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In the present work, the flow of non-Newtonian Bingham blood fluid through non-
uniform channel is investigated. The fluid is electrically conducting, and the external 
uniform magnetic field is applied on this motion. The heat and mass transfer are taken 
in consideration, so, Soret and Dufour effects are studied. The problem is modulated 
mathematically by a system of non-linear partial differential equations which govern 
the velocity, temperature and concentration distributions. The system of these 
equations is simplified under the assumptions of long wavelength and low Reynolds 
number, then it is solved analytically by using homotopy perturbation technique. These 
distributions are obtained as a function of the physical parameters of the problem. The 
effects of these parameters on the obtained solutions are discussed numerically and 
illustrated graphically through a set of figures. These parameters play an important 
role to control the values of solutions. The used Bingham model is applicable for the 
physiological transportation of blood in arteries. 
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1. Introduction 
 

Non-Newtonian blood flow with heat and mass transfer problems have received much attention 
due to their applications in many engineering and physiological processes and because the traditional 
Newtonian fluid cannot precisely describe the characteristics of the real fluids. When heat and mass 
transfer occur together through the fluid motion, then the relations between the fluxes and the 
derived potentials are of more intricate nature, and the energy flux can be generated not only due 
to temperature gradients, but also, by composition gradients as well. In this case the energy flux is 
called Dufour or diffusion-thermo effect and the mass flux is called Soret or thermal-diffusion effect. 
The peristaltic motion of fluid through a channels of wave walls works on mixing and transporting 
the fluid in the direction of wave propagation. It is an inherent property of many tubular organs of 
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human body. It plays an indispensable role in transporting many physiological fluids in the human 
body and occurs in various situations. The study of peristaltic transport with heat and mass transfer 
of non-Newtonian fluid has attracted much attention recently, because of its relevance to biological 
systems industrial and bio-engineering and medical applications. Some recent investigations which 
consider MHD peristaltic motion of Newtonian and non-Newtonian fluids with heat and mass transfer 
are mentioned in the studies [1-6]. Tang and Fung and Gopalan [7,8] discussed blood flow by 
considering the microscopic blood vessels as a channel with permeable walls. They called the blood 
space as channel and tissue space as the porous layer. The effect of heat transfer on peristaltic 
transport of Newtonian fluid through a porous medium in an asymmetric vertical channel was 
discussed by Vasudev et al., [9]. Also, heat and mass transfer of MHD unsteady Maxwell fluid flow 
through porous medium past a porous flat plate was analyzed by El-dabe et al., [10]. There are several 
studies of peristaltic transport with different fluids under the effect of different external forces, as 
mentioned in [11] and see also, [12-14].  

To the best of our knowledge, no investigation has been made yet to investigate the effect of slip 
velocity on peristaltic transport for Bingham-plastic fluid in the presence of Hall current and heat 
transfer. Recently, the effect of magnetic field on viscous fluid has been reported for treatment of 
the following pathologies: Gastroentric pathologies, rheumatisms, constipation and hypertension 
that can be treated by placing one electrode either on the back or on the stomach and the other on 
the sole of the foot; this location will induce a better blood circulation. El-dabe et al., [15] have 
studied heat and mass transfer of a steady slow motion of a Rivilin-Ericksen fluid in tube of varying 
cross-section with suction. The effect of electroosmotic on non-Newtonian blood fluid in a wavy tube, 
in which the flow is induced by a wave traveling on the tube wall, is investigated by Nadeem et al., 
[16]. The incompressible flow with radially varying magnetic field of non-Newtonian fluid, between 
two co-axial tubes under the considerations of long wave length and law Reynolds number, is 
discussed by El-dabe and Abou-zeid [17]. 

On the other hand, visco-plastic fluids are characterized by the absence of deformations when 
the applied load is below a fixed force. Bingham fluid is a special class of viscoplatic fluids named so 
after Bingham [18], who described several types of paints using this definition. Viscoplastic fluids 
constitute a very important class of non-Newtonian fluids. The modelling of Bingham materials is of 
crucial importance in industrial applications, since a large variety of materials (e.g. foams, pastes, 
slurries, oils, ceramics, etc.) exhibit the fundamental character of viscoplasticity, that is the capability 
of lowing only if the stress is above some critical value [19-21]. However, Bingham model is not 
amenable to numerical analysis because in some complex applications, some parts of material flow 
behave as a solid. This causes difficulties in tracking the shape and the location of the yield surfaces 
and applying two different constitutive equations across them. In addition, at vanishing shear rates, 
the apparent viscosity in Bingham model becomes infinite, which leads to a discontinuity and 
numerical difficulties. To overcome these issues, Papanastasiou proposed a modified Bingham model 
to approximate the rheological behavior of Bingham type materials [22-24]. 

The main aim of this study focus on investigating the effects of heat and mass transfer on 
peristaltic flow of blood inside a non-uniform channel. The blood is represented by Bingham model 
and streams through a porous medium under the effect of external uniform magnetic field. 
Furthermore, thermal diffusion and diffusion thermo effects with ohmic and viscous dissipation and 
chemical reaction are considered. The problem is modulated mathematically by using the 
conservation of mass and momentum, with energy and mass equations. These equations are 
represented in a system of coupled non-linear partial differential equations which are simplified by 
using long wavelength and low Reynolds number approximations. Then, they are solved analytically 
by using homotopy perturbation technique. The solutions are obtained as a function of physical 
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parameters of the problem. The effects of these parameters on the distributions of velocity, 
temperature and concentration are discussed numerically and illustrated graphically through a set of 
figures. 

 
2. Mathematical Formulations 
 

Consider a flow of an incompressible electrically conducting non-Newtonian fluid through a 
porous medium inside a non-uniform channel of flexible walls. The fluid obeys Bingham model. The 

system is stressed by a uniform magnetic field of strength 0B . Cartesian coordinates (X, Y, Z) are 

chosen as seen in Figure 1. The wall equation of non-uniform channel can be written from the 
symmetry about the channel axis as [5] 
 

 
Fig. 1. Sketch of the problem 
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The constitutive equation of Bingham model which represents the relation between stress  

and rate of strain  can be written as [19] 
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where m  is the stream growth exponent which has been introduced to avoid the discontinuity in 

any viscoelastic model and also called a regularization parameter. 
The system is stressed by an external uniform magnetic field 

( ) ( )BEJBB +== &,0,0 0  and BJF =  is the Lorenz force. We assume that the 

conductivity is usually small and the magnetic Reynolds number of the flow is taken to be small 
enough so that the induced magnetic field, external electric field and the electrical field due to the 
polarization of charges can be neglected. The equations governing the motion temperature and 
concentration can be written. 
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Continuity equation 
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Momentum equation 
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Heat equation 
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Concentration equation 
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Consider the following transformation  
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where vandu  are the velocity components in the moving frame yandx . Then the system of 

equations Eq. (3)-(7) after drop par mark can be written as 
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Introduce the following dimensionless quantities, where the stream function is defined as 

 

x
v

y
u




−=




=


,   













−

−
=

−

−
=====

======

01

0

01

0*

0

**

2
*****

,,,,,

,,,,,,

CC

CC

TT

TTdc
R

dcb

h
ht

c
t

p
c

d
p

d

c

v
v

c

u
u

d

y
y

x
x

e

l

lll













                (16) 

 
Substitute from (16), the system of equations Eq. (9)-(12) after drop star mark and using the 

approximation of long wave length and small Reynolds number, becomes 
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The appropriate boundary conditions subjected to this problem in dimensionless form can be written 
as 
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3. Method of Solutions 
 

The system of nonlinear ordinary differential equations Eq. (17), (19) and (20) is solved 
analytically by the help of homotopy perturbation technique, the method appoints a homotopy 
modify to obtain an approximate series solution of differential equations. In view of the HPM [25-
27], Eq. (7), (8) and (9) satisfy the following relations 
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The stream, temperature and concentration distributions are obtained as a functions of the 

physical parameters of the problem as follows 
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4. Results and Discussion 
 

Figure 2-9 illustrate the effects of the physical parameters of the problem on the general behavior 
of the stream function, the velocity, temperature and concentration. 

Figure 2 and 3 illustrate the change of the stream function  versus the vertical coordinate y for 

several values of the magnetic parameter M and the material parameter, of Bingham model 0 , 

respectively. It is seen, from Figure 2 and 3, that the stream function decreases with the increase of 

M , whereas it increases as 0  increases, respectively. Moreover, it is also noted that for each value 

of both M  and 0 ,  is always negative, and all obtained curves don’t intersect at the upper wall. 

The obtained result in Figure 2 due to the Lorentz force retards the flow. The effects of the other 
parameters are found to be similar to them; these figures are excluded here to avoid any kind of 
repetition. 

 

 
Fig. 2. The stream function   of the fluid is drown against y for different values of  

,5.2,5.7 == fc DE ,2.1,2.0 == rPK ,1.0,5.1 10 ==  ,200,100,25=M
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,25.0=x ,1.0,4.0 10 == SS ,10−=




x

p
,2.0= ,1,5.0 == rc SS

xSxSh 2sin1 10 ++=  

 

 
Fig. 3. The stream function   of the fluid is drown against y for different values of  

,5.2,5.7 == fc DE ,2.1,2.0 == rPK ,25,1.01 == M ,5.1,1,5,00 =

,25.0=x ,1.0,4.0 10 == SS ,10−=




x

p
,2.0= ,1,5.0 == rc SS

xSxSh 2sin1 10 ++=  

 
The variations of the horizontal velocity u with the dimensionless vertical coordinate y for various 

values of the magnetic parameter M  and the material parameter of Bingham model 0  are 

displayed in Figure 4 and 5, respectively. The graphical results of Figure 4 and 5 indicate that the 
horizontal velocity decreases with increasing in the parameter M , while it increases by increasing 

the parameter 0 , respectively. It is also noted from Figure 4 and 5, that all the obtained curves don’t 

intersect at the lower wall. 

Figure 6 and 7 obtain the influence of the permeability parameter K  and Ecket number cE  on 

the temperature distribution, respectively. It is observed that the temperature increases by 

increasing K , whereas it decreases by increasing values of cE . 

Figure 8 and 9 represent the behaviors of the concentration distribution   with the 

dimensionless vertical coordinate y for different values of material parameters, of Bingham model 

0  and 1  , respectively. It is indicated from Figure 8 and 9, that the concentration distribution 

decreases with the increase of 0 , whereas it increases as 1 increases, respectively. It is also noted 

that the difference of the concentration distribution for different values of 0  and 1 becomes 

greater near the lower wall. The following explains the result in Figure 9. The material parameter of 

Bingham model 1  is proportional to the dynamic viscosity which is proportionally to the fluid 

concentration. So, 1  tends to increase the concentration. 
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Fig. 4. The velocity function (  ) of the fluid is drown against y for different values of  

,5.2,5.7 == fc DE ,2.1,2.0 == rPK ,1.0,5.1 10 ==  ,200,100,25=M

,25.0=x ,1.0,4.0 10 == SS ,10−=




x

p
,2.0= ,1,5.0 == rc SS

xSxSh 2sin1 10 ++=  

 

 
Fig. 5. The velocity function   of the fluid is drown against y for different values of

,5.1,1,5,00 = ,25,1.01 == M ,2.1,2.0 == rPK ,5.2,5.7 == fc DE

,1,5.0 == rc SS ,2.0= ,10−=




x

p
,1.0,4.0 10 == SS ,25.0=x

xSxSh 2sin1 10 ++=  
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Fig. 6. The temperature function  of the fluid is drown against y for different values of  

,5.2,5.7 == fc DE ,2.1,25 == rPM ,1.0,5.1 10 ==  2.0,15.0,1.0=K

,25.0=x ,1.0,4.0 10 == SS ,10−=
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x
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,2.0= ,1,5.0 == rc SS

xSxSh 2sin1 10 ++=  

 

 
Fig. 7. The temperature function  of the fluid is drown against y for different values of  

,5.2,2.0 == fDK ,2.1,25 == rPM ,1.0,5.1 10 ==  ,5.7,5.5,5.3=cE

.,0,1.0 1 == ax ,1.0,4.0 10 == SS ,10−=
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,2.0= ,1,5.0 == rc SS

xSxSh 2sin1 10 ++=  
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Fig. 8. The constrain function ( ) of the fluid is drown against y  for different values of  

,1,5.0 == rc SS ,5.2,5.7 == fc DE ,2.1,2.0 == rPK ,25,1.01 == M ,5.1,1,5,00 =

.,0,1.0 1 == ax ,1.0,4.0 10 == SS ,10−=
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

x
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xSxSh 2sin1 10 ++=  

 

 
Fig. 9. The constrain function ( ) of the fluid is drown against y  for different values of  

,5.2,5.7 == fc DE ,2.1,2.0 == rPK ,25,5.10 == M , 5.0,3.0,1.01 =

,25.0=x ,1.0,4.0 10 == SS ,10−=




x

p
,2.0= ,1,5.0 == rc SS

xSxSh 2sin1 10 ++=  
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5. Conclusion 
 

In this study, the motion of non-Newtonian fluid with heat and mas transfer through porous 
media under the effect of magnetic field inside non-uniform channel is analyzed. The system of non-
linear differential equations which describe the flow is solved by using homotopy perturbation 
method. Moreover, the velocity, the stream function, temperature and concentration distributions 
are obtained as a functions of physical parameters of the problem. The effects of these parameters 
on these distributions are discussed numerically. The following observations have been found 

i. The stream lines  increase with the increase of each  of, whereas it 1 and  0 , fD   

decreases as M  increases. 
ii. The horizontal velocity u  for different values of all parameters is always negative and 

becomes greater with increasing the coordinate  , but all curves don’t intersect at the end 

of thin-layer.  

iii. The temperature increases with the increase of each of fD  and 1 , while it decreases as 0 , 

cE  and M  increase.  

iv. The concentration behavior is similar to the temperature behavior except that for different 
values of 1 , the effect appears only for large values.  
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