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The present civilization highly depends on industrial products and hence there is an 
increased demand for the same. Therefore, each industry is trying to increase its 
production output without hindering the quality. Maintenance of plant health is 
essential to improve the production rate without any loss. Industrial processes require 
monitoring of every element as their consistent behavior is a fundamental concern. 
Any deviation in the working of these components may alter the quality of the end 
product, causing a huge loss for the industry. Therefore, monitoring and finding the 
root cause for irregular behavior of industrial processes is a requisite for avoiding any 
future loss. In this paper, an attempt is made to present types of faults, types of 
pneumatic actuator faults, and different techniques used for the detection and 
isolation of faults.  Simulation work is carried out to generate stiction behavior in the 
control valve using the Choudhury stiction model. Valve stiction behavior for different 
values of stick band and jump values are discussed in this paper. A comparison of 
several techniques used for the detection of faults based on two performance indices 
namely true detection rate and false alarm rate has been given at the end of this paper. 
From these techniques, it is observed that these indices are interdependent, such that 
an increase in the detection rate increases the false detection rate and increases 
detection time. 
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1. Introduction 
 

Industries play a vital role in fulfilling the day-to-day needs of humans. Industries will invest their 
money, time, and human power to cater to the needs of customers with many process stations each 
for fulfilling a particular task. These processes will have a set of operations to be performed to achieve 
the set target with a deadline. To reduce the requirement of human power and manual delay, 
gradually industrial processes are automated leading to improved speed of the process. In industries, 
to achieve a specific product, controlling various variables is imperative. Control of these parameters 
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will be achieved through a control loop. A general control loop comprises a plant, controller, 
measurement device, and a final control element as shown in Figure 1. A mechanical device that 
causes the change in plant parameters based on the control signal from the controller is a final control 
element also referred to as an actuator. Actuators could be electric, hydraulic, or pneumatic type 
based on the application [1]. In the control loop, Process Variable (PV) is measured from the process 
block, it is compared with a preset SetPoint (SP) value, and based on the difference the controller 
provides Control Output (CO). The CO activates the actuator to generate the Manipulating Variable 
(MV). This process continues to maintain the process variable to a preset value. As the pneumatic 
actuator is made of mechanical/electrical components, there are possibilities that they will have wear 
and tear over the period of its operation. As the actuator is in direct contact with the physical process, 
any small variation in actuator behavior affects the process behavior noticeably. This will give rise to 
deviation in process behavior which can be referred to as the faulty nature of the component. The 
effect of a fault on the process may differ based on the severity and type of fault, but the quality of 
the end product may get affected to a larger extent. Hence, monitoring and maintaining of actuator 
health are essential in the industrial processes.     

 

 
Fig. 1. General control loop 

 
Because of the increasing demand for process monitoring, maintaining the health of process 

components is the key requirement. To know the behavior of the process, getting its parameter 
information is necessary which is accomplished by using appropriate sensors or soft sensing 
techniques. This section overviews research work done in the area of soft sensor development, 
sensor/actuator fault detection. Jinlin Zhu et al., [2] reported the estimation of a process variable 
through a soft sensor model based on the mixture of the robust supervised probabilistic principal 
component analysis method. The design of an estimation observer for a nonlinear discrete-time 
system using a modified fuzzy was highlighted in Xie et al., [3]. Takagi Sugeno method was used for 
the design of observers for the estimation of fault using maximum priority-based switching law. 
Analysis of degradation levels of the aeronautical pneumatic actuator is stated in Graves et al., [4] to 
understand the signatures of 5 types of faults namely leakage, friction, backlash, charge clogging, and 
discharge clogging. Here, the pattern of hysteresis of different indices is analyzed, and based on its 
signature, faults were detected.  Lin et al., [5] discussed an approach for the development of soft 
sensors using a robust multivariate technique through online measurement. Heredia et al., [6] 
reported a model-based approach for the detection of sensor and actuator faults in a helicopter 
system. An observer-based system was used for generating residuals, and this method was tested in 
simulation and experimentation. Alireza et al., [7] stated actuator and sensor fault detection using 
an adaptive observer-based technique in unmanned aerial vehicles. Esmaeil and Khorasani [8], 
detailed a method for actuator and sensor fault detection, estimation, and isolation in discrete-time 
linear systems. This being a data-driven method involves input and output data collected from the 
system and estimates Markov parameters. A method for the detection of actuator faults in a 
wastewater treatment plant using a model-based method is summarised in [9]. Here, change in the 
plant state because of change in actuator faults was studied, and based on the estimated and actual 
value, residuals were calculated. This method was tested with simulation results which gave a fast 
and accurate detection rate of fault. 
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Many researchers have worked in the area of fault detection, isolation, and fault identification, 
or all of them forming diagnosis techniques as this is very important in industrial process monitoring.  
Some articles involving fault detection techniques in different actuation systems have been reported 
here. Peng et al., [10] reported monitoring and detection of faults through real-time simulation in 
nuclear powerpoint pressurized water reactors. Here, Incipient faults were detected by the actuators 
by using a thresholding technique. Fault severity was detected by analyzing the compensation from 
the control system and residual trends. Li et al., [11] analyzed a method for monitoring process 
parameters that were weakly correlated. Sheriff et al., [12] discussed a method to improve the 
performance of a fault detection system by reducing the effect of uncertainties in the data. Zang et 
al., [13] summarized an algorithm formed with a combination of wavelet de-noise technique with 
PCA for fault detection in a feedwater system.  Hongquan et al., [14] reported a fault detection 
technique for the detection of an incipient fault in the industrial processes. Here, two techniques 
namely moving average and exponentially weighted moving average were applied as smoothing 
techniques in multivariate process monitoring. Turner et al., [15] communicated a fault detection 
system used in residential buildings for detecting faults in heat, ventilation, and air conditioning 
systems. A data-driven approach was used for estimation of building model, its heat, ventilation, and 
air conditioning system model for comparing the system performance with normal performance. 
Detection of electro-hydraulic servo system leakage fault is discussed in Sharifi et al., [16]. Leakage 
of fluid cannot be measured directly from sensor output thus pressure signals were used as data and 
were mapped into another space and a nonlinear representation approach was used to detect the 
fault. 

In this section fault detection and isolation techniques that have been implemented across 
various processes are reported here. Nozari et al., [17] have put forward a data-driven method for 
fault detection and isolation using ensemble classification methods. A comparison of all classification 
methods individually and ensemble results were highlighted. Jun-Jie and Zhen [18] reported a fault 
detection and isolation method for the actuator mechanism by using a sliding mode observer. To 
differentiate disturbances from actuator faults, models for each actuator were considered 
separately. The actuator mechanism comprises numerous actuators thus observers were designed 
for each actuator and are used to detect actuator faults. Madrigal-Espinosa et al., [19] detail a 
method for the detection and isolation of sensor faults in a thermal power plant boiler system. 
Adaptive thresholds were used to minimize the false alarm rate. Fault detection system output was 
used to take necessary action on other sensors associated with the steam generator for improving 
the efficiency of the monitoring procedure. A scheme for detection and isolation of actuator fault in 
a quadrotor was reported in Avram et al., [20]. An estimator detected actuator fault by observing the 
behavior of the system for abnormalities. The actuator fault model was obtained for fault isolation. 

Fault diagnosis is a wide area that involves detection, isolation, and identification of faults. 
Research on these topics has been discussed in this section. Mehennaoui et al., [21] reported a fuzzy 
neural scheme for sensor fault diagnosis in nonlinear systems. It focuses on fuzzy logic as a local 
identification method and neural network as a global identification method to detect sensor faults in 
a three-tank process. Ramdani and Doghmane [22] described a multimodal approach for fault 
diagnosis of three tank system. Residuals were generated and then evaluated by using a fuzzy 
inferential process. Faults like pipe blockages, pump fault, level sensor faults, and tank leakages have 
been detected. Zhang [23] discussed a method to diagnose distillation column faults with robustness 
for sensor distortion. Lin et al., [24] reported a method for diagnosis of process fault using extended 
state observer and soft computing techniques. Here, a three-tank system has been considered as a 
case study to diagnose process faults by observing the rate of change of general dynamics of the 
process. Mrugalski and Witczak [25] reported a method for diagnosis of actuator fault using state-
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space group method data handling neural network model. This model was estimated using the 
Unscented Kalman Filter (UKF) that facilitates the calculation of output adaptive threshold using 
which actuator fault was diagnosed.  A strategy for diagnosis of faults and their rate of occurrence in 
computer numeric control machine is reported in Zhang et al., [26]. The model of faults and also the 
structural model was used to detect the propagation of faults.  Page rank algorithm evaluates the 
effects of machine tools failure. 

After a fault is isolated, the next step is to identify its size and severity, forming detection and 
identification techniques. Some research work in the area of fault detection and identification have 
been discussed here.  Fernando and Surgenor [27] have put forward a fault detection and 
identification technique using an unsupervised neural network for fault detection of an automated 
assembly machine. Caliskan et al., [28] discussed the identification of loss of control effectiveness 
and magnitude of stuck faults in B747 aircraft using an adaptive modified two-stage Kalman filtering 
algorithm. 

Research in the area of fault detection has gained high importance in monitoring. Researchers 
also started to think about limiting the damages due to faults. Working on fault-tolerant and 
compensation algorithms that monitor the functional blocks and components of the system have 
gained research importance. Research work in the area of fault-tolerant control has been discussed 
in this section. Li and Jin [29] reported a fault-tolerant control scheme to detect lock in place and loss 
of effectiveness faults of the actuator. Here false alarms and delays between detection and alarm 
were detected.  Yang and Dongik Lee [30] reported a fault-tolerant control technique for enduring 
the failure of the actuator using a network based on the control allocation actuator management 
technique. Based on the classification of fault occurrence, five parameters of the aircraft actuator 
were measured.  López-Zapata et al., [31] reported a fault-tolerant control system for the detection 
of actuator faults in a heat exchanger system. In this system, the Kalman filter estimates the control 
valve output for the detection of the fault. After the fault detection, the model following control law 
helped to avoid disturbances in the process, thereby compensating the fault. Wenying et al., [32] 
described an architecture for fault-tolerant control and detection of actuators and sensors fault in 
distributed parameter systems. In Zou et al., [33], a model predictive fault-tolerant control technique 
has been reported for a batch process. Here genetic algorithm optimizes the state vector matrix to 
have a better control action on actuator faults and unknown disturbances. 

A fault compensation method for time-varying actuator faults in the nonlinear, fractional-order 
system was addressed in Bataghva and Hashemi [34]. Here, instead of the detection of faults, a 
compensation method using an adaptive sliding mode synchronization scheme was explained.  
Vargas-Martínez et al., [35] discussed six methods of fault detection schemes that were developed 
for fault-tolerant control to detect abrupt and gradual faults in a heat exchanger plant. A model 
reference adaptive control was combined with six different controllers to develop six fault detection 
schemes. Guilherme et al., [36] stated three immune systems in knowing faulty and faultless 
conditions for fault detection and isolation schemes. The three fault immune approaches briefed are 
toll-like receptor algorithm, dendritic cell algorithm, and danger model algorithm. These methods 
require clear prior knowledge about the system which is difficult and should be obtained by the 
experts.  Hence most of the fault detection methods, fault immune systems are not adopted. Training 
of data is required in both dendritic cell and toll-like receptors method for forming the decision rules 
and had performed satisfactory fault detection. The danger algorithm showed a large delay in the 
detection of the fault, and the detection procedure is based on the danger signal. 
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2. Pneumatic Actuator 
 

A pneumatic actuator is a device that converts compressed air pressure into motion, which can 
be linear or rotary. A pneumatic actuator comprises a control valve, pneumatic servomotor, and 
positioner. The schematic diagram of the linear pneumatic actuator is shown in Figure 2. The control 
signal is converted into pressure using a current to pressure converter. Air pressure is applied as 
supply causing movement of the diaphragm that moves the stem downwards causing the change in 
the valve position. Change in the valve position alters the liquid flow rate at the output of the valve 
[38]. As it has many more sub-components in it, proper working of all these components is very 
important hence there is a necessity to monitor these components. If the behavior of process 
components has deviated from their normal behavior, then that component can be identified as 
faulty. 

 

 
Fig. 2. Air to close pneumatic actuator [37] 

 
Thus, the detection of faults in a process loop is the key requirement to avoid hampering of final 

product and safety of the plant. A detailed discussion on faults, major categories of faults, 
terminologies related to faults, and pneumatic actuator faults is presented in subsequent sections. 

 
2.1 Faults 

 
Faults are classified into abrupt and incipient faults based on the time taken for the development 

of fault. Faults that show the rapid development of effect are termed to be an abrupt fault. Detecting 
incipient faults is difficult because of their slow development of effect [39]. Figure 3(a) and (b) shows 
the graphical explanation of abrupt and incipient faults [40]. 

Terms associated with faults and its detection are discussed in the following section.  
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 Fault detection[FD]:  A process of detection of the incidence of faults in the functional 
components of the process, which results in improper and undesired behavior of the 
complete system. 

 Fault isolation: Classification and detection of different fault sources. 

 Fault analysis or identification: Finding the type, cause, and size or severity of faults. 

 Fault detectability: Gives the information regarding the changes in the system behavior due 
to a fault. It should be indicated independent of the uncertainties of the model, system input 
variables, and disturbances. If the incidence of a fault causes variation in the normal behavior 
of the system irrespective of its type and size, then that fault is detectable. 

 Fault isolability: Two or more separable faults are called as isolable faults [41].  

 Fault identifiability: Representation of system structure which is required to reconstruct the 
faults from input and output of the system is considered as fault identifiability. It also 
characterizes the mapping of system output to a concerning fault.  A fault is identifiable if 
the mappings are unique [42].  

 Fault distinguishability: Faults are distinguishable if the effect of each fault has its 
characteristic identified as a signature of the fault. Each fault has its signature and if the 
signatures are similar for more than one fault then they are called an indistinguishable fault. 
Some faults are not indistinguishable and not fully distinguishable such faults are called 
conditionally distinguishable [42]. 

 

  
(a) (b) 

Fig. 3. (a) graphical understanding of abrupt fault (b) graphical understanding of incipient faults. 
Notion: ts – start time of the fault, te – end time of the fault, td – development time, Sf(max) – 
maximum strength of fault 
 

2.2 Pneumatic Actuator Faults 
 
Failure of the final control element is often a common problem faced in industries. 

Malfunctioning of actuators may disturb the process in the long term or may lead to shut down of 
the process, thus affecting the quality of the product causing an economic loss. The life of an actuator 
is influenced mainly by the environment where it is installed. Usually, they are installed in harsh 
locations like high pressure, temperature, humidity, vibration, chemical solvents, pollution, etc.   

There are many types of faults associated with a pneumatic actuator and based on the source of 
fault they are categorized into positioner faults, control valve faults, servomotor faults, and general 
or external faults [40] as presented in Figure 4.  

The methods and techniques developed for fault detection of the pneumatic actuator are tested 
with a benchmark system to standardize and validate. The most commonly used benchmark is 
Development and Application Methods for Actuator Diagnosis in Industrial Control Systems 
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(DAMADICS), which was used in fault diagnosis studies of the actuator in a sugar factory at Lublin, 
Poland [40]. Introduction to a benchmark system and its use for testing fault detection and 
identification [FDI] methods and 19 (f1 – f19) types of actuator faults have been listed under four 
categories of pneumatic actuator faults as depicted in Figure 5. Faults f1 – f7 are categorized into 
control valve faults, f8 – f11 are categorized into servomotor faults, f12 – f15 as positioner faults, and 
f16 – f19 as other faults. Düştegör et al., [43] reported the analysis of structural fault isolability for the 
DAMADICS benchmark system. Totally 19 faults stated in DAMADICS were considered checking the 
isolability by forming isolation matrix as more than one fault may have the same signature. Kościelny 
et al., [42] discussed terminologies used in fault detection and two more faults namely pressure 
sensor fault at control valve inlet(f20) and control valve outlet(f21) were added under other faults 
category in DAMADICS benchmark hence total 21 faults were considered in this study. Three valued 
evaluation schemes for residuals i.e. {-1, 0, 1} were used for finding the signature of faults. Signatures 
for 21 DAMADICS actuator faults were tabulated using a three-valued evaluation scheme. A 
comparison regarding sensitivity between two-valued and three-valued evaluation scheme was also 
discussed. 

 

 
Fig. 4. Pneumatic actuator faults categories 

 

 
Fig. 5. Faults categorization concerning the source of the fault 
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2.2.1 Pneumatic actuator fault categories 
 
Research articles on the detection of faults for four different categories of pneumatic actuators 

faults have been discussed in this section.  In most situations, a single actuator fault is observed as 
multiple faults occur rarely. 

• Control valve faults 
Among the four categories of pneumatic actuator faults, control valve faults can be considered 

as the major faults. Servomotor, positioner, and other faults have also gained research importance 
other than the control valve faults detection. Most of the research works have concentrated on the 
detection of not only control valve faults but also servomotor, positioner, and other faults. In Table 
1, research work carried out to find more than one category of pneumatic actuator faults has been 
tabulated. Few research articles that highlight detection techniques for control valve faults that are 
not tabulated in Table 1 are [36, 41, 43, 59-62]. 

• Servomotor faults 
Some of servomotor faults have been detected in [41, 43, 47-48, 53-55, 58-62]. Karpenko et al., 

[63] discussed the detection and identification of actuator faults and their severity using a neural 
network based on observation of performance parameters of a typical control valve step response. 
Depending on the particular values of the performance parameters, each fault and its severity was 
found. A neural network was trained to estimate the fault intensities for which they were not trained.  
Bouamama et al., [64] reported a method using bond graphs to develop fault detection and isolation 
algorithm. The bond graph model was considered as a graphical modeling language. Here, two faults: 
inlet pressure sensor fault and diaphragm perforation faults were simulated and detected. 

• Positioner faults 
Some positioner faults were detected in [36, 41, 43-45, 47-49, 58, 59-62, 64]. Mrugalski et al., 

[65] reported a fault identification method based on a multi-layer perceptron neural model. A neural 
model of the system with model uncertainty was calculated regarding the observed data. Here, flow 
rate sensor fault, positioner supply pressure drop, and unexpected pressure drop across the valve 
were the faults detected concerning the DAMADICS benchmark system. Positioner faults have been 
detected in many papers as given in Table 1 

• General /other faults 
In many of the above discussed papers, algorithm for detection of general faults also have been 

reported in [36, 41, 43, 45, 47-49, 53-55, 58-63, 65]. Witczaka et al., [66] reported an approach based 
on a group method of data handling neural networks for robust fault detection. Here neural network 
with relatively small modeling uncertainty was developed. The algorithm is used to detect faults and 
to classify them as small, medium, big, and incipient faults. Bezzera et al., [67] detailed an approach 
for the detection of anomaly faults in industrial processes. Here, typicality and eccentricity data 
analytics approach for fault detection has been applied. This method was used for considering some 
of its advantages like no requirement of prior knowledge about the process data, fastness because 
of a recursive algorithm, and the reduced computational work. Positioner supply pressure drop, the 
unexpected pressure drop across the valve, partly opened bypass valve and flow rate sensor fault 
under general faults category of actuator faults were detected. Results signified that this method was 
suitable for detecting abrupt faults as incipient faults were not causing a significant change. 
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 Table 1 
 Articles with more than one category of pneumatic actuator faults 
Reference Findings Faults detected Method/ 

technique  

Puig et al., [44] The observer sets a priori bound on 
disturbances and uncertain parameters 
and creates estimated states which are 
steady with the prior bounds and 
present measurements.  

Diaphragm perforation faults, spring 
fault, valve clogging, and rod 
displacement actuator faults. 

Interval 
observer. 

Uppala et al., 
[45] 

Faults were grouped into small, 
medium, and high rates.  

valve clogging, valve seat sedimentation, 
critical flow, stem displacement sensor 
fault, unexpected pressure change 
across the valve, fully or partly opened 
bypass valve and flow rate sensor faults 

Neuro-fuzzy 
multiple 
modeling with 
robust optimal 
decoupling of 
the observer. 

Mendonca et 
al., [46] 

Reported a model-based approach for 
FDI    

Critical flow, valve clogging, flow rate 
sensor fault, internal leakage, and valve 
seat erosion 

Fuzzy model 

Laurentys et al., 
[47] 

Danger signals are the signals that were 
generated when the performance of the 
process components was not under 
normal behavior and was used to detect 
the fault occurrence in the process.  

Valve clogging, critical flow, servomotor 
diaphragm perforation, positioner spring 
fault, and unexpected pressure change 
across valve fault. 

Intelligent 
immune-based 
approach 

Chopra et al., 
[48] 

Reported an approach for classification 
of overlapping actuator fault classes.  
 

Valve seat sedimentation, seat erosion, 
and valve clogging actuator faults 

Self-Organizing 
Map [SOM] 

Subrahmanya 
and Shin [49] 

Proposed an observer-based method for 
detection and diagnosis of actuator 
fault.  

Valve clogging, unexpected pressure 
drop, flow rate sensor faults 

Neural network 

Kowsalya and  
Kannapiran [50] 

The backpropagation algorithm was 
used to train ANN and the performance 
improved by using PCA.  

Valve clogging, valve seat 
sedimentation, internal leakage valve 
tightness faults 

Artificial Neural 
Network [ANN] 

Subbaraja and 
Kannapiran [51] 

A backpropagation algorithm was used 
to train the neural network. 

Valve clogging ANN 

Subbaraja and 
Kannapiran [52] 

A comparison between the adaptive 
neuro-fuzzy inference system and 
multilayer feed-forward neural network 
is given. 

All control valve faults Adaptive Neuro-
fuzzy inference 
system  

Prabakaran et 
al., [53] 

The fault detection algorithm for three 
actuator faults was detailed. 

Incorrect supply pressure, diaphragm 
leakage and actuator vent blockage 

Fuzzy logic [53], 
neural network 
algorithm [54] 
and SOM [55] 

Ahmed Hafaifa 
et al., [56] 

ANN was trained with system inputs and 
outputs using an adaptive supervised 
learning method.  

Valve clogging and rod displacement 
sensor faults 

ANN 

Lemos et al., 
[57] 

Adaptive fault detection and diagnosis 
methods for a dynamic system using a 
model-free approach have been 
reported.  

Valve clogging, valve seat 
sedimentation, unexpected pressure 
change across the valve and flow rate 
sensor fault 

Fuzzy classifier 

Chopra and 
Vajpai [58] 

Reported an approach for fault 
diagnosis based on stochastic gradient 
boosted decision tree method. This 
method was compared with the other 
methods for a percentage of 
misclassification. 

Unconditionally indistinguishable faults 
categories namely, {f2, f5, f7}, {f3, f6, f18}, 
{f4, f8}, {f9, f10}, {f13, f15} 

Gradient 
boosted 
decision trees 
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2.2.2 Abrupt and incipient faults 
 
Among 19 DAMADICS faults, depending on the way the fault variation occurs, actuator faults have 

been categorized into 9 only abrupt, 5 only incipient, and 5 both abrupt and incipient faults. Hence 
(26+26) % of total actuator faults come under incipient fault whereas rest (26+48) % come under 
abrupt faults as represented in Figure 6 [40]. Some faults are categorized in both incipient and abrupt 
faults as represented in Figure 6. Detection of abrupt faults is comparatively easier as the effect is 
noticeable but detection of incipient faults is difficult as the effect is slow and gradual hence it is hard 
to observe the effect. 

Detection of abrupt and/or incipient faults has been reported in many research articles. Overall 
actuator faults have been discussed in the following section. Some researchers have reported work 
on detecting abrupt and incipient faults that have been tabulated in Table 2 with observations of 
detected faults. 

 
 Table 2 
 Incipient and abrupt fault detection methods 
References Observation  Faults detected 

Previdi and Parisini 
[41] 

Squared coherency function is sensitive to 
particular changes in the dynamics of the 
plant through which fault was detected.  

All abrupt faults were detected 

Calado et al., [59] A fault detection technique using a fuzzy 
qualitative process simulator was reported. 
Fault isolation was carried out using the 
hierarchical structure of a fuzzy neural 
network. 

All abrupt and incipient faults 
were detected. 
Some faults were detected only 
in dynamic conditions. 

Cosmin et al., [60] The application of a fuzzy classifier for finding 
one or more fault with more categories of 
each fault was detailed. This algorithm was 
tuned using various techniques out of which 
particle swarm optimization technique was 
reported to perform better.  

Abrupt faults were detected. 
More than one fault was 
detected simultaneously. 

Korbicz and Kowal 
[61] 

A robust fault identification method based on 
the Takagi-Sugeno Neuro-fuzzy model for 
detection of actuator fault was developed.  

All abrupt and incipient faults 
were detected except some 
undetectable faults like f5, f9, f12, 
and f14 

Przystałka and 
Moczulski [62] 

An approach for fault detection by developing 
a neural model of faultless state of the 
system using chaos theory was summarized. 
It was tested on all four categories of faults in 
the DAMADICS benchmark system. 

All faults were detected except f8 
and f14 

Wang and Dalay [68] An adaptive observer technique for actuator 
fault detection and diagnosis in deterministic 
systems was reported. Here, two observers, 
one fixed observer for abrupt fault detection 
and the adaptive observers for detection of 
abrupt faults with uncertainty.  

 Abrupt faults (with and 
without uncertainty) 

 This method was not verified 
with the DAMADICS 
benchmark. 

D’Angelo et al., [69] Changepoint detection in time gives 
information on physical variables in a steady-
state of the dynamic system. This 
methodology was tested with the DAMADICS 
benchmark system. A Fuzzy Bayesian 
methodology was used to find change point 
detection in a dynamical system.  

Incipient faults were detected 
namely f6, f9,f11, f13,f17, f18 
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Fig. 6. A percentage representation of abrupt and 
incipient faults 

 
3. Techniques Used for Fault Detection 
 

Numerous techniques are used for pneumatic actuator fault detection based on various 
diagnostic methods such as hardware redundancy, plausibility test, analytical/software redundancy, 
and signal processing, and they are symbolized in Figure 7 [70]. Among these methods, hardware 
redundancy and plausibility test methods are rarely using methods because of their limitations. 
Analytical / software redundancy or model-based schemes and signal processing methods are the 
booming areas in the current scenario. 

 Hardware redundancy based FDT: Here a redundant component is used to check the output 
from the process component. If process component output has deviated from the redundant 
component, then it is considered as the sign of occurrence of a fault. This method is highly 
reliable, provides direct fault isolation but the cost increases due to redundant components 
hence restricted to few applications [70]. 

 Plausibility test: some physical laws under which components of process works will be 
checked. If there is any deviation from the normal performance, it will result in plausibility 
loss. This test is mainly used for fault detection. 

 Signal processing based FDT: In this scheme, it is assumed that some process signals carry 
information about the faults. This information is analyzed and considered as a sign of fault 
and fault diagnosis is attained by the appropriate signal processing. This method involves 
time-domain methods, frequency-domain methods, and statistical methods. These methods 
can also be used for the development of physical models of the system. Distinctive symptoms 
are time-domain functions like mean value, magnitude, envelope, trends, limit values or 
frequency domain functions like cepstrum, power densities, frequency spectral lines [41,97], 
cross-correlation [71-72], statistical [5, 14, 98-99], feature extraction [57, 100-102], and PCA 
[2, 10-12, 103-108], etc. This technique is generally used for the detection of faults in steady-
state as the efficiency is limited for the dynamic system fault detection.   

 Model-based FDT: The main intention of the model-based approach is to represent the 
process model in software to overcome hardware redundancy. The model of the process can 
be of qualitative or quantitative description of the steady behavior and process dynamics 
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using various process modeling techniques. Thus online behavior of the process can be 
reconstructed which is similar to the hardware redundancy. Hence, this concept is called 
software redundancy or analytical redundancy [70]. 

 In software redundancy schemes, the model of the process will run with the actual process 
with the same set of inputs. The model is expected to produce the same output as that of 
actual process output under fault-free conditions. Thus any apparent deviations from the 
model output indicate a fault in the process. To get this information, the measured process 
variable should be compared with their estimates provided by the process model. The 
difference between the actual system output and model output is labeled as the residual of 
the system. The Method of developing the estimates of process outputs and obtaining the 
difference between the estimates and process output is called residual generation. 
Successful fault diagnosis can be achieved by utilizing the residual information. In most of 
the systems, the working of components is checked with their model.  Residuals will have a 
null value when the process is running under the normal and faultless condition and will have 
a nonzero value under faulty condition. A nonzero value of residual may result due to a noisy 
environment, disturbances, or modeling errors under normal working of the system. It is 
essential to use a suitable decision making procedure for distinguishing between the fault 
and unwanted disturbances. Several techniques have been developed namely fuzzy logic 
methods [24, 46, 53, 60-61, 69, 73-75, 109], neural network/machine learning methods [ 7, 
21, 27, 35, 47-52, 54-56, 62-63, 65-66, 75-79, 110-112], fuzzy neural or neuro-fuzzy methods 
[23, 45, 59, 80, 113], SVM [81-82], discrete wavelet transform methods [83-84], bond graph 
methods [64, 85] and observer-based method [7, 26, 31, 68, 86-87, 114-117], Kalman filtering 
method [9, 22, 118] for fault diagnosis. The effectiveness of these methods is generally tested 
with a benchmark system. 

 

 
Fig. 7. Classification of fault diagnosis methods 
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4. Stiction Fault 
 

As discussed in section 2.2.2, a total of 52% of faults out of 19 faults are incipient, and detecting 
these faults is a difficult process. Out of 52%, 26% of faults also behave abruptly in some situations. 
In the category of incipient faults, static friction offered to the movement of the control valve stem 
is the common fault in process industries. Static friction in valves is also called stiction causing limit 
cycles-oscillations in the form of periodic finite-amplitude instabilities that introduce non-linearity 
between manipulating variable and controller output in the process [88]. This accelerates equipment 
wear, increases variability in product quality, and leads to control system instability. When the 
applied force for changing the position of the valve is less than the static friction force, then the valve 
gets stuck completely. Due to the stuck valve, the controller output will be increased. As the applied 
force overcomes the static friction force, sudden change of valve from one position to another can 
be observed. At this point, the valve is influenced by dynamic friction force depending on the velocity. 
Thus applied force is more than the required hence the controller starts reducing the force and when 
the applied force overcomes the static friction force, the valve gets stuck in the new position. Stiction 
causes the sequence of stic and jump action of the valve, called stick-slip motion. The different 
regions of stiction have been illustrated in Figure 8. Here red dotted line represents the moving 
phase, the blue dotted line represents the constant phase and the green dotted line represents the 
slip jump phase [89]. This motion involves 3 steps of valve output: 

• Constant: The valve output will be constant for the time when the valve is stuck in one 
position due to the existence of static friction force. 

• Jump: Here, valve output changes suddenly/abruptly as the applied force overcome the 
static friction force. 

• Motion: Gradual variation of the valve output exists as the applied force is opposed by 
dynamic friction force [72]. 

 

 
Fig. 8. Representation of different regions of stiction 
(where AB – Stickband(Constant), BC – Deadband, 
CD – Slip Jump, DE – Moving phase, EF – Stiction 
+deadband, FG – Slip jump) 
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Stiction is a nonlinearity component added to the system. Thus, to detect these effects, 
knowledge of its behavior is important. Many researchers have worked in the area of modeling and 
identification of stiction that is reported in this section. Choudhury et al., [90] developed an empirical 
data-driven model of stiction by observing real-life data influencing the cause of stiction in control 
valves. Here, a new definition for static friction was proposed and terminologies related to stiction 
were reported. The developed model was validated based on the open-loop and closed-loop 
response of the model. Maruta et al., [91] have reported two methods for the detection of stiction 
and development of valve stiction model. The developed model was validated by comparing the 
model output with the real plant data. Two methods for detection of stiction were reported in this 
paper based on different regions of characteristics between controller output and valve movement. 
Here, conventional methods of stiction detection and difference between disturbance and bad tuning 
were reported. Xie et al., [92] proposed an enhanced version of the Choudhury data-driven stiction 
model that performs better compared to the Choudhury model. The original model was passing only 
seven industrial standard architecture tests out of fifteen, indicating the necessity for model 
improvement. The output of the Choudhury model for 5 standard tests has been indicated in this 
paper. From this, it is inferred that the failure was mainly for three reasons. First, when the input 
signal applied to the valve changes its direction, secondly when the ramp pause ramp type of input 
signal is applied to the valve, thirdly when the initial position of the stem is different from assumed 
range. The model proposed here is named XCH model and the authors claim that this model passes 
all the stiction parameter tests. di Capaci et al., [93] have reported a comparative description for 
modeling and detection of stiction in industrial control valves with different models.  Here, modeling 
is achieved by considering the process as a linear part and stiction as a nonlinear part using a 
Hammerstein system. The process with stiction was modeled using 5 identification techniques for 
modeling of a linear process and two techniques for nonlinear stiction modeling.  Two parameters 
one representing the stickiness and the other representing the level of jump in process variables are 
measured to quantify the stiction into two categories namely, low stiction and high stiction. di Capaci 
et al., [119] also reported a stiction identification method using a  smoothed model without using 
discrete statements. 

Some researchers have contributed to the field of stiction detection that is reported in this 
section. Horch [71] discussed a method of detecting stiction in control valves by computing cross-
correlation between loop output and the control signal. Static friction results in a shift in the signals 
by around π/2 which produces an odd function for cross-correlation. The presence of other 
disturbances produces an even function for cross-correlation. Thus the occurrence of odd cross-
correlation function implies the presence of stiction in control valves. This method was tested using 
industrial data for the occurrence of oscillations. Rossi et al., [72] reported the influence of stiction 
in actuators on the performance of process loop and also discussed three types of techniques: namely 
cross-correlation, bi-coherence, and relay technique for detection of stiction. These three techniques 
were applied to real plant data and from the results obtained it was determined that the bi-
coherence method gives better performance compared to the other two. Yamashita [94] proposed 
a method for detecting stiction in valves by observing the qualitative movements of the input-output 
plot. Here a stiction index was used to detect stiction and also to distinguish whether stiction causes 
from a poor controller or because of external disturbance. This method was stated as better 
performing when compared with the autocorrelation between loop output and controller output for 
the detection of stiction. Zakharov et al., [95] proposed an autonomous system for the detection of 
valve stiction based on data sequences. Four stiction detection algorithms namely cross-correlation 
method, area-ratio method, histogram methods, and curve fitting methods were used. Indices used 
for enumerating the feature of data sequences. Based on these indices, one of the 4 stiction detection 
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algorithms was selected and the fault was detected according to the selected algorithm. Daneshwar 
and  Mohd Noh [73] proposed a fuzzy clustering-based method for detection and diagnosis of stiction 
in the control loop. Here, detection of stiction was done firstly by finding the occurrences of loop 
non-linearity and secondly by framing an index based on which the reason for nonlinearity was found. 
Zhanyang et al., [83] reported a data-driven non-invasive method for the detection of valve stiction 
using wavelet technology. Data was decomposed into different resolution scale through discrete 
wavelet transform [DWT] and by analyzing these wavelet coefficients, variations of the controlled 
variable were observed. From the de-noised data, features of valve stiction patterns were extracted 
to calculate the probability of valve stiction. 
 
4.1 Case Study 
 

Introducing stiction in a real plant is very difficult as it may damage the valve components due to 
the wear and tear process. So to understand the behavior of stiction fault, a data-driven model 
referred to as the Choudhury model is selected. The data-driven model has parameters that can be 
directly related to the plant data and it produces the same behavior as the physical model. The model 
needs only an input signal coming from the controller, three parameters stick band, dead band, and 
slip jump values. It is easier to understand the stiction behavior from the model for different values 
of stick band, dead band, and slip jump. In the data-driven model, the parameters are easy to choose 
and the effects of these parameter changes are simple to realize. 

Figure 9 shows the signal and logic flow chart of the Choudhury data-driven stiction model [90]. 
The data-driven model takes data and parameters from the plant and gives results the same as the 
physical model. The model needs only slip jump, dead band/stick band values, and an input control 
signal to provide stiction output. 

Controller output in the form of current from 4-20mA is initially converted into 0-100 percentage 
of valve movement and is given as input to the stiction model. If valve movement is less than 0, then 
output is considered to be ‘0’ and if valve movement is more than 100% then the valve is considered 
to be fully saturated i.e., fully open or fully closed. If valve travel lies in between 0-100% then the 
algorithm calculates the slope of the control signal. The output of the stiction block is mainly decided 
based on the sign of the slope of the control signal. If the input signal is increasing, then the sign of 
slope will be positive and if it is decreasing, then the sign of slope will be negative. If the input to the 
valve does not change then the sign function gives a ‘0’ value, then the valve is considered as stuck. 
If the sign changes from positive to negative, then change in the direction of the input signal is 
observed and is considered as the beginning of the stick phase. Then the value input at this stick 
position is considered as ‘xss’. If the sign of input signal changes and if the collective change of input 
overcomes the sum of deadband and stick band, then the valve slips and will start moving. If the 
input signal slope does not change and the collective change of input becomes greater than the jump, 
then the valve slips and valve movement starts.  

Now, the valve may stick in the same direction upwards or downwards if and only if the input 
signal to the valve does not change or the sign does not change for two consecutive instants, which 
is usually uncommon in practice. For this situation or scenario, the sign(slope) changes to ‘0’ from ‘-
1’ or ‘+1’ and vice versa. The algorithm again detects here the stick position of the valve in the moving 
phase and this stuck condition is denoted with the indicator variable I’ = 1. The value of the input 
signal when the valve gets stuck is denoted as xss. This value of xss is kept in memory and does not 
change until the valve gets stuck again. The cumulative change of input signal to the model is 
calculated from the deviation of the input signal from xss. The output is calculated using the Eq. (1). 
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𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑖𝑛𝑝𝑢𝑡 − 𝑠𝑖𝑔𝑛(𝑠𝑙𝑜𝑝𝑒)(𝑆 − 𝐽)/2           (1) 
 

Depending on the values of ‘S’ and ‘J’, different stiction types can be obtained. These stiction 
types are explained below 

 Dead band: If the value of ‘J’ is zero then there will not be any slip jump only dead band is 
observed.  

 Stiction (Undershoot): If J<S, valve output will not be able to reach the input, and some offset 
can be observed between valve input and output.  

 Stiction (No Offset): When the value of ‘S’ becomes equal to ‘J’, there will be stick-slip 
behavior and there will not be any offset between input and output. There will be a stick 
behavior until the input overcomes the friction force after that there will be slip movement. 

 Stiction (Overshoot): If J>S, slip phase or jump phase causes a greater change in output which 
overshoots the valve input.  

 

 
Fig. 9. Signal and logic flow chart of Choudhury stiction model  
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Once the output is found, it is then converted back to a 4-20mA signal using a look-up table based 
on the valve characteristics such as a linear, equal percentage, or quick opening.  

In this section, a simulink model is developed based on the Choudhury stiction data-driven model 
to obtain an open-loop response of the stiction model by considering sinusoidal controller output 
with a magnitude of 100. All the types of stiction and valve without stiction has been simulated for 
different values of ‘S’ and ‘J’. When there is no stiction in the valve, the response of valve input to 
valve output gives a linear relationship with the stiction model output exactly tracking the valve input 
as observed from Figure 10. Response for different stiction conditions like deadband for S=15, J=0, 
no offset condition with S=J=15, undershoot for S=20, J=10, and overshoot for S=15 and J=20 are 
shown in Figure 10. 

 

 
Fig. 10. Choudhury model open-loop output 
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5. Discussion 
 

From the above-discussed articles, a comparison of different techniques used for the detection 
of valve clogging and diaphragm perforation is symbolized in the form of a chart in Figure 11 and 
Figure 12, respectively. Different techniques have been compared based on two performance 
indices, namely the detection rate, and false alarm rate. Time taken for detection of fault is also 
represented for some techniques available in the article. In some papers, details regarding false alarm 
rate and/or detection time are not available, hence the comparison is primarily given concerning the 
detection rate.  

 

 
Fig. 11. Comparison of results obtained for the detection of f1 fault. [SCF-Squared Coherency 
Function, IO- Interval Observer, NN-Neural Network, ANN-Artificial Neural Network, ANF-
Adaptive Neuro-Fuzzy, FE-Feature Extraction, CNN- Chaotic Neural Network, TEDA-Typicality 
and Eccentricity Data Analytics, CVA Canonical Variate Analysis] 

 
Figure 11 shows a chart representing the performance of different fault detection methods for 

valve clogging fault detection. From the chart, it is observed that Laurentys et al., [47] have got a 
better detection rate of 99.83% with a false alarm rate of 0.17% for detection of valve clogging within 
4 sec of fault occurrence. Subbaraj and Kannapiran [51] have achieved a detection rate of 99.79% 
which was a little less compared to Laurentys et al., [47] with a zero false alarm rate and zero 
detection time. Hence algorithm used in Laurentys et al., [47] gives better performance in terms of 
detection rate however a delay of 4 secs in fault detection.  For diaphragm perforation fault, if only 
detection time and false alarm rate are considered then Przystałka and Moczulsk [62] got a fault 
detection rate of 100% with 0.01% of false detection rate, Lingling Ma [96] attained a fault detection 
rate of 100% with 3.22% of false detection rate. In Laurentys et al., [47], they have obtained a fault 
detection rate of 99.8%, a false alarm rate of 0.01%, and a detection time of 3 sec. Figure 12 shows a 
chart representing the performance of different fault detection methods for diaphragm perforation 
fault detection. When these articles were analyzed it is evident that, if the detection rate could be 
improved, then one has to give up in terms of increased false alarm rate and/or increased detection 
time. 
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 Fig. 12. Comparison of results obtained for detection of f10 fault  

 
From the articles referred to in this paper, it is also observed that three faults namely, insufficient 

supply pressure, vent blockage, and diaphragm perforation faults have been detected using machine 
learning techniques in some papers. A comparison of different parameters of the techniques has 
been presented in Table 3. From the table if different techniques are compared based on 
computational accuracy, then the technique reported in Subbaraj and Kannapiran [52] has 100% 
accuracy besides computational time is 30.709 sec which is large comparatively. In Prabakaran et al., 
[55], the computational time is 0.8761 sec which is less compared to all other methods with a 
computational accuracy of 99.01% and a classification error of 1.45%. As detection time is also an 
important parameter along with the detection rate, the technique discussed in Prabakaran et al., [55] 
can be considered as better-performing amongst tabulated methods. 
 

Table 3 
Comparison of techniques used for the detection of insufficient supply pressure, vent blockage, and 
diaphragm perforation faults 

                   Techniques 
 
Parameters 

Artificial 
Neural 
Network [51] 

Adaptive 
Neuro-Fuzzy 
[52] 

Fuzzy Logic 
[53] 

Radial Basis 
Neural 
Network [54] 

Self-Organizing 
Map [55] 

No. Of training data 1000 1000 2500 1000 1500 
No. of checking data 250 200 2500 1500 2500 
Classification error 0.0017 0.00000469 1.33 1.2900 1.45 
Computational time 2.7344 s 30.709 s 0.946163 3.2546785 s 0.8761 s 
Computational 
accuracy 

99.7% 100% 98.99% 98.09% 99.01% 

Training error 0.0018 0.0000053 - 2.4447 0.00099567 

 
From the aforementioned literature, it is observed that most researchers have reported the 

detection of only a few faults like abrupt faults, incipient faults, control valve faults, and stiction 
detection. The development of a technique to detect all 19 actuator faults is difficult as the behavior 
of faults and the rate at which they develop are not the same. Few researchers have developed a 
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technique for all actuator faults detection that has been compared in Table 4 based on the true 
detection rate (TDR) and false detection rate (FDR). Previdi and Perisini [41] have reported only 
results for abrupt faults. From tabulated values for Przystałka, and Moczulsk [62] method, the 
technique can detect almost all the faults with good TDR but few faults f4, f5, and f9 were detected 
with less TDR. In Bezerra et al., [67], TDR for faults f4 and f13 is very less, f3 is detected with a 36% 
TDR, f5, f6, and f15 with a moderate TDR, and other faults were able to detect with TDR greater than 
80%. Lingling et al., [96] has reported a canonical variate method for the detection of faults with two 
methods Hotelling T2 and squared prediction error SPE for calculating detection rate and false 
detection. By considering both methods, a total of ten faults could detect, whereas other faults were 
not able to detect due to the fault pattern. Amongst all these methods, the technique used in 
Przystałka and Moczulski [62] was able to detect more faults with a comparatively better TDR. 

 
Table 4  
Comparison of techniques used for the detection of all pneumatic actuator faults 

Faults 

Previdi and persini 
[41] 

Przystałka, and 
Moczulsk [62] 

Bezerra et al., [67] Lingling Ma [96] 

TDR (%) FDR (%) TDR (%) FDR (%) TDR (%) FDR (%) TDR (%) FDR (%) 

T2 SPE T2 SPE 

F1 83 2 100 0 92.01 6.49 77.06 66.60 4.56 3.22 
F2 81 2 100 0 83.33 1.20 100 80.74 4.44 3.22 
F3 NA NA 93 0 36.63 1.42 2.41 0 2.00 0.67 
F4 NA NA 55 1 0.00 1.47 1.27 0.38 2.00 0.67 
F5 NA NA 60 0 72.28 2.67 2.28 0 2.00 0.67 
F6 NA NA 96 0 73.27 2.67 2.34 0 2.00 0.67 
F7 83 2 99 1 100 0.54 100 100 4.44 3.22 
F8 83 2 NA NA 93.33 0.29 2.41 0 2.00 0.67 
F9 NA NA 19 0 91.30 0.28 2.34 0 2.00 0.67 
F10 74 2 100 1 91.67 0.17 59.44 100 4.44 3.22 
F11 99 2 99 0 89.74 0.17 6.97 16.41 3.33 3.22 
F12 66 2 95 0 93.02 0.16 1.71 8.56 2.00 0.67 
F13 NA NA 100 0 0.09 0.22 77.06 66.60 4.56 3.22 
F14 81 2 NA NA 80.76 1.52 2.41 0 2.00 0.67 
F15 92 2 99 0 68.63 0.65 98.80 100 4.22 3.11 
F16 NA NA 99 0 83.52 0.60 53.74 71.10 4.11 3.00 
F17 99 0 99 0 83.93 1.09 100 100 4.56 3.22 
F18 93 2 100 0 93.65 1.15 76.68 62.99 4.56 2.44 
F19 78 2 100 0 97.16 1.09 75.29 19.14 4.56 0.78 

 
To initiate the stiction behavior in the valve model, an attempt is made to generate the stiction 

responses in simulation using a Choudhury data-driven model. Here a sinusoidal input with an 
amplitude of 100 is selected as a control signal to observe the stiction behavior with the model. Figure 
10 shows the graphs obtained for different conditions of stiction like linear (without having stiction), 
pure dead band, no offset, undershoot, and overshoot. Each graph consists of the control signal and 
stiction model response plotted concerning time in the left part of the graph and their xy graph on 
right part of the graph. The change in graph for different combinations of S and J values is significant 
in xy graphs showing the relationship between the control signal and the model output. 

 
6. Conclusion 
 

Pneumatic control valves are an integral part of any flow process loop. Pneumatic control valves 
are used as actuators to vary the flow based on the control input. These valves are a combination of 
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the electromechanical structure, with a high rate of wear and tear. The predetermination of the life 
of the valve could provide potentially important information to the controller. Similarly, identification 
and isolation of the faults occurred would also lead to a substantial reduction in the loss. Considering 
the above-said importance an attempt is made in this paper to discuss an overview of the pneumatic 
actuator and its faults categorized based on the DAMADICS benchmark. Different techniques used 
for fault detection and isolation have been discussed and compared. Detailed discussion on 
pneumatic actuator faults based on four categories namely, control valve, servomotor, positioner, 
and general faults along with the classification of fault into abrupt and incipient based on their 
behavior and development time is discussed in this paper. Stiction is an incipient fault that is 
discussed as a combination of stuck and friction movement of the control valve. Detecting and 
diagnosing stiction is difficult due to its incipient behavior. Some techniques used for modeling and 
detection of stiction is also discussed in this paper. An attempt is made to generate the stiction 
responses in simulation using a Choudhury data-driven model. The change in graph for different 
combinations of S and J values is significant in xy graphs highlighted in Figure 10. 

In most of the papers, abrupt fault detection was the main intension, whereas only a few articles 
have concentrated on detecting both abrupt and incipient faults. From Table 4 it is evident that most 
of the researchers have found difficulty in detecting f4 and f8 faults as these faults are 
indistinguishable faults. The technique used in [62] could detect more faults with a comparatively 
better detection ratio. Different techniques used for the detection of different faults have been 
compared majorly based on two performance indices, namely detection rate, and false alarm rate. 
Detection time is also used as another parameter as early detection of faults improves the 
performance of FDI methods. Detection rate, detection time, and false alarm rate are interdependent 
so that whenever one parameter is tried to improve, the other parameters were hampered. Thus, 
reasonably maintaining these parameters so that a nominal value of these indices would improve the 
efficiency of the technique. 

From the discussion reported in this paper, it is clear that there are many types of fault detection 
or diagnosis technique which are discussed based on the type and application of these techniques. 
However, no technique is reported which can be used for all types of faults. It could be proposed that 
a multi-sensor fusion technique would be able to provide a platform to involve data from different 
sensors and fuse the sensor data to identify, classify, and isolate faults in pneumatic actuators. 
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