A Thermal Conduction Comparative Study Between the FDM and SPH Methods with A Proposed C+ Home Code

Mohammed Bensafi ${ }^{1, *}$, Belkacem Draoui ${ }^{1}$, Younes Menni ${ }^{2}$, Houari Ameur ${ }^{3}$
1 Laboratory of Energy in Arid Areas (ENERGARID), University of Bechar, P.O. Box 417, Bechar 08000, Algeria
2 Unit of Research on Materials and Renewable Energies, Department of Physics, Faculty of Sciences, Abou Bekr Belkaid University, P.O. Box 119, Tlemcen 13000, Algeria
3 Department of Technology, University Centre of Naama - Ahmed Salhi, P.O. Box 66, Naama, 45000, Algeria

ARTICLE INFO

Article history:

Received 3 July 2020
Received in revised form 30 August 2020
Accepted 31 August 2020
Available online 30 November 2020

Keywords:

Thermal conduction; Finite difference method; Smoothed particle
hydrodynamic; C^{++}code

Abstract

The heat transfer phenomenon is modeled by the Finite Difference Method (FDM) and the Soothed Particle Hydrodynamic (SPH) approach. The numerical approach under investigation may be used to solve many complex problems of applied mechanics. The Finite Element Method (FEM) is generally used for the Lagrangian description, and the FDM is used for the Eulerian report. However, the SPH method, which is better than other approaches to solve some problems, may be used in many aspects. Numerical details on the SPH method are discussed in this paper, with a focus on its application on the heat equation. A simple two-dimensional heat conduction problem is simulated by using the SPH approximation procedure and the newly constructed quartic smoothing function. Besides, a comparison is made between both techniques. Finally, C++ code is proposed for SPH and FDM methods.

1. Introduction

Smoothed particle hydrodynamics (SPH) is a free mesh, and Lagrangian particle approach to model fluid flows. SPH was first employed in modelling the astrophysical problems (polytropes) in three-dimensional open spaces. The application of SPH in such issues was successful due to the similarity of the movement of those particles to that of gas or a liquid [1].

The SPH method has become a good alternative due to the difficulties encountered in modelling some complex problems by the traditional grid-based numerical methods such as the finite element methods (FEM), the finite difference method (FDM), or the finite volume methods (FVM) [2-7]. The main advantages of the SPH method may be encountered in the review of Benz and Monaghan [8].

[^0]https://doi.org/10.37934/arfmts.78.1.137145

Another advantage of the SPH method is that the use of mesh is not necessary to compute the spatial derivatives, which is not the case for the particle-in-cell (PIC) method. The particles are able to move in the space, carry all the computational information, and thus form the computational domain to solve the governing equations [9].

The SPH method is today employed in modelling various problems, such as the collapse and the formation of galaxies, supernova, single and multiple detonations of white dwarfs, binary stars and stellar collisions, the coalescence of black holes with neutron stars, and others. The SPH method is also applied in computational fluid or solid mechanics; this is why it is called smoothed particle mechanics [10].

Some examples of the different problems of mechanics that may be solved by the SPH method, we cite the ice and cohesive grains [11], the heat and mass transfer [12], shallow water [13], fluidstructure interactions [14], incompressible flows [15, 16], multiphase flows [17-26], flow through porous media [27], magneto-hydrodynamics, gravity currents, elastic flow, weakly compressible smoothed particle hydrodynamics method to solve the internal flow problems involving fluid-solid conjugate heat transfer [28]. Ng et al., [29] assessed the accuracies of using the popular dummy particle methods, i.e. (a) the Adami Approach (AA) and (b) the higher-order mirror + Moving Least Square (MMLS) method in predicting the total wall heat transfer rate. Other researchers treated other problems, as detailed in references [30-34].

2. Formulation and Equations

The following key details are considered in the SPH method to obtain the previous mentioned objectives. In the case where the domain is not in the form of particles, an arbitrary distribution of particles may be set to describe the field. In this case, no particle connectivity is required (i.e., Meshfree).

For the approximation of the field function, the integral representation approach that is called the kernel approximation may be employed. Then, the so-called particle approximation (PA) is required, and it is done at every time step. It consists of approximate the kernel approximation by using particles. It is achieved by replacing the integration in the integral representation of the field function and its derivatives with summations over all the corresponding values at the neighbouring particles in a local domain called the support domain (Compact support). Since the particle approximation is needed at every time step, the utilization of particles depends on their current local distribution (Adaptive).

Furthermore, PA is applied for all terms related to field functions in the PDEs, resulting thus in a set of ODEs in the discretized form with respect to time only (Lagrangian).

To obtain a fast time stepping and to get the time history of all the field variables for all the particles (Dynamic), the ODEs are solved using an explicit integration algorithm.

The SPH procedure and the Gaussian kernel for smoothing function are applied to simulate a simple two-dimensional heat conduction problem. The heat conduction equation is a parabolic (PDE), given by
$\rho C \frac{\partial T}{\partial t}=\nabla \cdot(\bar{k} \nabla T)+Q$
where ρ, C, k, and Q are constant during the simulation.

The heat conduction equation for particle i is given as
$\rho_{i} C_{i}\left(\frac{\partial T}{\partial t}\right)_{i}=\nabla \cdot\left(\bar{k} \nabla T_{i}\right)+Q_{i}$
A SPH equation for multi-dimensional heat conduction is derived as follows [35]
$\rho_{i} C_{i}\left(\frac{\partial T}{\partial t}\right)_{i}=\bar{k} \sum_{j=1}^{N} T_{j} W_{i j} \frac{m_{j}}{\rho_{j}}+Q_{i}$
$W_{i j}=\left(T_{i}-T_{j}, h\right)=W\left(R_{i j}, h\right)=\frac{1}{e^{h(\pi x)^{2}}}$
where $R_{i j}=\frac{T_{i}-T_{j}}{h}$
The distribution of SPH particles that are used in this simulation is shown in Figure 1 and 2. A total of 25 particles is used in the first case. However, 81 particles are employed for the second one. Nine particles are located on each boundary, and the rest of the particles are located inside the square domain. The boundary particles are imposed with boundary values in the temperature evaluation process. The smoothing length is given by
$h=\Delta x+\Delta y$

Fig. 1. Domain discretization by SPH method for 5 particles

Fig. 2. Domain discretization by SPH method for 9 particles

In addition, the time integration scheme is given by
$\Delta t=\min \left(\frac{h_{i}}{C}\right)$

The explicit time integration schemes are subject to the CFL condition for stability [35]. Figure 3 shows the algorithm of SPH method.

For the FDM method, the geometry of the two-dimensional simulation is set to be a square. The material properties used are $k=1, \rho=1, C=1$ and $Q=0$. The initial temperature is $0^{\circ} \mathrm{C}$ and the temperature on the right and left boundaries are simply set as $10^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ respectfully. The bottom and top boundaries are adiabatic.

The algorithm for the FDM method is given by Figure 4.

Fig. 3. SPH method algorithm

Fig. 4. Algorithm for the FDM method

3. Results and Discussion

3.1 Case No. 1

The first case consists of five particles of the SPH method versus five nodes of the FDM method. Figure 5 and 6 present the simulation of heat distribution that is obtained by the SPH and FDM methods, respectively. The temperature between the limits is almost the same for both methods.

In Figure 7, a good agreement between the FDM \& SPH methods is observed; each particle has the same value of the offset node.

Fig. 5. Distribution of temperature of five particles of SPH method

Fig. 6. Distribution of temperature of five nodes of FDM method

Fig. 7. Comparison between the SPH particles in the middle square with the others of the FDM nodes

3.2 Case No. 2

The second case consists of nine particles for the SPH method versus nine nodes for the FDM method.

Figure 8 and 9 represent, respectively, the distribution of the temperature for both methods SPH and FDM. As clearly observed, nearly the same distribution of temperature is obtained.

However, a small difference between the FDM and SPH methods is remarked, as illustrated in Figure 10. The main reason of the discrepancy is that we've taken the same values of $d x$ and $d y$ in both methods, while in the SPH method the length h is given as mention in Eq. (6). Each particle is approximated to the other values of nodes. The difference is caused by the time step in the SPH method and the number of iterations in space loops of the FDM method.

Fig. 8. Distribution of temperature of 9 particles

Fig. 10. Compare the SPH particle in the middle square with the other of FDM nodes

4. Conclusions

The FDM was used to study the behaviour of particles (position and temperature) by the SPH method. The numerical details of the used process were discussed with a focus on numerical implementation and interpretation. The newly constructed quartic (Eq. (4)) smoothing function and the SPH approximation procedure were applied to simulate a simple two-dimensional heat conduction problem. Furthermore, a comparison was made between the FDM and SPH techniques.

Encouraging results were obtained, especially for the SPH method. However, some problems have been encountered regarding the computational time for the SPH method, which arrived at 640 seconds for nine particles. Besides that, the algorithm for searching the neighbour particle pushes us to the parallel programming.

References

[1] J.J. Monaghan. "Smoothed particle hydrodynamics." Institute of Physics Publishing, Reports on Progress in Physics 68 (2005) 1703-1759. https://doi.org/10.1088/0034-4885/68/8/r01
[2] H. Ameur, and D. Sahel. "Effect of the baffle design and orientation on the efficiency of a membrane tube." Chemical Engineering Research and Design 117 (2017) 500-508. https://doi.org/10.1016/i.cherd.2016.11.005
[3] H. Ameur. "Effect of the shaft eccentricity and rotational direction on the mixing characteristics in cylindrical tank reactors." Chinese Journal of Chemical Engineering 24 (2016)1647-1654, 2016. https://doi.org/10.1016/j.cjche.2016.05.011
[4] H. Ameur. "Mixing of shear thinning fluids in cylindrical tanks: effect of the impeller blade design and operating conditions." International Journal of Chemical Reactor Engineering, 14 (2016) 1025-1034. https://doi.org/10.1515/ijcre-2015-0200
[5] H. Ameur. "Investigation of the performance of V-cut turbines for stirring shear-thinning fluids in a cylindrical vessel." Periodica Polytechnica Mechanical Engineering, 64 (2020) 207-211, 2020. https://doi.org/10.3311/PPme. 13359
[6] H. Ameur. "Newly modified curved-bladed impellers for process intensification: Energy saving in the agitation of Hershel-Bulkley fluids." Chemical Engineering and Processing - Process Intensification 154 (2020) 108009. https://doi.org/10.1016/j.cep.2020.108009
[7] H. Ameur. "Effect of the baffle inclination on the flow and thermal fields in channel heat exchangers." Results in Engineering, 3 (2019) 100021. https://doi.org/10.1016/j.rineng.2019.100021
[8] W. Benz. "Smoothed particle hydrodynamics - a review." The Numerical Modelling of Nonlinear Stellar Pulsations, Springer, Dordrecht, 1990, pp. 269-288. https://doi.org/10.1007/978-94-009-0519-1 16
[9] W. Benz, and E. Asphaug. "Impact simulations with fracture: I. Method and tests." Icarus 107 (1994) 98-116. https://doi.org/10.1006/icar.1994.1009
[10] J. Bonet, and S. Kulasegaram. "Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations." International Journal for Numerical Methods in Engineering 47 (2000) 1189-1214. https://doi.org/10.1002/(sici)1097-0207(20000228)47:6<1189::aid-nme830>3.0.co;2-i
[11] S. Børve, M. Omang, and J. Trulsen. "Regularized smoothed particle hydrodynamics: a new approach to simulating magneto hydrodynamic shocks." The Astrophysical Journal 561 (2001) 82-93. https://doi.org/10.1086/323228
[12] M.L. Hosain, J.M. Domínguez, R. Bel Fdhila, and K. Kyprianidis. "Smoothed particle hydrodynamics modeling of industrial processes involving heat transfer." Applied Energy 252 (2019) 113441. https://doi.org/10.1016/i.apenergy.2019.113441
[13] S. Hardi, M. Schreiner, and U. Janoske. "Enhancing smoothed particle hydrodynamics for shallow water equations on small scales by using the finite particle method." Computer Methods in Applied Mechanics and Engineering 344 (2019) 360-375. https://doi.org/10.1016/j.cma.2018.10.021
[14] W. Hu, G. Guo, X. Hu, D. Negrut, Z. Xu, and W. Pan. "A consistent spatially adaptive smoothed particle hydrodynamics method for fluid-structure interactions." Computer Methods in Applied Mechanics and Engineering 347 (2019) 402-424. https://doi.org/10.1016/i.cma.2018.10.049
[15] E. Francomano, and M. Paliaga. "The smoothed particle hydrodynamics method via residual iteration." Computer Methods in Applied Mechanics and Engineering 352 (2019) 237-245. https://doi.org/10.1016/i.cma.2019.04.004
[16] R. Fatehi, A. Rahmat, N. Tofighi, M. Yildiz, and M.S. Shadloo. "Density-based smoothed particle hydrodynamics methods for incompressible flows." Computer Methods in Applied Mechanics and Engineering 185 (2019) 22-33. https://doi.org/10.1016/i.compfluid.2019.02.018
[17] R. Tayeb, Y. Mao, and Y. Zhang. "Smooth particle hydrodynamics simulation of granular system under cyclic compression." Powder Technology 353 (2019) 84-97. https://doi.org/10.1016/i.powtec.2019.04.079
[18] H. Wu, P.G.A. Njock, J. Chen, and S. Shen. "Numerical simulation of spudcan-soil interaction using an improved smoothed particle hydrodynamics (SPH) method." Marine Structures 66 (2019) 213-226. https://doi.org/10.1016/j.marstruc.2019.04.007
[19] M. Hopp-Hirschler, J. Baz, N. Hansen, and U. Nieken. "Generalized Fickian approach for phase separating fluid mixtures in Smoothed Particle Hydrodynamics." Computers and Fluids 179 (2019) 78-90. https://doi.org/10.1016/i.compfluid.2018.10.020
[20] Z. Ji, M. Stanic, E.A. Hartono, and V. Chernoray. "Numerical simulations of oil flow inside a gearbox by Smoothed Particle Hydrodynamics (SPH) method." Tribology International 127 (2018) 47-58. https://doi.org/10.1016/j.triboint.2018.05.034
[21] Z. Mao, G.R. Liu, and X. Dong. "A comprehensive study on the parameters setting in smoothed particle hydrodynamics (SPH) method applied to hydrodynamics problems." Computers and Geotechnics 92 (2017) 77-95. https://doi.org/10.1016/i.compgeo.2017.07.024
[22] A.M.A. Nasar, B.D. Rogers, A. Revell, P.K. Stansby, and S.J. Lind. "Eulerian weakly compressible smoothed particle hydrodynamics (SPH) with the immersed boundary method for thin slender bodies." Journal of Fluids and Structures 84 (2019) 263-282. https://doi.org/10.1016/i.jfluidstructs.2018.11.005
[23] H. Nonoyama, S. Moriguchi, K. Sawada, and A. Yashima. "Slope stability analysis using smoothed particle hydrodynamics (SPH) method." Soils and Foundations 55 (2015) 458-470. https://doi.org/10.1016/j.sandf.2015.02.019
[24] R. Ray, K. Deb, and A. Shaw. "Pseudo-Spring smoothed particle hydrodynamics (SPH) based computational model for slope failure." Engineering Analysis with Boundary Elements 101 (2019) 139-148. https://doi.org/10.1016/i.enganabound.2019.01.005
[25] L.V. Vela, J.M. Reynolds-Barredo, and R. Sánchez. "A positioning algorithm for SPH ghost particles in smoothly curved geometries." Journal of Computational and Applied Mathematics 353 (2019) 140-153. https://doi.org/10.1016/i.cam.2018.12.021
[26] N. Zhang, X. Zheng, and Q. Ma. "Study on wave-induced kinematic responses and flexures of ice floe by Smoothed Particle Hydrodynamics." Computers and Fluids 189 (2019) 46-59. https://doi.org/10.1016/i.compfluid.2019.04.020
[27] H. Basser, M. Rudman, and E. Daly. "Smoothed Particle Hydrodynamics modelling of fresh and salt water dynamics in porous media." Journal of Hydrology 576 (2019) 370-380. https://doi.org/10.1016/i.jhydrol.2019.06.048
[28] Ng, K. C., Y. L. Ng, T. W. H. Sheu, and A. Alexiadis. "Assessment of Smoothed Particle Hydrodynamics (SPH) models for predicting wall heat transfer rate at complex boundary." Engineering Analysis with Boundary Elements 111 (2020): 195-205. https://doi.org/10.1016/i.enganabound.2019.10.017
[29] Ng, Khai Ching, Yee Luon Ng, T. W. H. Sheu, and A. Mukhtar. "Fluid-solid conjugate heat transfer modelling using weakly compressible smoothed particle hydrodynamics." International Journal of Mechanical Sciences 151 (2019): 772-784. https://doi.org/10.1016/i.ijmecsci.2018.12.028
[30] G. Fourtakas, J.M. Dominguez, R. Vacondio, and B.D. Rogers. "Local Uniform Stencil (LUST) boundary condition for arbitrary 3-D boundaries in parallel smoothed particle hydrodynamics (SPH) models." Computers and Fluids 190 (2019) 346-361. https://doi.org/10.1016/i.compfluid.2019.06.009
[31] X. Yang, and S.C. Kong. "Adaptive resolution for multiphase smoothed particle hydrodynamics." Computer Physics Communications 239 (2019) 112-125. https://doi.org/10.1016/i.cpc.2019.01.002
[32] M. Mimault, M. Ptashnyk, G.W. Bassel, and L.X. Dupuy. "Smoothed particle hydrodynamics for root growth mechanics." Engineering Analysis with Boundary Elements 105 (2019) 20-30. https://doi.org/10.1016/i.enganabound.2019.03.025
[33] S. Gharehdash, M. Barzegar, I.B. Palymskiy, and P.A. Fomin. "Blast induced fracture modelling using smoothed particle hydrodynamics." International Journal of Impact Engineering 135 (2020) 103235. https://doi.org/10.1016/i.ijimpeng.2019.02.001
[34] J. de Anda-Suárez, S. Jeyakumar, M. Carpio, H.J. Puga, A. Rojas-Domínguez, L. Cruz-Reyes, and J.F. Mosiño. "Parameter optimization for the smoothed-particle hydrodynamics method by means of evolutionary metaheuristics." Computer Physics Communications 243 (2019) 30-40. https://doi.org/10.1016/i.cpc.2019.05.008.
[35] Liu, Gui-Rong, and Moubin B. Liu. Smoothed particle hydrodynamics: a meshfree particle method. World scientific, 2003.

[^0]: * Corresponding author.

 E-mail address: bensafi.med08@gmail.com

