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This paper examines the effect of magnetohydrodynamic (MHD) on Eyring-Powell fluid 
flow over a shrinking sheet. The sheet is permeable and it is shrunk with power-law 
velocity. By employing the suitable similarity transformations, the governing equations 
are transformed into the similarity equations, and MATLAB software is used to program 
the code with the aid of the bvp4c function. Results reveal that the magnetic and the 
suction parameters raise both the velocity and temperature gradients, which 
consequently increases the skin friction and the heat transfer coefficients. However, 
these physical quantities are reduced with the Eyring-Powell fluid parameter. The domain 
of the solutions is affected by the rise of the magnetic and the Eyring-Powell fluid 
parameters. From the stability analysis, the second solution is unstable while the first 
solution is stable over time. 
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1. Introduction 
 

Most fluids that engineers and scientists work with, like water, air, and oils, can be thought of as 
Newtonian beneath certain conditions of attraction. However, the assumption of Newtonian 
behavior is frequently inappropriate, necessitating the demonstration of a rather progressive and 
intricate non-Newtonian reaction. These situations occur in the chemical preparation and plastics 
handling industries and are also seen in applications like oil and biological streams as well as in the 
mining industry. This makes the recreation of the non-Newtonian liquid stream phenomenon 
important to the business. Owing to the suitability of these fluids for industrial applications including 
power engineering, food engineering, and petroleum production, non-Newtonian fluid analysis is still 
of significant interest to researchers [1]. One of the non-Newtonian fluids, Eyring-Powell fluids, has 
certain benefits over the other models [2,3]. According to a few studies, this model appears to be 
extremely truthful and reliable in calculating the fluid time scale in different polymer sizes [4-6]. 
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Roşca and Pop [7] and Jalil et al., [8] examined the Eyring-Powell fluid flows in a parallel free stream, 
while Ara et al., [9] and Akbar et al., [10] studied the effect of radiation and MHD, respectively. 
Additionally, Ghadikolaei et al., [11] examined an unsteady flow in stretching channel. Besides, 
Fatunmbi and Adeosun [12] reported the flow along a vertical Riga plate. Aljabali et al., [13] 
considered the temperature-dependent viscosity effects. Moreover, Iqbal et al., [14] studied the 
Eyring-Powell fluid flow over a bidirectionally stretched surface. They found that the radial velocity 
is reduced while the transverse velocity is enhanced with increasing values of the magnetic field, Hall 
effect, Ion slip, and material parameters. 

The magnetohydrodynamic (MHD) explains how magnetic fields and fluid flow interact with one 
another. The liquid metals, strong electrolytes, and hot ionised gases are among the electrically 
conducting, non-magnetic fluids for which MHD flows are explored. The study of MHD flow is crucial 
and has many uses in the fields of engineering and technology. For example, such flows can be found 
in design cooling systems, pumps, flow metres, electric motors, MHD generators, and other devices 
[1]. Noor and Hashim [15] investigated the MHD flow and heat transmission near an implanted 
permeable shrinking sheet. The MHD flow caused by an exponentially stretched sheet was covered 
by Ishak [16]. Turkyilmazoglu [17] investigated the characteristics of heat transmission in MHD flow 
caused by a rotating disk that is contracting. Using the KKL model, Sheikholeslami et al., [18] reported 
the nanofluid flow with the MHD effect. Rashidi et al., [19] examined natural convection in MHD flow 
on a flat plate. Besides, Khan et al., [20,21] investigated the effects of MHD flow over a spinning disk 
and a curved stretching surface. Other than that, research on MHD can also be found in the previous 
studies [22-30]. 

Theoretically, the transformation of electrical energy into thermal state energy, causes the 
generation of heat from resistive losses referring to the joule heating effect. In other words, Joule 
heating is the process by which heat is generated on a conductor using an electric current. Joule 
heating is frequently used in a variety of electrical and electronic devices as well as in industrial 
processes, including resistance ovens, electric heaters, and food cooked on iron [31]. The effects of 
Joule heating on the MHD Burgers fluid flow over stretching sheet were explored by Hayat et al., [32]. 
Khashi'ie et al., [33] respectively examined the impact of Joule heating in Cu-Al2O3/water along a 
contracting cylinder. Chamkha et al., [34] scrutinised the Joule heating effect between two parallel 
plates containing hybrid nanofluid. Moreover, numerous researchers have conducted more studies 
on the Joule heating effect as reported in the previous studies [35-39]. 

Therefore, the main strength of this numerical study is to examine the flow and thermal 
characteristics of Eyring-Powell fluid flow past a nonlinearly shrinking sheet where the sheet is shrunk 
with power-law velocity. Most importantly, the study of dual solutions on the flow of the Eyring-
Powell with the MHD and Joule heating has not been considered. Moreover, this present paper 
reported on the critical values of the physical parameters, and the stability analysis of the dual 
solutions are also conducted. 
 
2. Methodology 
 

The physical model of the Eyring-Powell fluid flow towards a shrinking sheet is described in Figure 

1. The velocity of the surface is denoted by 1/3( )wu x ax=  with 0a  . Furthermore, 2/3

0( )wT x T T x= +  

implies the prescribed surface temperature with the reference 0T  and the ambient T  temperatures, 

respectively. The magnetic field 1/3

0( )B x B x−=  where 0B  is constant magnetic strength [40]. Also, 

the Joule heating effect and the radiative heat flux 4(4 3 )( )rq k T y  = −    where 4 3 44 3T T T T  −  
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with    and k   signifies the Stefan-Boltzmann and the Rosseland mean absorption coefficients, are 
employed in the energy equation [41]. 
 

 
Fig. 1. Schematic model 

 
Accordingly, the governing equations are [7,9,10] 
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subject to 
 

( ), ( ), ( ) at 0;

0, as ,

w w wu u x v v x T T x y

u T T y
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

= = = =

→ → →
          (4) 

 
where T  is the temperature, and ( , )u v  be the velocity components in the ( , )x y  direction. Besides, 

  and   are fluid parameters of the Eyring-Powell model,   is the electric conductivity, k  is the 

thermal conductivity,   is the fluid density, and 
pC  is the heat capacity. 

The similarity solutions are [7] 
 

2/3

1/3
( ), ( ) ,

w

T T a
a x f

T T

y

x
     






−
= = =

−
.         (5) 

 
 
 
 
 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 116, Issue 1 (2024) 64-77 

67 
 

Then, 
 

1/3 1/3( ) ( ) ( )
2 1

,
3 3

u v aax f x
y

f
x

f
 

   − 
= = = − =

 
  


−

  
− ,       (6) 

 
and 
 

1/32
( )

3
wv x a x S −= − ,            (7) 

 
where (0)f S=  is the constant mass flux parameter. Here, 0S =  and 0S   denote the impermeable 

and the suction cases, respectively. Then, the similarity equations are 
 

( )( )1

22

1 1

2 1
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3 3
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subject to 
 

(0) , (0) , (0) 1;

( ) 0, ( ) 0 as ,

f S f

f

 

   

= = =
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                     (10) 

 

with 0 =  (static sheet), 1 =  (stretching sheet) and 1 = −  (shrinking sheet). Moreover, the Eyring-

Powell fluid parameters 1 and 1 , the Eckert number Ec , the thermal radiation parameter R , the 

magnetic parameter M , and the Prandtl number Pr , are defined by 
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The physical quantities of interest are 
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where w  (wall shear stress) and wq  (heat flux) are 
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Thus, one obtains 
 

1/2 3 1/2

1 1 1

1 4
Re (0) (0) (0), Re 1 (0)

3
  .

3
f x x xC f f f Nu R   −  

   = + − = − + 
 

                (14) 

 

with 
1/2Ref xC  indicate the skin friction coefficient and 1/2Rex xNu −  is the local Nusselt number where 

Re ( ) /wx u x x =  is the local Reynolds number. 

 
3. Stability Analysis 
 

The execution of the stability analysis is done in this section following Merkin [42] and Weidman 
et al., [43]. In this regard, the new variables with the dimensionless time variable   are introduced 
as follows [7] 
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So that 
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Employing the unsteady flow as follows 
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while Eq. (1) remains unchanged. Then, one obtains 
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The perturbation functions are [43] 
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Here, 0( ) 0 asF   → →  is changed to 0 (0) 1F  =  to determine the values of   in Eq. (23) and 

Eq. (24) [44-46]. 
 
4. Results and Discussion 
 

The solutions to Eq. (8) to Eq. (10) are obtained using the bvp4c function [47]. The effects of 
various physical characteristics are then investigated and displayed in both graphical and tabular 
formats. The reliability of the present model is validated by providing a comparison value of (0)f   

for several values of S as shown in Table 1. For limiting cases, results are in agreement with those 
reported by Waini et al., [48], Cortell [49], and Ferdows et al., [50]. This supports the validity, 
accuracy, and precision of the current numerical outcomes. Meanwhile, Table 2 is provided to show 

the variation of 
1/2Rex fC  and 1/2Rex xNu−  towards M  and 1  for shrinking case ( 1 = − ). 
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Table 1  

Values of (0)f   for different S  when 1 1 0M  = = =  and 1 =  (stretching case) 

S  Waini et al., [48] Cortell [49] Ferdows [50] Present Result 

0.5 -0.873643 -0.873627 -0.873643 -0.873643 
0 -0.677648 -0.677647 -0.677648 -0.677648 
-0.5 -0.518869 -0.518869 -0.518869 -0.518869 

 
Table 2  

Values of 
1/2Rex fC  and 1/2Rex xNu−  when 1 0.1, 2.4, 0.1, 2,Pr 7,S Ec R = = = == and 1 = −  

(shrinking case) 

M  

1  

1/2Rex fC
 

1/2Rex xNu−
 

First Solution Second Solution First Solution Second Solution 

0 0.1 1.005976 0.859916 7.929873 7.461377 
0.01 

 
1.046092 0.826692 8.009216 7.244228 

0.02 
 

1.076254 0.804147 8.062001 6.994229 
0.01 0 1.153161 0.767147 8.347821 6.813277  

0.05 1.107409 0.785428 8.201309 7.021389  
0.1 1.046092 0.826692 8.009216 7.244228 

 

Figure 2 and Figure 3 show the impact of suction, S  and the magnetic, M  parameters on 
1/2Rex fC  

and 1/2Rex xNu− . Note that the solutions are generated with less suction strength as M  value 

increases, where the critical points occur at 1 2.3821cS =  ( )0 ,M =  2 2.3589cS =  ( )0.01M =  and 

3 2.3354cS =  ( )0.02M = . Besides, the values of 
1/2Rex fC  and 1/2Rex xNu−  are boosted by the 

imposition of M . Physically, the fluid motion is effectively opposed by the increasing Lorentz force 
that results from the magnetic field. While the flow is contracting, the suction helps to stabilise the 
unconfined vorticity, which tends to simultaneously raise the skin friction coefficient. Additionally, 
the magnetic parameter increases the thermal rate, and aids in the fluid's movement while also 
pushing the hot particles in the direction of the plate. 

Contradictly, the effect of Eyring-Powell fluid parameter  reduces the values of  and 

 as shown in Figure 4 and Figure 5. In addition, more suction strength is required for the 

existence of the dual solutions, where the solutions are terminated at   

  and  . Meanwhile, the velocity and the temperature 

for several values of Eyring-Powell fluid parameter  are portrayed in Figure 6 and Figure 7. Note 

that the far-field boundary conditions were satisfied asymptotically. It can be seen that the 

thicknesses of the momentum and the thermal boundary layers are increased with an increase in 

. From the physical insight, these behaviours are caused by the fluid viscosity becoming less viscous, 

and consequently, the fluid velocity is decreased for larger value of . Similarly, higher temperature 

is also noticed with larger values of . 

 
 

1
1/2Rex fC

1/2Rex xNu−

1 2.2498cS = ( )1 0 , =

2 2.3050cS = ( )1 0.05 = 3 2.3589cS = ( )1 0.1 =

1

1

1

1
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Fig. 2. Variations of  against  and  

 

 
Fig. 3. Variations of  against  and  

 
 

1/2Ref xC S M

1/2Rex xNu −
S M
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Fig. 4. Variations of 
1/2Ref xC  against S  and 1  

 

 
Fig. 5. Variations of 1/2Rex xNu −  against S  and 1  
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Fig. 6. Velocity profiles ( )f h¢  for different values of 1  

 

 
Fig. 7. Temperature profiles ( )q h  for different values of 1  

 

The smallest eigenvalues  against  is shown in Figure 8, with the negative eigenvalue 
designating the second solution while the positive eigenvalue indicating the first solution. This leads 
to the conclusion that the first solution is consistent and increasingly trustworthy over time, but the 
second solution behaves in the opposite way. 
 

 S
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Fig. 8. Smallest eigenvalue a  for different values of S  

 
5. Conclusions 
 

An Eyring-Powell fluid flow with the magnetohydrodynamic (MHD) and Joule heating effects was 
considered. The sheet is assumed to move forward and backward from the slit with the power-law 
velocity. The findings are as follows 

i. Adequate suction strength is needed for the dual solutions to be exists and the domain of 
the solutions for S are expanded with the rise of the magnetic parameter. 

ii. The magnetic parameter led to enhance the heat transfer rate and the skin friction since 
Lorentz force exists to control fluid motion. 

iii. Eyring-Powell fluid parameter with a larger value lessening the fluid viscosity and 
consequently lowers the skin friction and the heat transfer rate. 

iv. From the stability analysis, the second solution is unstable while the first solution is stable 
over time. 

For future study, this problem can be extended to different geometries such as cylinder and 
wedge. Besides, to get more insight towards the fluid behaviour, the inclusion of various thermal 
conditions can also can be considered, such as, heat flux and Newtonian heating conditions. 
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