity solutions past a 
nonlinearly sheet of stretching/shrinking for the stagnation point flow. This problem is solved by 
using shooting method and found that the solutions are non-unique for m>1/3 for a case of sheet of 
shrinking, and unique for a case of sheet of stretching. In addition, the rate of heat transfer for 
stretching sheet is larger than shrinking sheet for the stable solution. Jat and Neemawat [16] also 
study the same problem but with the effect of MHD. A similar study for a nonlinear sheet of stretching 
had been analysed by Rana and Bhargava [17]. Matin et al., [18] had been study the flow of mixed 
convective in nanofluid past a sheet of stretching with the effect of MHD. 

The objective of the research is to analysed the impact of magnetohydrodynamic (MHD) in a 
nanofluid on the flow of stagnation point past a nonlinear sheet of stretching/shrinking which 
consider the Tiwari and Das [19] model. Consideration is given to the influence of parameter of 
magnetic field and volume fraction of nanoparticles on the skin friction and temperature. A bvp4c 
solver in Matlab program is used numerically to solve the governing equations. 

 
2. Methodology  

 
Consider a flow of stagnation point of steady, incompressible, laminar, 2-D MHD past a nonlinear 

sheet of stretching/shrinking in a water-based nanofluid involving Cu as a type of nanoparticles. A 

non-uniform transverse magnetic intensity 𝐵 = 𝐵0𝑥(𝑛−1) 2⁄  is applied perpendicular to the sheet, 
where 𝐵0 is an uniform magnetic intensity. The generated magnetic field is ignored because of the 
movement of an electrically conducting field. It is concluded that the sheet's velocity is 𝑈𝑤(𝑥) = 𝑎𝑥𝑛 
and the velocity outside the boundary layer is 𝑈𝑠(𝑥) = 𝑏𝑥𝑛 where 𝑎 is the stretching/shrinking rate, 
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𝑏 > 0 is a constant denotes the strength of the flow of stagnation and 𝑛 is the stretching index. The 
simplified 2-D MHD equations of governing are 
 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑥
= 0,                                                                                                                                                            (1) 

 

𝑢
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+ 𝑣

𝜕𝑢

𝜕𝑦
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𝑑𝑈𝑠

𝑑𝑥
+

𝜇𝑛𝑓

𝜌𝑛𝑓

𝜕2𝑢

𝜕𝑦2 +
𝜎𝐵0

2

𝜌𝑓
(𝑈𝑠 − 𝑢),                                                                                        (2) 

 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼𝑛𝑓

𝜕2𝑇

𝜕𝑦2,                                                                                                                                        (3) 

 
corresponding to boundary conditions 
 
𝑢 = 𝑈𝑤(𝑥), 𝑣 = 0, 𝑇 = 𝑇𝑤(𝑥)   at  𝑦 = 0, 
 
𝑢 → 𝑈𝑠(𝑥), 𝑇 → 𝑇∞ as 𝑦 → ∞,                                                                                                                           (4) 
 
which are 𝑢 is the 𝑥 − axes and 𝑣 is 𝑦 − axes along the velocity components and 𝜎 is the fluid's 
electrical conductivity. 𝑇 is the nanofluid's temperature, 𝑇𝑤 is the variable sheet temperature and 𝑇∞ 
is the free flow temperature assuming it is fixed, which are defined as follows (Oztop and Abu Nada 
[20]) 
 

𝛼𝑛𝑓 =
𝑘𝑛𝑓

(𝜌𝐶𝑝)
𝑛𝑓

 , 𝜌𝑛𝑓 = (1 − 𝜑)𝜌𝑓 + 𝜑𝜌𝑠 , 𝜇𝑛𝑓 =
𝜇𝑓

(1−𝜑)2.5 ,                                                      (5) 

 

(𝜌𝐶𝑝)𝑛𝑓 = (1 − 𝜑)(𝜌𝐶𝑝)
𝑓

+ 𝜑(𝜌𝐶𝑝)𝑠 ,
𝑘𝑛𝑓

𝑘𝑓
=

(𝑘𝑠+2𝑘𝑓)−2𝜑(𝑘𝑓−𝑘𝑠)

(𝑘𝑠+2𝑘𝑓)+𝜑(𝑘𝑓−𝑘𝑠)
                                       (6) 

 
Here, 𝜑 is the nanofluid's nanoparticle volume fraction parameter, 𝜌𝑛𝑓 is the nanofluid's density, 𝛼𝑛𝑓 

is the nanofluid's thermal diffusivity, 𝑘𝑛𝑓 is the fluid fraction's thermal conductivity, 𝑘𝑠 is the 

nanoparticle volume fraction's thermal conductivity, 𝜌𝑓 is the solid fraction's reference density, 𝜇𝑛𝑓 

is the fluid fraction's viscosity and (𝜌𝐶𝑝)
𝑛𝑓

 is the nanofluids’ heat capacitance, where 𝐶𝑝 at constant 

pressure is the specific heat. Brinkman [21] computed the nanofluid's viscosity of 𝜇𝑛𝑓 as the base 

fluid viscosity of 𝜇𝑓 involving diluted suspension of good spherical particles. 

The similarity transformation is used in order to gain a similar solution for the equation of 
momentum and energy Eq. (1) - (3) 

 

𝜂 = 𝑦√
𝑏(𝑛+1)

2𝜐𝑓
𝑥

𝑛−1

2 , 𝜓 = √
2𝜐𝑓𝑏

𝑛+1
𝑥

𝑛+1

2 𝑓(𝜂), 𝜃(𝜂) =
𝑇−𝑇∞

𝑇𝑤−𝑇∞
,                                                  (7) 

 

which are 𝜂 is the variable of similarity and 𝜓 is the function of stream described as 𝑢 =
𝜕𝜓

𝜕𝑦
 and 𝑣 =

−
𝜕𝜓

𝜕𝑥
,  which equivalently fulfilled with continuity equation, Eq. (1).  

The converted ODEs are 
 

1

(1−𝜑)2.5(1−𝜑+𝜑𝜌𝑠 𝜌𝑓⁄ )
𝑓′′′ + 𝑓𝑓′′ +

2𝑛

𝑛+1
(1 − 𝑓′2) +

2𝑀

𝑛+1
(1 − 𝑓′) = 0,                                 (8) 
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1

Pr

𝑘𝑛𝑓 𝑘𝑓⁄

[1−𝜑+𝜑(𝜌𝐶𝑝)
𝑠

(𝜌𝐶𝑝)
𝑓

⁄ ]
𝜃′′ + 𝑓𝜃′ = 0,                                                                                                  (9) 

 
corresponding to the boundary conditions (4) 
 
𝑓(0) = 0,    𝑓′(0) = 𝜀, 𝜃(0) = 1, 
 
𝑓′(𝜂) → 1, 𝜃(𝜂) → 0, as          𝜂 → ∞                                                                                               (10) 
 
From the equations, the primes indicate differentiation in respect of 𝜂, where Pr = 𝜐𝑓 𝛼𝑓⁄  is the 

number of Prandtl, 𝑀 = 𝜎𝐵0
2 𝑏𝜌𝑓(𝑥1−𝑛)⁄  is the magnetic parameter and 𝜀 = 𝑎 𝑏⁄  is the 

stretching/shrinking parameter which are 𝜀 > 0 is for stretching sheet case and 𝜀 < 0 is for shrinking 
sheet case. 

The coefficient of skin friction 𝐶𝑓and the local Nusselt number 𝑁𝑢𝑥  in the physical quantities of 

interest are 
 

𝐶𝑓 =
𝜏𝑤

𝜌𝑓𝑈𝑠
2 , 𝑁𝑢𝑥 =

𝑥𝑞𝑤

𝑘𝑓(𝑇𝑤−𝑇∞)
                                                                                                             (11) 

 
which are the surface shear stress 𝜏𝑤 and the suface heat flux 𝑞𝑤 are defined as 
 

𝜏𝑤 = 𝜇𝑛𝑓 (
𝜕𝑢

𝜕𝑦
)

𝑦=0
, 𝑞𝑤 = −𝑘𝑛𝑓 (

𝜕𝑇

𝜕𝑦
)

𝑦=0
                                                                                             (12) 

 
Applying the similarity variables (7), we obtained 
 

𝐶𝑓𝑅𝑒𝑥
1 2⁄

=
1

(1−𝜑)2.5
√

𝑛+1

2
𝑓′′(0),                                                                                                             (13) 

 

𝑁𝑢𝑥 𝑅𝑒𝑥
1 2⁄

= −
𝑘𝑛𝑓

𝑘𝑓
√

𝑛+1

2
𝜃′(0).⁄                                                                                                                (14) 

 
where 𝑅𝑒𝑥 = 𝑈𝑠𝑥 𝜐𝑓⁄ . 

 
3. Results  
 

The ODEs equations Eq. (8) - (10) are nonlinear and coupled, and therefore their accurate 
analytical solutions are impossible. These can be solved numerically using Matlab's bvp4c solver 
because of its usefulness in finding a solution for boundary value problems that are far more 
complicated than initial value problems of various parameter values such as 𝑀, 𝜑 and 𝜀. By choosing 
various initial guesses for the lost values for 𝑓′′ (0) and 𝜃′(0) the dual solutions were obtained. The 
guess must meet the boundary conditions (10) asymptotically, while maintaining the solution's 
behavior. For copper (Cu) as the working fluids, an analysis of the influence of 𝜑, Pr and 𝑀 and water 
as the fluid base that works are consider. The Pr is considered Pr = 6.2 and 𝜑is assumed from 0 to 0.2 
(0 ≤ 𝜑 ≤ 0.2), where 𝜑 = 0 refers to the regular fluid. Table 1 lists the thermophysical 
characteristics of the base fluid and nanoparticles. Table 2 and Table 3 show a comparison of the 

numerical values of 𝑅𝑒𝑥
1 2⁄

𝐶𝑓 and 𝑅𝑒𝑥
−1 2⁄

𝑁𝑢𝑥 for Cu-water between the past work in Rahman et al., 
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[22] and the current work showing a favorable agreement. With various values of 𝜀, 𝑀 and 𝜑, 
numerical computations were conducted. 
 

Table 1 
Properties of thermophysical of base flid and nanoparticles [20] 
Properties of physical Fluid phase (water) Cu 

𝐶𝑝 (𝐽/𝑘𝑔𝐾) 4179 385 

𝜌(kg/m3) 997.1 8933 
𝑘(W/mK) 0.613 400 

 
  Table 2  

  Values of 𝐶𝑓𝑅𝑒𝑥
1 2⁄

 for several values of 𝑀, 𝜀, and 𝜑 

𝑀 𝜀 𝜑 Rahman et al., [22] Current results 

Cu-water 

 -0.5 0 2.1182 2.1182 
  0.1 3.2382 3.2382 
  0.2 4.5071 4.5071 
 0 0 1.6872 1.6872 
0  0.1 2.5793 2.5793 
  0.2 3.5901 3.5901 
 0.5 0 0.9604 0.9845 
  0.1 1.4682 1.5051 
  0.2 2.0436 2.0950 

 -0.5 0 2.1078 2.1708 
  0.1 3.3186 3.3186 
  0.2 4.6191 4.6191 
 0 0 1.7165 1.7165 
0.1  0.1 2.6241 2.6241 
  0.2 3.6524 3.6524 
 0.5 0 0.9733 0.9971 
  0.1 1.4879 1.5243 
  0.2 2.0710 2.1216 

 -0.5 0 2.2222 2.2222 
  0.1 3.3971 3.3971 
  0.2 4.7284 4.7284 
 0 0 1.7453 1.7453 
0.2  0.1 2.6681 2.6681 
  0.2 3.7137 3.7137 
 0.5 0 0.9860 1.0094 
  0.1 1.5073 1.5432 
  0.2 2.0980 2.1478 
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 Table 3  

 Values of 𝑁𝑢𝑥𝑅𝑒𝑥
−1 2⁄

  for several values of 𝑀, 𝜀, and 𝜑 
𝑀 𝜀 𝜑 Rahman et al., [22] Currents results 

Cu-water 

 -0.5 0 0.6870 0.6870 
  0.1 1.1432 1.1432 
  0.2 1.5185 1.5185 
 0 0 1.7148 1.7148 
0  0.1 2.1358 2.1358 
  0.2 2.5400 2.5400 
 0.5 0 1.4874 3.0095 
  0.1 2.9149 3.5235 
  0.2 3.3565 4.0560 

 -0.5 0 0.7079 0.7079 
  0.1 1.1649 1.1649 
  0.2 1.5419 1.5419 
 0 0 1.7220 1.7220 
0.1  0.1 2.1442 2.1442 
  0.2 2.5494 2.5494 
 0.5 0 2.4897 3.0119 
  0.1 2.9177 3.5266 
  0.2 3.3597 4.0596 

 -0.5 0 0.7279 0.7279 
  0.1 1.1857 1.1857 
  0.2 1.5642 1.5642 
 0 0 1.7291 1.7291 
0.2  0.1 2.1524 2.1524 
  0.2 2.5586 2.5586 
 0.5 0 2.4919 3.0143 
  0.1 2.9205 3.5296 
  0.2 3.3629 4.0632 

 
Figure 1 - 6 shown the variation of 𝑓′′ (0) and 𝜃′(0) for certain magnetic field parameter value 

𝑀, volume fraction of nanoparticles 𝜑 and the stretching index 𝑛  towards 𝜀 for Cu in water base 
fluid. These figures observed that the solution is unique at the region 𝜀 ≥ 1, dual at the region 𝜀𝑐 ≤
𝜀 < −1  and at the region 𝜀 < 𝜀𝑐 < 0  there are no solutions, which is 𝜀𝑐 is the critical value of 𝜀. We 
can show from Figure 1 and 2, that the 𝑀 increase will increase the 𝜀𝑐 range. Thus, for 𝑀 = 0,  the 
range of 𝜀 for which there is a similarity solution is smaller, i.e. −1.349802 ≤ 𝜀 < ∞,  while for 𝑀 =
0.1 and 𝑀 = 0.2, the range are −1.397694 ≤ 𝜀 < ∞  and −1.445707 ≤ 𝜀 < ∞, respectively. From 
these figures, we also can conclude that the rate of boundary layer and the rate of heat transfer 
increase because of an increment of the values of 𝑀. 

Then, Figure 7 and 8 depict the variations of 𝐶𝑓𝑅𝑒𝑥
1 2⁄

 and 𝑁𝑢𝑥𝑅𝑒𝑥
−1 2⁄

 for several values of 𝑀 for 

Cu in water base fluid with 𝜀 = 1.5 and 𝑛 = 2. These figures stated that as the 𝑀 is increasing, the 

value of 𝐶𝑓𝑅𝑒𝑥
1 2⁄

 and 𝑁𝑢𝑥𝑅𝑒𝑥
−1 2⁄

 is decreasing. In contrast, the profiles of velocity and temperature 

of various 𝑀 and 𝑛 are shown visually in Figure 9 - 12. These profiles prove the existing of the dual 
solution in the Figure 1 - 6 that satisfy the far zone boundary conditions (10) asymptotically. 
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Fig. 1. 𝑓′′(0) with 𝜀 for some values of 𝑀 for Cu-water, Pr = 6.2, 𝜑 = 0.1 and 𝑛 = 2 

 

 
Fig. 2. −𝜃′(0)  with 𝜀  for some values of 𝑀 for Cu-water, Pr = 6.2, 𝜑 = 0.1 and 𝑛 = 2 
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Fig. 3. 𝑓′′(0) with 𝜀 for some values of 𝜑 (0 ≤ 𝜑 ≤ 0.2) for Cu-water, Pr = 6.2, 𝑀 = 0.2 and 𝑛 = 2 

 

 
Fig. 4. −𝜃′(0) with 𝜀 for some values of 𝜑 (0 ≤ 𝜑 ≤ 0.2) for Cu-water, Pr = 6.2, 𝑀 = 0.2 and 𝑛 = 2 
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Fig. 5. 𝑓′′(0) with 𝜀 for some values of 𝑛 for Cu-water, Pr = 6.2, 𝑀 = 0.1 and 𝜑 = 0.2 

 

 
Fig. 6. −𝜃′(0) with 𝜀 for some values of 𝑛 for Cu-water, Pr = 6.2, 𝑀 = 0.1 and 𝜑 = 0.2 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 76, Issue 3 (2020) 139-152 

 

148 
 

 
Fig. 7. 𝐶𝑓𝑅𝑒𝑥

1 2⁄
 with 𝜀 for different magnetic field 𝑀 for Cu-water, Pr = 6.2, 𝜀 = 1.5 and 𝑛 = 2 

 

 
Fig. 8. 𝑁𝑢𝑥𝑅𝑒𝑥

−1 2⁄
with 𝜀 for different magnetic field 𝑀 for Cu-water, Pr = 6.2, 𝜀 = 1.5 and 𝑛 = 2 
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Fig. 9. Velocity profiles for different values of 𝑀  for Cu-water, 𝜑 = 0.1, 𝜀 = −1.25, 𝑛 = 2 and Pr = 
6.2 

 

 
Fig. 10. Temperature profiles for different values of 𝑀 for Cu-water, 𝜑 = 0.1, 𝜀 = −1.25, 𝑛 = 2 
and Pr = 6.2 
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Fig. 11. Velocity profiles for different values of 𝑛 for Cu-water, 𝜑 = 0.2, 𝜀 = −1.15, 𝑀 = 0.2 and 
Pr = 6.2 

 

 
Fig. 12. Temperature profiles for different values of 𝑛 for Cu-water, 𝜑 = 0.2, 𝜀 = −1.15, 𝑀 = 0.2$ 
and Pr = 6.2 

 
4. Conclusions 
 

We have numerically analyzed in a nanofluid how the parameter 𝑀 impacts the flow of stagnation 
point past a nonlinear sheet of stretching/shrinking. The analysis of the influence of the 𝜑 and the 
heat transfer features of Cu-water was numerically resolved with Pr = 6.2. In this study, it reveals that 
with the increase of the MHD, the solutions range is widespread. And with the increase in 
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magnetohydrodynamics, the range of solutions is expanded widely. As the factor of 𝑀  increases, the 
skin friction and heat transfer also do increase. 
 
Acknowledgement 
The authors gratefully appreciate the financial support given in the form of a fundamental research 
grant scheme (FRGS/1/2018/STG06/UPM/02/4/5540155). Lastly, for all the reviewers, a big thank 
you for honest feedback and suggestions. 
 
References 
[1] Hiemenz, K. "Dingler’s Poly." J 326 (1911): 321. 
[2] Crane, L. J. "Z. angew Flow Past a Stretching Plate." Journal of Applied Mathematics and Physics 21, no. 4 (1970): 

645-647.  
https://doi.org/10.1007/BF01587695 

[3] TC, Chiam. "Stagnation-point flow towards a stretching plate." Journal of the physical society of Japan 63, no. 6 
(1994): 2443-2444.  
https://doi.org/10.1143/JPSJ.63.2443 

[4] Miklavčič, M., and C. Wang. "Viscous flow due to a shrinking sheet." Quarterly of Applied Mathematics 64, no. 2 
(2006): 283-290.  
https://doi.org/10.1090/S0033-569X-06-01002-5 

[5] Mahapatra, T. Ray, and A. S. Gupta. "Heat transfer in stagnation-point flow towards a stretching sheet." Heat and 
Mass transfer 38, no. 6 (2002): 517-521.  
https://doi.org/10.1007/s002310100215 

[6]  Mahapatra, Tapas R., and Anadi S. Gupta. "Stagnation‐point flow towards a stretching surface." The Canadian 
Journal of Chemical Engineering 81, no. 2 (2003): 258-263.  

  https://doi.org/10.1002/cjce.5450810210 
[7] Wang, C. Y. "Stagnation flow towards a shrinking sheet." International Journal of Non-Linear Mechanics 43, no. 5 

(2008): 377-382.  
https://doi.org/10.1016/j.ijnonlinmec.2007.12.021 

[8] Magyari, E., and B. Keller. "Heat and mass transfer in the boundary layers on an exponentially stretching continuous 
surface." Journal of Physics D: Applied Physics 32, no. 5 (1999): 577.  
https://doi.org/10.1088/0022-3727/32/5/012 

[9] Rohni, Azizah Mohd, Syakila Ahmad, and Ioan Pop. "Flow and heat transfer at a stagnation-point over an 
exponentially shrinking vertical sheet with suction." International journal of thermal sciences 75 (2014): 164-170.  
https://doi.org/10.1016/j.ijthermalsci.2013.08.005 

[10] Mansur, Syahira, Anuar Ishak, and Ioan Pop. "Stagnation-point flow towards a stretching/shrinking sheet in a 
nanofluid using Buongiorno's model." Proceedings of the Institution of Mechanical Engineers, Part E: Journal of 
Process Mechanical Engineering 231, no. 2 (2017): 172-180.  
https://doi.org/10.1177/0954408915585047 

[11] Jat, R. N., and S. Chaudhari. "Magnetohydrodynamics boundary layer flow near the stagnation point of a stretching 
sheet." Nuovo Cimento della Societa Italiana di Fisica. B, General Physics, Relativity, Astronomy and Mathematical 
Physics and Methods 123, no. 5 (2008): 555-566.  

[12] Gretton, Arthur, Kenji Fukumizu, and Bharath K. Sriperumbudur. "Discussion of: Brownian distance 
covariance." The annals of applied statistics 3, no. 4 (2009): 1285-129.  
https://doi.org/10.1214/09-AOAS312E 

[13] Aman, Fazlina, Anuar Ishak, and Ioan Pop. "Magnetohydrodynamic stagnation-point flow towards a 
stretching/shrinking sheet with slip effects." International Communications in Heat and Mass Transfer 47 (2013): 
68-72.  
https://doi.org/10.1016/j.icheatmasstransfer.2013.06.005 

[14] Vajravelu, K. "Viscous flow over a nonlinearly stretching sheet." Applied mathematics and computation 124, no. 3 
(2001): 281-288.  
https://doi.org/10.1016/S0096-3003(00)00062-X 

[15] Bachok, Norfifah, and Anuar Ishak. "Similarity solutions for the stagnation-point flow and heat transfer over a 
nonlinearly stretching/shrinking sheet." Sains Malaysiana 40, no. 11 (2011): 1297-1300. 

[16] Jat, R. N., Abhishek Neemawat, and Dinesh Rajotia. "MHD boundary layer flow and heat transfer over a 
continuously moving flat plate." International Journal of Statistiika and Mathematika 3 (2012):102-108  

https://doi.org/10.1007/BF01587695
https://doi.org/10.1143/JPSJ.63.2443
https://doi.org/10.1090/S0033-569X-06-01002-5
https://doi.org/10.1007/s002310100215
https://doi.org/10.1002/cjce.5450810210
https://doi.org/10.1016/j.ijnonlinmec.2007.12.021
https://doi.org/10.1088/0022-3727/32/5/012
https://doi.org/10.1016/j.ijthermalsci.2013.08.005
https://doi.org/10.1177/0954408915585047
https://doi.org/10.1214/09-AOAS312E
https://doi.org/10.1016/j.icheatmasstransfer.2013.06.005
https://doi.org/10.1016/S0096-3003(00)00062-X


Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 76, Issue 3 (2020) 139-152 

 

152 
 

[17] Rana, P., and R. Bhargava. "1.(2012), Flow and heat transfer of a nanofluid over a nonlinear stretching sheet: A 
numerical study." Communication in Nonlinear Science and Numerical Simulation 17: 212-226.  
https://doi.org/10.1016/j.cnsns.2011.05.009 

[18] Matin, Meisam Habibi, Mohammad Reza Heirani Nobari, and Pouyan Jahangiri. "Entropy analysis in mixed 
convection MHD flow of nanofluid over a non-linear stretching sheet." Journal of Thermal Science and 
Technology 7, no. 1 (2012): 104-119.  
https://doi.org/10.1299/jtst.7.104 

[19] Tiwari, Raj Kamal, and Manab Kumar Das. "Heat transfer augmentation in a two-sided lid-driven differentially 
heated square cavity utilizing nanofluids." International Journal of heat and Mass transfer 50, no. 9-10 (2007): 
2002-2018.  
https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.034 

[20] Oztop, Hakan F., and Eiyad Abu-Nada. "Numerical study of natural convection in partially heated rectangular 
enclosures filled with nanofluids." International journal of heat and fluid flow 29, no. 5 (2008): 1326-1336.  
https://doi.org/10.1016/j.ijheatfluidflow.2008.04.009 

[21] Milovanov, Valery Ivanovich, Dmitry Alexandrovich Balashov, Valery Ivanovich Milovanov, and Dmitry 
Alexandrovich Balashov. "Experimental study of a liquid-steam ejector with a conical mixing chamber." Chemical 
Physics 20, no. 4 (1952): 571-581.  
https://doi.org/10.1063/1.1700493 

[22] Rahman, A. N. H., N. Bachok, and H. Rosali. "Numerical solutions of MHD stagnation-point flow over an 
exponentially stretching/shrinking sheet in a nanofluid." In Journal of Physics: Conference Series, vol. 1366, no. 1, 
p. 012012. IOP Publishing, 2019.  

 

https://doi.org/10.1016/j.cnsns.2011.05.009
https://doi.org/10.1299/jtst.7.104
https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.034
https://doi.org/10.1016/j.ijheatfluidflow.2008.04.009
https://doi.org/10.1063/1.1700493

